
Segmentation based Features for Lymph Node

Detection from 3-D Chest CT

Johannes Feulner1,3, S. Kevin Zhou2, Matthias Hammon4,
Joachim Hornegger1, and Dorin Comaniciu2

1 Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany
2 Siemens Corporate Research, Princeton, NJ, USA

3 Siemens Corporate Technology, Erlangen, Germany
4 Radiology Institute, University Hospital Erlangen, Germany

Abstract. Lymph nodes routinely need to be considered in clinical
practice in all kinds of oncological examinations. Automatic detection
of lymph nodes from chest CT data is however challenging because of
low contrast and clutter. Sliding window detectors using traditional fea-
tures easily get confused by similar structures like muscles and vessels.
It recently has been proposed to combine segmentation and detection to
improve the detection performance. Features extracted from a segmenta-
tion that is initialized with a detection candidate can be used to train a
classifier that decides whether the detection is a true or false positive. In
this paper, the graph cuts method is adapted to the problem of lymph
nodes segmentation. We propose a setting that requires only a single
positive seed and at the same time solves the small cut problem of graph
cuts. Furthermore, we propose a feature set that is extracted from the
candidate segmentation. A classifier is trained on this feature set and
used to reject false alarms. Cross validation on 54 CT datasets showed
that the proposed system reaches a detection rate of 60.9% with only 6.1
false alarms per volume image, which is better than the current state of
the art of mediastinal lymph node detection.

1 Introduction

In clinical practice, radiologists commonly have to consider lymph nodes, es-
pecially in the area of the mediastinum (the area between the lungs). They
are highly relevant in case of cancer [4, 10]. Affected lymph nodes are typically
enlarged. The total volume of all nodes, the number of nodes, the spatial distri-
bution or changes over time can give a physician important information about
the progress of the disease and the effectiveness of the treatment. Physicians typ-
ically use CT for the assessment. Computing such statistics requires to detect
and/or segment the lymph nodes. Finding and measuring lymph nodes manu-
ally is however very time consuming and therefore not done in clinical practice.
Furthermore, there is a high inter and even intra observer variability [6].

An automatic system that detects and segments lymph nodes from CT data
would therefore be of high clinical use. It however has to cope with clutter and
low contrast because lymph nodes are often in the neighborhood of muscles and
vessels and have at the same time a similar attenuation coefficient. Furthermore,
there is a great variability in both the size and the shape of lymph nodes.
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The topic has received increasing attention in the last five years. In [9, 5],
lymph nodes are detected by a cascade of filters (Hessian based, morphological
operations and a so-called 3-D Min-DD filter). In [3], lymph nodes are detected
and segmented by fitting a mass-spring model at different positions.

Fig. 1. Overview of the detection pipeline.

In this paper, we follow [6, 1]
that proposed two data driven ap-
proaches. As in [6], a discrimina-
tive model of the lymph node ap-
pearance is combined with a spa-
tial prior probability that contains
anatomical knowledge about where lymph nodes are likely to appear. Similar
to [1], detection and segmentation is combined to improve the detection perfor-
mance. We introduce a feature set that is extracted from a candidate segmenta-
tion. A classifier is trained on the feature set to decide whether a segmentation
is an actual lymph node or a false positive detection.

In contrast to [1], we do not fit a sphere to a lymph node. Instead, we adapt
graph cuts to the problem of lymph node segmentation. Prior knowledge of
the lymph node appearance is included by selecting the weights of the graph
according to manually annotated data. The segmentation is initialized with a
single point from the detection result. To overcome a major problem of graph
cuts segmentation, the small cut problem, we introduce an additional radial
weighting of the graph that is well suited for segmenting blob-like structures.

Fig. 1 shows an overview of our system that consists of four stages. In stages
1–3, a list of possible lymph node center positions is generated. Stage 4 is the ma-
jor contribution of this paper: Here, the detected lymph nodes are verified using
features extracted from a candidate segmentation. At all stages, the detection
score is weighted using a spatial prior probability as introduced in [6].

The remainder of this paper is structured as follows: Section 2 presents our
method that jointly detects and segments lymph nodes, section 3 presents ex-
periments and results, and section 4 concludes the paper.

