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Abstract

This paper proposes a novel method for integrating multiplelocal cues, i.e. lo-
cal region detectors as well as descriptors, in the context of object detection.
Rather than to fuse the outputs of several distinct classifiers in a fixed setup,
our approach implements a highly adaptable integration scheme, flexibly re-
combining the contributions of all individual cues depending on their ex-
planatory power for each new test image. The key idea behind our approach
is to integrate the cues over an estimated top-down segmentation, which al-
lows to quantify how much each of them contributed to the object hypothesis.
By combining those contributions on a per-pixel level, our approach ensures
that each cue is only used for object regions for which it is confident and that
potential correlations are effectively factored out. Experimental results on
several benchmark data sets show that the proposed multi-cue combination
scheme significantly increases detection performance compared to any of its
constituent cues alone. Moreover, it provides an interesting evaluation tool
to analyze the complementarity of local feature detectors and descriptors.

1 Introduction
Local feature based approaches have shown considerable promise for dealing with the
large degree of intra-category variation and partial occlusion inherent in real-world cate-
gorization and detection tasks. Consequently, many approaches have been developed that
use local features in different ways [1, 6, 4, 10, 12], and considerable progress has been
made in the design and understanding of the underlying feature detectors and descriptors
[12, 14]. Yet, each feature can only capture part of the information contained in the im-
age, and indeed its value for an application depends on the degree to which it can distill
exactly the right kind of information for a specific purpose.As a consequence, the better
a detector or descriptor is suited to a specific task, the morelikely it is to degenerate when
task conditions deviate too far from its target scenario. Inorder to be both discriminative
and robust, an application should therefore utilize a combination of different local cues.

Several recent studies have evaluated the suitability of various local features in the
context of object identification [14] and categorization tasks [13]. However, those studies
have only considered each cue in isolation. For multi-cue integration, it is also impor-
tant to know how the different cues interact, i.e. how correlated their responses are and
what new information an additional cue can contribute. However, this information is dif-
ficult to retrieve, as different cues are often not directly comparable, both because they
typically have different dimensionalities and because they represent information in dif-
ferent ways. Previous research has therefore mainly focused on classifier combination,
i.e. on the problem of fusing the outputs of several “black-box” classifiers, possibly with
associated confidence ratings [20, 9, 7, 15]. This approach is valid if the classifiers are in-
dependent. In our application, however, their outputs are often correlated, and the degree
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of correlation may vary from image to image. Rather than justto fuse the outcomes of
several classifiers, we therefore need to explore how the underlying information and the
respective support in the image can be combined.

In this paper, we present a flexible integration scheme whichcombines different local
cues in an opportunistic manner depending on their explanatory power for the image at
hand. The integration proceeds in two steps. First, the sampled features are represented in
terms of their similarity to a set of prototypes, anappearance codebook, which has been
learned for each cue separately. Together with their learned spatial distributions, those
codebook prototypes convert the activations from matchingfeatures into a probability
distribution for possible object locations and scales. This makes the cues comparable.
However, their individual responses might still be correlated. Therefore, the second step
backprojects the extracted object hypotheses to the image and determines for each cue
separately which image pixels were responsible for a detection and how much each pixel
contributed to the cue’s response. By comparing the overlapin their supporting area, our
approach can determine the complementarity between two cues and integrate their contri-
butions more robustly. Our paper makes the following three contributions. Firstly, it de-
velops a robust multi-cue integration approach that can be applied regardless of cue corre-
lation. The proposed scheme is directly interpretable and opens up interesting venues for
analyzing the complementarity of local cues. Secondly, it presents an extensive evaluation
of state-of-the-art region detectors and descriptors in the context of multi-cue integration.
The obtained results allow us to rank the cues based on their individual performances and
to formulate clear usage guidelines for their combination.Last but not least, experimen-
tal results on several challenging data sets show that the proposed multi-cue integration
scheme increases detection performance significantly. Theimprovement is particularly
prominent for the detection precision and leads to high recognition rates at the zero-false-
positive level. The paper is structured as follows. The nextsection discusses related
work. Section 2 then reviews the basic recognition approach. Extending this approach,
we derive our proposed multi-cue integration scheme in Section 3. Section 4 describes
our experimental setup, and Section 5 presents the results of our evaluation.