2 Proposed method for detecting and segmenting lymph

nodes

2.1 Candidate generation

In each of the first three stages, a binary classifier is trained to learn the prob-
ability p(m = 1|t) of observing a true lymph node at position t. Here, m is the
binary class variable. In stages one and two, we follow the approach of [6]: A
probabilistic boosting tree (PBT) classifier [13] is trained with 3-D Haar-like fea-
tures. A PBT is a binary decision tree with a strong Ada-Boost classifier at each
node. Haar-like features are box features that are simple but powerful because
they can be computed very efficiently. At stages two to four, only the detections
from the previous stage are considered during test. In the training phase, nega-
tive examples of all stages except the first one are generated from false alarms
of the previous one. Thus, the classifiers get specialized on the hard examples.
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The third classifier uses gradient-aligned features (GAF) introduced in [1]. The
idea is to extract the features at locations of gradient jumps, because these are
hints for the object boundary. Starting from the lymph node center candidate
t, gradients are computed along rays in radial direction. At local maxima of the
gradient magnitude, simple point features are computed.

Lymph nodes cannot appear anywhere, they always lie in fat tissue. They are
however not homogeneously distributed there but much more common in certain
regions. As introduced in [6], we use a spatial prior probability of lymphatic tissue
to model this anatomical knowledge. It can be thought of a probabilistic atlas
that is learned from manually annotated data. It is registered to a test image
using a set of anatomical landmarks that are detected automatically. Further
details about this spatial prior can be found in [6].

2.2 Joint detection and segmentation

Segmenting node-like structures using graph cuts At this point, we al-
ready have the center t of a detected lymph node candidate from our previous
detection steps one to three. We consider a sub-image cropped from the original
volume image such that t is centered in the sub image. The size of the sub-
image remains fixed at 4 × 4 × 4cm. This is relatively large and ensures that
almost all lymph nodes fit into this window. Apart from knowing the center,
we also know the intensity distribution of lymph nodes, of the background, and
the 2-D joint distribution of voxel pairs on the object boundary from manually
segmented data. We furthermore know that lymph nodes have a blob-like shape.
In the sub-image, the lymph node is segmented using the graph cuts method for
seeded image segmentation [8, 2]. The voxels form the vertices of the graph, and
neighboring voxels are connected. We propose a setting that incorporates all the
prior knowledge mentioned above.

It was shown in [8] that the energy function optimized by graph cuts is

x̂ = argmax
x

∑

i

λixi +
1

2

∑

ij

βijδ(xi, xj). (1)

Here, xi ∈ {0, 1} is the binary label of voxel i that is one for “foreground” or
zero for “background”, x̂ = (x̂1, . . . , x̂N ) is the vector of all labels, δ(a, b) is the
Kronecker delta, λi is the unary weight of voxel i, βij is the binary weight (or
capacity) of the (directed) edge from voxel i to voxel j, and N is the number of
voxels in the sub-image. A high βij value reflects that voxels i and j are likely
to have the same label. A high λi value means that, without knowing anything
about its neighborhood, voxel i is more likely to be foreground.

Since the center t of the sub-image is assumed to be the center of the lymph
node, it is used as positive seed and its λit value is set to ∞. The boundary
voxels of the sub-image are marked as negative seeds and their unary weights
are set to −∞.

Graph cut is however known to be sensitive to the number of seeds [11]. If all
other unary capacities λi were set to zero, and all binary capacities βij to some
positive constant, then the smallest cut that separates the source from the sink
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would simply separate the positive seed from its direct neighbors. This is also
known as the small-cut problem of graph cuts. In this setting, the problem can
be solved by simply adding a factor 1

r2
ij

to the capacities βij , were rij denotes the

distance of the center point of the edge from voxel i and voxel j to the positive
seed at t. If the original capacities β′

ij are constant and βij = 1
r2
ij

β′
ij , then the

integrated capacity B(r)
B(r) =

∑

(i,j)∈B(r)

βij (2)

over a sphere centered at t is nearly constant for different radii r (it is not
exactly constant because of discrete voxels). In (2), B(r) denotes the set of edges
intersected by the sphere centered at t with radius r. Now there is no bias
any more toward a small cut. Because of the smaller surface, spherical cuts are
preferred over non-spherical cuts, which is a desirable property for the purpose of
segmenting a node-like structure. This method is not only simple, is also comes
at no additional computational costs.

Other shape priors have been proposed for graph cuts segmentation. In [12],
a prior for elliptic shapes was introduced. However, the segmentation must be
solved iteratively. In [7], a method that favors cuts that are orthogonal to the
line from the current point to the center was proposed. This is effectively a prior
for blob-like structures but does not solve the small cut problem. A prior for
star-shaped structures and also a balloon force that corresponds to a certain
boundary length was introduced in [14]. This solves the small cut problem, but
the balloon force is optimized iteratively.

Most lymph nodes have an approximately constant attenuation coefficient.
This allows selecting the graph capacities according to intensity histograms. We
set the unary capacity λi to

λi = log
pu(FG|Ii)

1− pu(FG|Ii)
(3)

the logarithm of the odds that voxel i is foreground (FG) given its intensity value
Ii. The probability p(FG|Ii) is estimated non-parametrically using a histogram.
u is a normalizing constant that is used to balance the influence of the unary
and binary capacities. It was set to 0.13 in the experiments. The binary capacity
βij is set to

βij = −
log [p(outij)p(B|Ii, Ij)]

r2ij dist(i, j)
with p(outij) =

cosαij + 1

2
. (4)

Here, p(B|Ii, Ij) denotes the probability of observing the object boundary (B)
between the adjacent voxels i and j given the intensity Ii of the voxel inside and
Ij of the voxel that it assumed to be outside the segmentation. Note that this
is not symmetric. dist(i, j) denotes the euclidean length of the edge from voxel i
to voxel j, and p(outij) is the estimated probability that the edge from i to j is
pointing in outward direction. Here, αij is the angle between the edge from i to
j and the line from the positive seed to the center of the edge. Thus, cosαij = 1
if the edge is pointing away from the central seed, and cosαij = −1 if it is
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pointing toward the center. By allowing directed edge capacities, we incorporate
additional knowledge about the boundary appearance. The term p(B|Ii, Ij) in
(4) can be expressed as

p(B|Ii, Ij) =
p(B, Ii, Ij)

p(Ii, Ij)
. (5)

Both p(B, Ii, Ij) and p(Ii, Ij) are estimated non-parametrically using joint in-
tensity histograms. However, p(B, Ii, Ij) is sparse because of a limited num-
ber of training examples of points on the boundary of lymph nodes. Therefore,
p(B|Ii, Ij) is smoothed with a Gaussian filter with σ = 40HU.

Segmentation based features As final stage in the detection cascade, an
Ada-Boost classifier is trained with features extracted from the segmentation
that was initialized with the detected lymph node center t to learn whether t is
a true lymph node or a false detection.

The first kind of features are histogram based: A hierarchy of normalized
histograms of the intensity values inside the segmentation is computed. The
histogram at the first level has 256 bins. Each bin is one Hounsfield unit wide,
and the first bin corresponds to -128 HU. Lymph nodes typically fall into this
range of HU values. At the next level, the number of bins is halved, and the
width of each bin is doubled. In total, seven levels are used. The entry of each
bin of each pyramid level is a scalar feature. The second kind of features are
again based on a hierarchy of histograms, but the histograms are now computed
from the 3mm wide neighborhood of the segmentation. Additionally, we use
the second, third and fourth central moments of the histograms both inside
and outside the segmentation. Next, 100 points are randomly sampled from the
surface of the segmentation. As proposed in [1], the points are sorted by their
gradient magnitude to enumerate them. The surface normal at each point is
sampled at seven positions with a spacing of 1mm between the samples. At each
sample, simple point features are computed. All scalar features at all samples at
all normals at all points are added to the feature pool. Finally, the volume, the
surface, the sphericity, the maximum flow value and the maximum flow divided
by the surface are used. In total, the feature pool contains 51436 features. During
training, AdaBoost selects 270 of them.

3 Results

The proposed method has been evaluated on 54 CT datasets showing the chest
area of lymphoma patients. The voxel spacing typically was 0.8×0.8×1mm3. All
datasets were resampled to an isotropic 1×1×1mm3 resolution. The mediastinal
lymph nodes were manually segmented, and the segmentations were reviewed by
an experienced radiologist.

The detection performance was evaluated using threefold cross-validation.
The classifiers were only trained on lymph nodes that have a minimum size of
10mm in at least two dimensions. Smaller lymph nodes are usually not pathologic
[10] and were therefore neglected. Among the segmented lymph nodes, 289 were
used for training. To achieve a better generalization and to avoid overfitting,
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the training data was mirrored by all three coordinate planes, resulting in 23 =
8 times more training examples. For testing, only the original data was used.
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Fig. 2. FROC curve of the detection
performance.

In the testing phase, a lymph node is con-
sidered as detected if the center t of a
detection is inside the tight axis-aligned
bounding box of the lymph node. A lymph
node is considered as false negative (FN)
if its size is at least 10mm and it is not
detected.

Occasionally, two or more detections
are close together. In order to reduce the
number of such double detections, the de-
tected centers are spatially clustered and
merged. Two detections are merged if
their distance is 6mm or less. The con-
fidence value of the merged detection is set to the sum of the original ones.