Related Work. Many authors have stressed the need for integrating multiple global or
local cues in order to increase robustness of recognition [18, 11, 7]. In practice, multi-
cue systems for object recognition have often been implemented by combining classifiers
[20, 9, 7] or by using cue confidences in a voting scheme [3, 15]. However, these ap-
proaches are often static in that they use a fixed confidence rating per cue, e.g. based on
previously observed performance. As such, they cannot readily adapt to novel settings
when a cue’s performance characteristics degrade due to changed environmental condi-
tions. It has therefore been argued that cue weights should be adapted dynamically [17].
For tracking scenarios, cue integration techniques have been proposed which combine
cues probabilistically based on their estimated likelihood [19]. However, in the context
of single-frame object detection, no such mechanism has been known. In this paper, we
propose such a mechanism based on the top-down segmentationapproach by [10].

2 Recognition Approach
Our multi-cue recognition approach closely builds upon theImplicit Shape Model (ISM)
formalism by [10, 11], which combines object detection and top-down segmentation ca-
pabilities. This model represents an object category by a set of local appearance clusters
(a codebook) and their spatial occurrence distributions. Since a basicknowledge of this
approach is necessary to derive our method, we will briefly review its main components.
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Training. For training, local features are extracted from the training images and clus-
tered to form the codebook [1, 10]. In a second run over the training data, the spatial
occurrence distributions are estimated by recording for each codebook entry all matching
locations on the training objects. Together with each occurrence, the approach stores a
local segmentation mask, which is later used for inferring top-down segmentations.

ISM Recognition. During recognition, local features are extracted from the image and
matched to the codebook. Each matching codebook entry then casts votes for possible
object locations and scales in a probabilistic extension ofthe Hough transform [10]. For
each hypothesis, the approach then computes a top-down segmentation and finally selects
the subset of hypotheses that best explain the image contentunder the constraint that each
pixel can be assigned to at most one hypothesis.

3 Multi-Cue Integration
We now present our novel approach for integrating multiple local cues. In the context of
this paper, we consider this to be a combination of differentlocal descriptors, but also
of different region detectors, since their preference for certain image structures influences
the characteristics of the sampled data. As mentioned before, the question how to combine
local cues has no obvious answer, since they are typically not directly comparable.

We therefore proceed in two stages. The first stage extends the recognition procedure
to include multiple cues. Its main purpose is to express the cues on a common basis,
so that their information can be pooled and initial object hypotheses can be found. This
stage still ignores cue correlation. Indeed, it has no otherchoice, since correlation can
only be measured relative to a reference hypothesis, and hypotheses are only available
after the stage has been executed. However, the second stagethen reveals the correlation
by backprojecting hypotheses to the image and computing a top-down segmentation for
each cue. This step extends the ISM segmentation algorithm to deal with multiple cues.
The obtained segmentations show on a per-pixel level which image structures were re-
sponsible for a cue’s response. The correlation between twocues can then be expressed
as the overlap of their respectivep(figure) probability maps. Once the cue correlation has
been identified, the next question is how to use this information to improve recognition
performance. In the last part of this section, we present three combination criteria that
relate to different strategies for this step.

Initial Recognition Stage. The key to integrating multiple local cues is to express them
on a common basis. We create such a basis by representing sampled features through their
similarity to stored prototypes. We therefore extend the recognition approach by keeping
a separate codebookC q for every cueq. Let e be a local descriptor computed at location
ℓ. When matched to the codebook, it may activate several codebook entriesC q

i with
probabilitiesp(C

q
i |e). Each matchedC q

i then votes for instances of the object category
on at different locations and scalesλ = (λx,λy,λσ) according to its learned occurrence
distributionP(on,λ|C q

i , ℓ,q). A feature’s contribution to an object hypothesis can thus be
expressed as p(on,λ|e, ℓ,q) = ∑

i

P(on,λ|C q
i , ℓ,q)p(C

q
i |e). (1)

The contributions from all cues are pooled in a shared 3D voting space, from which
maxima are extracted by Mean Shift Mode Estimation with a scale-adaptive kernelK
[11]:

p̂(on,λ) =
1

nb(λ)3 ∑
m

∑
k

∑
j

p(on,λ j |ek, ℓk,qm)K(
λ−λ j

b(λ)
)p(ek, ℓk|qm)p(qm), (2)

whereb(λ) is the scale-adaptive kernel bandwidth;p(ek, ℓk|qm) is an indicator variable
specifying which patches and locations have been sampled for qm; and p(qm) is a prior
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Figure 1: Visualization of the multi-cue integration stages: (a) initial detection, (b) top-
down segmentation, (c)p(figure) maps obtained byaveragecombination, (d) closeup
view of theargmaxvisualization (cf. eq.(9)) , (e) histogram of relative cue contributions.

determining how much this cue can be trusted. This prior can be set to reflect previously
observed performance. In order to avoid any bias, however, we leave it uniform.

Multi-Cue Segmentation. Once a hypothesish = (on,λ) has been found, its top-down
segmentation can be inferred by backprojecting the supporting votes to the image and
combining them with the local patch segmentation masksp(p=fig.|on,λ,C

q
i , ℓ) that have

been stored for each recorded codebook occurrence during training. As shown in [10],
the per-pixel probabilities of each pixel containingfigureor groundcan then be obtained
by a double marginalization, first over sampled features, then over codebook entries. We
adapt this formulation here to compute a separate segmentation for each cue

p(p=fig.|on,λ,q) = ∑
p∈(e,ℓ)

∑
i

p(p=fig.|on,λ,e,C q
i , ℓ,q)p(e,C q

i , ℓ,q|on,λ) (3)

= ∑
p∈(e,ℓ)

∑
i

p(p=fig.|on,λ,C
q
i , ℓ)

p(on,λ|C q
i , ℓ,q)p(C

q
i |e)p(e, ℓ)

p(on,λ)
(4)

Based on these results, the final segmentation is computed bybuilding the likelihood ratio
betweenfigureandgroundprobabilities.

Segmentation-Based Cue Combination. Now we can proceed to combining the con-
tributions of different cues on the pixel level. For this, weadopt the idea of formulating
hypothesis selection as a Quadratic Boolean Optimization Problem in an MDL frame-
work [11]. Each hypothesis is evaluated in terms of thesavingsthat can be obtained in
the description of an image by explaining part of it byh. The savings of each hypothesis
are expressed as

Sh=−κ1+(1−κ2)
N
Aσ

+ κ2
1

Aσ
∑

p∈Seg(h)

f (p,h,Q) (5)

whereN is the number of pixels that can be explained byh, Aσ is its expected areaat
scaleσ, κ2 is a weighting factor to balance out the influence of a hypothesis’s area versus
its support in the image (left at a fixed value in our experiments), andκ1 is the parameter
over which the final performance curves are plotted. If multiple hypotheses overlap, their
savings terms interact, since each pixel can only be assigned to a single hypothesis.

Depending on the definition off , we can achieve different effects. The canonical
way of combining the different cues would be to simply ignorepossible correlations and
marginalize over the cuesqm. This can be expressed by the followingsumcriterion:

fsum(p,h,Q) = ∑
m

p(p = figure|h,qm)p(qm). (6)

However, this marginalization has the problem that it may reinforce local misclassifica-
tions if the cues are correlated. An opposite strategy is to completely remove correlation
by only trusting the strongest cue. This leads to themaxcriterion:
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Figure 2: Some detections and the corresponding relative cue contributions.

fmax(p,h,Q) = max
m

p(p = figure|h,qm)p(qm). (7)

However, this criterion is also problematic, since it relies on the assumption that all cues
are well-behaved. If one or more cues respond too strongly tobackground structures, the
whole system may become biased and additional false positives may be generated. For
this reason, we also propose a third criterion, which is a combination of the two extremes.
It builds the per-pixelaverageover all cues that are sufficiently confident, i.e. where
p(p = figure|h,qm)≫ p(p = ground|h,qm).

favg(p,h,Q) = avg
m

p(p = figure|h,qm)p(qm) (8)

These criteria implement a highly flexible combination strategy. Instead of weighting
each cue just by a fixed prior, they can decide for each image pixel anew which cues to
consider, where the decision is made based on the cues’ own confidence estimates. At
the same time, eqs. (6) and (8) avoid putting all trust into a single cue that might bias
the results negatively. Figure 1 summarizes the final cue combination procedure. The
system first generates a set of hypotheses (Fig. 1(a)) by pooling the information from all
cues. For each hypothesis, it then computes a top-down segmentation per cue (Fig. 1(b)),
whereupon the verification criterion from eq. (3) is executed in order to fuse the individual
cues’p(figure) probability maps (Fig. 1(c)) into a common system response.