Fig.2 shows the result of cross-validation as FROC (free-response receiver
operating characteristic) curves. The final verification step reduces the number
of false positives (FP) considerably and improves the true positive rate (TPR) by
38% at 3.5 FP per volume and by 20% at 7 FP per volume (red and cyan curve).
Using a 26 or a six neighborhood system in the graph cuts segmentation step
does not significantly affect the detection performance (red and green curve).
We however noticed that a 26 neighborhood produces smoother segmentations.
We also exchanged our segmentation method with either standard graph cuts

(a) (b) (c) (d) (e) (f)

Fig. 3. (a-e): Detection and segmentation examples shown in 2-D. Top row: Plain CT
slices. Second row: Detections (colored boxes) and resulting segmentations (red). The
detection score is color coded in HSV color space. Violet means lowest, red means high-
est score. Bottom row: Manual ground truth segmentations. (f): Manually initialized
segmentations with different binary edge capacities. See text for details.
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Method Body region num. vol. size/mm TP FP FN TPR FP per vol.

Kitasaka et al. [9] Abdomen 5 > 5.0 126 290 95 57.0% 58
Feuerstein et al. [5] Mediastinum 5 > 1.5 87 567 19 82.1% 113

Dornheim [3] Neck 1 > 8.0 29 9 0 100% 9
Feulner et al. [6] Mediastinum 54 >10.0 139 379 127 52.3% 7.0
Barbu et al. [1] Axillary 101 >10.0 298 101 64 82.3% 1.0

This method Mediastinum 54 >10.0 153 167 136 52.9% 3.1
This method Mediastinum 54 >10.0 176 332 113 60.9% 6.1

Table 1. Detection results compared to state of the art methods.

with weights λi = 0, βij = exp(−(Ii − Ij)
2/2σ2

β) (σβ = 16HU) that are popular
in the literature [2] or a watershed segmentation and measured the detection
accuracy. The proposed segmentation method reaches a higher recall.

Example segmentations and detections on unseen data are shown in Fig. 3 (a-
e). The bigger lymph nodes are detected. There are however some false alarms,
especially on vessels (e). Fig. 3 (f) shows manually initialized segmentations
with different edge capacities. The top and center image were segmented with
standard graph cuts weights. This often causes small cuts (top image, σβ =
32HU) or leakage and rugged segmentations (center image, σβ = 16HU). This is
solved by using the weights proposed in this paper (bottom image).

In Table 1, other methods are listed together with their performance for com-
parison. The comparability is however limited because of different data, different
criterions for a detection, different body regions and different minimum lymph
node sizes used for evaluation. Both [9] and [5] report a very high number of false
alarms and also consider a lymph node already as detected if there is just over-
lap with the automatic segmentation. In [3], very good results are reported, but
the method was evaluated on a single dataset. In [1], good results are reported
for the axillary region. Lymph nodes in the axillary regions are however easier
to detect because they are mostly isolated in fat tissue and less surrounded by
clutter as in the mediastinal region. The method of [6] was evaluated on the
mediastinum. While [6] reaches a detection rate of 52.3% at 7.0 false alarms per
volume, this method detects 52.9% of the lymph nodes with only 3.1 false alarms
per volume and 60.9% with 6.1 false alarms per volume.

In [6], the intra-observer variability (IOV) of mediastinal lymph node detec-
tion is reported to have a TPR of 54.8% at 0.8 FP per volume. Even though 0.8
FP per volume is a very good value, it demonstrates that finding mediastinal
lymph nodes is very challenging also for humans.

The computational requirements of the proposed methods were measured
on a standard dual core PC with 2.2GHz. In total, detecting and segmenting
the mediastinal lymph nodes in a CT volume takes 60.2s if a six neighborhood
system is used and 101.9s with a 26 neighborhood system. Computing the spatial
prior takes 19.5s and is already included.

4 Conclusion

The contribution of this paper is twofold: First, we propose using a single cen-
tered positive seed for graph cuts and a radial weighting of the edge capacities
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as a segmentation method for blob-like structures that is not prone to the small
cut problem. Second, a feature set is proposed that is extracted from a segmen-
tation. A classifier is trained on the feature set and rejects detections with poor
segmentation results. The segmentation based verification step clearly helps to
detect mediastinal lymph nodes. Our proposed system reaches a detection rate
of 60.9% at 6.1 false alarms per volume. This is better than the state of the art in
mediastinal lymph node detection [6]. At the moment, there are especially false
alarms on vessels. Combining the proposed method with a good vessel detector
should further improve the detection performance.
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