Discussion and Analysis. It is important to emphasize the difference of the proposed
cue integration scheme to the far simpler approach of running several region detectors in
parallel and pooling their features in a common codebook (asused e.g. in [4]). If only
a single kind of region descriptors is used, such an approachwould be similar to our
integration using thesumcriterion. However, as soon as several different region descrip-
tors shall be employed, a combination into a common codebookis no longer possible,
since the different descriptors are not comparable. Our proposed approach, on the other
hand, readily scales to this case and allows to combine the different cue contributions on
a flexible per-pixel basis, which is something no other current approach can achieve.

The proposed cue integration scheme was motivated by the potential of different local
cues to complement each other by interpreting the image information in different ways.
In order to visualize that this can positively affect recognition performance, we introduce
the followingargmaxcriterion as an analysis tool.

fargmax(p,h,Q) = argmax
m

p(p = figure|h,qm)p(qm) (9)

This criterion selects for each hypothesis pixel the index of the most confident cue.
Fig. 1(d) shows the resulting maps for the two example images, where each shade of
gray corresponds to one of the five descriptorsSIFT, GLOH, PCA-SIFT, Shape Context,
andPatch(c.f. Sec. 4). These images are readily interpretable. For instance, it becomes
evident that in the top example, the outer rim of the front wheel is best captured byShape
Contextdescriptors, while the wheel’s hub is better represented byGLOH. In the bottom
example, on the other hand, changed contrast to the background has modified the image
content sufficiently that similar structures on the rear wheel are better captured bySIFT.

We can further quantify the relative importance of each cue to a particular hypothesis
h by building up a histogram of their individual contributions. Fig. 1(e) shows the corre-
sponding cue importance histograms. As can be seen, the relative importance of the cues
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Figure 3: Single-cue EER performances for all detector/descriptor combinations on
the TUD motorbikes. The plots show the performance gradation when the cluster-
ing/matching threshold is varied. In all following experiments, we use only the best-
performing parameter setting for each cue.

changes also quantitatively. Some more examples for different test images are shown in
Fig. 2, further corroborating this observation.

4 Experimental Setup
In the rest of the paper, we evaluate our proposed method on real-world detection tasks.
We first describe the selection of cues we build upon and the test data sets.

Interest Region Detectors. We compare three scale-invariant interest region detectors.
The Harris-Laplace(HarLap) andHessian-Laplace(HesLap) detectors look for scale-
adapted maxima of the Harris function and Hessian determinant, respectively [14], where
the locations along the scale dimension are found by the Laplacian-of-Gaussian. TheDoG
detector [12] finds regions at 3D scale-space extrema of the Difference-of-Gaussian.

Region Descriptors. In addition, we evaluate five different region descriptors.SIFT de-
scriptors [12] are 3D histograms of gradient locations and orientations with 4×4 location
and 8 orientation bins. The resulting descriptor has 128 dimensions.GLOH descriptors
[14] are an extension ofSIFT. They use 17 location and 16 orientation bins organized in
a log-polar grid. PCA is used to reduce the dimensionality to128. PCA-SIFT[8] are
vectors of image gradients inx andy direction sampled within the support region and re-
duced to 36 dimensions with PCA.Shape Context(SC) [2, 14] descriptors are histograms
of gradient orientations sampled at edge points in a log-polar grid with 9 location and
4 orientation bins and thus 36 dimensions. For comparison, we include 25× 25 pixel
Patches[1, 10], which lead to a descriptor of length 625. This set of descriptors was ex-
plicitly chosen to sample different sources of information. SIFT, GLOH, andPCA-SIFT
are based on gradient information;SCdescriptors are based on edges; andPatchestake
the full image region into account.

The evaluation is performed with an own implementation of the DoG detector (de-
notedeDoGin the figures) andPatchdescriptor. For all other detectors and descriptors,
we used the implementations publicly available at [16]. Patches were compared using
Normalized Correlation; all other descriptors were compared using Euclidean distances.

Training and Test Data. We first evaluate the different stages of our approach on the
TUD motorbike set, which is part of the PASCAL collection [5]. This data set consists
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Figure 4: Cue combination performances on the TUD motorbikes: (a) single-cue per-
formance; (b) performance of the different combination strategies using all 5 descriptors
with the same detector; (c) cue combination performance when the same descriptors are
applied to different detectors.

of 115 images containing a total of 125 motorbikes at different scales and with clutter
and occlusion. Training is done on 153 motorbike side views from the CalTech training
set [6] which are shown in front of uniform backgrounds allowing for easy segmentation.
We then show that the results generalize also to other scenarios by applying the approach
to two more challenging data sets using the same parameter settings. The first is the
VOC motorbikestest2 set, which has been used as a localization benchmark in the
2005 PASCAL Challenge [5]. This data set consists of 202 images containing a total of
227 motorbikes at different scales and seen from different viewpoints. Only about 37% of
those motorbikes are shown in side views, though, thus limiting the maximally achievable
recall for our system. Finally, we apply our method to the pedestrian test set from [11]. It
consists of 209 images containing crowded scenes with a total of 595 pedestrians, mostly
shown in side views but with significant overlap and occlusion. Training for this test
is done on 216 side views of pedestrians for which a segmentation mask was available,
using the same parameter settings as for the motorbike experiments. In all three cases,
the task is to detect and localize the objects in the test images and determine their correct
bounding boxes (using the evaluation criterion from [11] for the first and third test set,
and the criterion from [5] for the second test set).

5 Results
Single-Cue Performance. In order to obtain an unbiased estimate of the cues’ potentials,
it is important to ensure that they are evaluated at their optimal setting. As a first step, we
therefore evaluate each cue separately and try to find its performance optimum.

One open parameter has to be adjusted for each cue, namely thequestion how much
the clustering step should compress the training features during codebook generation.
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Figure 5: Performance comparison on the TUD motorbikes (left), the more difficult VOC
motorbiketest2 set (middle), and the pedestrian test set (right). The middle plot is
rotated90◦ to make it consistent with the ones in [5]. Please note that while our detector
is exclusively trained on side views, only 39% of the motorbikes in the VOC set are shown
in side views, thus limiting the maximally achievable recall.

When using agglomerative clustering, this translates to the question how compact the
codebook clusters should be for optimal performance. One option is to define aminimum
similarity after which clustering should be stopped. Another option isto fix a certain
cluster compression ratio(#features/#clusters). Previous evaluations [13] have favored
the latter option, but it is not guaranteed that this choice is optimal.

In order to analyze the clustering/matching threshold’s influence on recognition per-
formance, we applied all 15 detector/descriptor combinations to the TUD motorbikes set
and compared their equal error rate (EER) detection performance for 5–7 different thresh-
old settings. Figure 3 shows the results of this experiment,both separated per descriptor
and per detector. We can make two observations. First, when comparing descriptors
across different detectors, a clear performance optimum can be found at a certain simi-
larity for SIFT, GLOH, PCA-SIFT, andSC. The cluster compression ratio, on the other
hand, does not seem to have a consistent influence. We can therefore formulate the rec-
ommendation to use the cluster similarity as a criterion forselecting the clustering level
for those descriptors. Second, the results allow to rank thedetector/descriptor combina-
tions based on their single-cue performance. For the descriptors,SIFT andSCperform
consistently best over all three detectors. For the detectors, HesLapandDoG perform
best in all but one case. In terms of combinations,DoG+SIFT andDoG+SCobtain the
best performance with 87% EER.

Combining Different Descriptors. Next, we examine cue combination in a maximally
correlated setting. For this, we apply all five region descriptors to the output of the same
region detector and compare the performance of the three proposed combination strate-
gies. The results of this experiment can be seen in Fig. 4(a,b). ForHarLap andHesLap,
there is a significant difference between the three performance curves, withsumcombina-
tion performing worst, thenmaxcombination, andaveragecombination performing best.
This confirms our expectations from Section 3. Compared to the best single-cue perfor-
mance withSIFT or SCdescriptors,averagecombination achieves a small performance
increase from 77.6% to 80.0% (HarLap) and from 82.4% to 85.6% EER (HesLap), re-
spectively. ForDoG, a significant performance increase from 87.2% to 91.2% EER can be
shown if all descriptors exceptPCA-SIFTare combined. IncludingPCA-SIFTdegrades
overall performance to 85.6%, suggesting that those descriptors are not as informative as
the others, perhaps because of their projection onto a general-purpose PCA basis.
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Figure 6: Example multi-cue detections of our approach on difficult images from the
VOC motorbikes and the pedestrian set (at the EER).

Combining Different Detectors. The opposite experiment is to apply the same descrip-
tors to three different region detectors and compare the combined performances. This is
shown in Fig. 4(c). As there are only small differences between the performance of the
three combination strategies, we just display the curve foraveragecombination in order
to reduce clutter. The most remarkable observation from this experiment is the improve-
ment of over 10% EER obtained by theGLOH descriptors from 76.0% to 86.4%. Ap-
parently, this descriptor benefits most from additional samples in the image. In contrast,
SIFT shows only a small improvement to 88.8% EER. The best absolute performance is
achieved by theSCcombination with 92.8% EER. ThePCA-SIFTandPatchdescriptors,
finally, do not profit from the evaluated combination.

Full Multi-Cue Combination. Finally, we present results combining multiple detec-
tors and multiple descriptors at the same time. Fig. 5(left)compares the performance of
SIFT+SCandSIFT+GLOH+SCwith all three detectors. Although those combinations
do not increase EER performance any more, further improvement can be observed in
terms of precision. In particular, recall at the zero-false-positive level is increased from
50% (onlySC) over 62% (SIFT+SC) to 75% (all three descriptors). This is an important
result, since high precision is a prerequisite for many real-world applications.

In order to ensure that the results generalize also to different settings, we apply our
multi-cue approach to the more challenging VOC motorbikes set using the same param-
eter settings as for the first experiments. Fig. 5(middle) shows the results of this exper-
iment. As can be seen from the plot, the combination of multiple cues again improves
performance and increases the detection precision considerably. As a comparison with
[5] shows, it is the best result reported for this data set so far. The best combination of
SIFT+SCachieves 21% recall with zero false positives and scales up to 30% recall at
90% precision. Considering that the test set contains only about 39% side views, this
is an excellent result. Fig. 6 visualizes the range of motorbike appearances that are still
reliably detected by our approach. Although the system has only been trained on a sin-
gle viewpoint, the increased robustness from multi-cue integration makes it possible to
compensate for a certain level of out-of-plane rotation.

Last but not least, we apply our multi-cue approach to the pedestrian test set from
[11] using the same clustering/matching thresholds as for the motorbikes. The results are
shown in Fig. 5(right). Again, the combination of multiple cues increases performance
significantly from 80% EER for the best single cues to 84.7% for SCwith all three de-
tectors and to 82.6% withHesLapwith SIFT+GLOH+SC. In comparison, we show the
results from [11], which are clearly outperformed by our multi-cue system.
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6 Discussion & Conclusion
In conclusion, we have proposed a robust and flexible multi-cue integration scheme that
operates even when the cues are highly correlated. It has been shown to improve perfor-
mance consistently on three different data sets and for two categories. The improvement is
particularly visible in terms of recognition precision and, for the motorbike test sets, high
recall values at the zero-false-positive level. Compared to a canonical cue combination
strategy of simply adding the weighted cue responses, our proposed approach can react
more flexibly to varying cue performance and adapt itself automatically. This advantage
could also be verified quantitatively in cases where the cueswere strongly correlated.

In order to further evaluate its performance we have conducted an extensive study,
comparing 3 state-of-the-art interest region detectors and 5 different descriptors in the
context of multi-cue integration. The results of this evaluation allow to rank the cues both
based on their individual performance and their suitability for integration. In addition,
we can draw several interesting conclusions. When set to theright clustering level,SIFT
andSCfeatures performed consistently better than all other descriptors in this evaluation.
In addition, feature combinations with eitherSCdescriptors and several different region
detectors orDoG/HesLapregions with several different descriptors achieved the highest
overal performance level. These two extremes thus provide an axis along which the set
of cues can be varied depending on implementation tradeoffs(i.e. either sampling more
points or using the sampled information more efficiently).
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