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Abstract

This paper proposes a novel method for integrating mulkq@al cues, i.e. lo-
cal region detectors as well as descriptors, in the confeotbject detection.
Rather than to fuse the outputs of several distinct classifiea fixed setup,
our approach implements a highly adaptable integratioarseh flexibly re-
combining the contributions of all individual cues depemngbn their ex-
planatory power for each new test image. The key idea behindgproach
is to integrate the cues over an estimated top-down segiti@mtevhich al-
lows to quantify how much each of them contributed to the ctygpothesis.
By combining those contributions on a per-pixel level, opp@ach ensures
that each cue is only used for object regions for which it isficent and that
potential correlations are effectively factored out. Expental results on
several benchmark data sets show that the proposed malta@ubination
scheme significantly increases detection performance aoedgo any of its
constituent cues alone. Moreover, it provides an intargstivaluation tool
to analyze the complementarity of local feature detectodsdescriptors.

1 Introduction

Local feature based approaches have shown consideraltésgréor dealing with the
large degree of intra-category variation and partial agioln inherent in real-world cate-
gorization and detection tasks. Consequently, many appasehave been developed that
use local features in different ways [1, 6, 4, 10, 12], andsaterable progress has been
made in the design and understanding of the underlyingfedetectors and descriptors
[12, 14]. Yet, each feature can only capture part of the imftion contained in the im-
age, and indeed its value for an application depends on tieedo which it can distill
exactly the right kind of information for a specific purpoge a consequence, the better
a detector or descriptor is suited to a specific task, the fil@ly it is to degenerate when
task conditions deviate too far from its target scenaricriter to be both discriminative
and robust, an application should therefore utilize a coratodon of different local cues.
Several recent studies have evaluated the suitability ndws local features in the
context of object identification [14] and categorizatioskis[13]. However, those studies
have only considered each cue in isolation. For multi-ciegiration, it is also impor-
tant to know how the different cues interact, i.e. how ceated their responses are and
what new information an additional cue can contribute. Hmwvgthis information is dif-
ficult to retrieve, as different cues are often not directiynparable, both because they
typically have different dimensionalities and because tepresent information in dif-
ferent ways. Previous research has therefore mainly facoselassifier combination
i.e. on the problem of fusing the outputs of several “black’txlassifiers, possibly with
associated confidence ratings [20, 9, 7, 15]. This appraaedlid if the classifiers are in-
dependent. In our application, however, their outputs &snaorrelated, and the degree
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of correlation may vary from image to image. Rather than fadtise the outcomes of
several classifiers, we therefore need to explore how thenyidg information and the
respective support in the image can be combined.

In this paper, we present a flexible integration scheme wtichbines different local
cues in an opportunistic manner depending on their expapaiower for the image at
hand. The integration proceeds in two steps. First, the Eahfigatures are represented in
terms of their similarity to a set of prototypes, appearance codebopwhich has been
learned for each cue separately. Together with their lebspatial distributions, those
codebook prototypes convert the activations from matciéagures into a probability
distribution for possible object locations and scales. sTihakes the cues comparable.
However, their individual responses might still be corteth Therefore, the second step
backprojects the extracted object hypotheses to the imagjeletermines for each cue
separately which image pixels were responsible for a deteand how much each pixel
contributed to the cue’s response. By comparing the ovérlépeir supporting area, our
approach can determine the complementarity between twoaneintegrate their contri-
butions more robustly. Our paper makes the following thi@&ributions. Firstly, it de-
velops a robust multi-cue integration approach that carppkead regardless of cue corre-
lation. The proposed scheme is directly interpretable grahe up interesting venues for
analyzing the complementarity of local cues. Secondlygspnts an extensive evaluation
of state-of-the-art region detectors and descriptorsarctintext of multi-cue integration.
The obtained results allow us to rank the cues based on tu#idual performances and
to formulate clear usage guidelines for their combinatioast but not least, experimen-
tal results on several challenging data sets show that thygoped multi-cue integration
scheme increases detection performance significantly. ifipeovement is particularly
prominent for the detection precision and leads to highgeitmn rates at the zero-false-
positive level. The paper is structured as follows. The rsedtion discusses related
work. Section 2 then reviews the basic recognition appro&ottending this approach,
we derive our proposed multi-cue integration scheme ini@@&. Section 4 describes
our experimental setup, and Section 5 presents the re$uts evaluation.

Related Work. Many authors have stressed the need for integrating meiigjfabal or
local cues in order to increase robustness of recognitiBn11, 7]. In practice, multi-
cue systems for object recognition have often been implésddyy combining classifiers
[20, 9, 7] or by using cue confidences in a voting scheme [3, Hsjwever, these ap-
proaches are often static in that they use a fixed confidemiog @er cue, e.g. based on
previously observed performance. As such, they cannoilyeadlapt to novel settings
when a cue’s performance characteristics degrade due tgetanvironmental condi-
tions. It has therefore been argued that cue weights sheutdiapted dynamically [17].
For tracking scenarios, cue integration techniques haee lpeoposed which combine
cues probabilistically based on their estimated likelth¢D9]. However, in the context
of single-frame object detection, no such mechanism has keawn. In this paper, we
propose such a mechanism based on the top-down segmetagiarach by [10].

2 Recognition Approach

Our multi-cue recognition approach closely builds uponlthplicit Shape Model (ISM)
formalism by [10, 11], which combines object detection amgtiown segmentation ca-
pabilities. This model represents an object category by afdecal appearance clusters
(acodebookand their spatial occurrence distributions. Since a basiwvledge of this
approach is necessary to derive our method, we will briefliereits main components.



Training. For training, local features are extracted from the trajrimages and clus-
tered to form the codebook [1, 10]. In a second run over thieitrg data, the spatial
occurrence distributions are estimated by recording foneadebook entry all matching
locations on the training objects. Together with each aenae, the approach stores a
local segmentation mask, which is later used for inferrofgdlown segmentations.

ISM Recognition. During recognition, local features are extracted from thage and
matched to the codebook. Each matching codebook entry #ets wotes for possible
object locations and scales in a probabilistic extensiam®MHough transform [10]. For
each hypothesis, the approach then computes a top-dowreségion and finally selects
the subset of hypotheses that best explain the image camdat the constraint that each
pixel can be assigned to at most one hypothesis.

3 Multi-Cue Integration

We now present our novel approach for integrating multipal cues. In the context of
this paper, we consider this to be a combination of diffeteaal descriptors, but also
of different region detectors, since their preference &tain image structures influences
the characteristics of the sampled data. As mentionedégdfor question how to combine
local cues has no obvious answer, since they are typicatlginectly comparable.

We therefore proceed in two stages. The first stage exteadstlognition procedure
to include multiple cues. Its main purpose is to express thes ©n a common basis,
so that their information can be pooled and initial objegbdipeses can be found. This
stage still ignores cue correlation. Indeed, it has no otheice, since correlation can
only be measured relative to a reference hypothesis, andtigges are only available
after the stage has been executed. However, the secondlstageveals the correlation
by backprojecting hypotheses to the image and computing-aléavn segmentation for
each cue. This step extends the ISM segmentation algordtdeal with multiple cues.
The obtained segmentations show on a per-pixel level whitdge structures were re-
sponsible for a cue’s response. The correlation betweertti@e can then be expressed
as the overlap of their respectipéfigure) probability maps. Once the cue correlation has
been identified, the next question is how to use this infolonab improve recognition
performance. In the last part of this section, we presemetitombination criteria that
relate to different strategies for this step.

Initial Recognition Stage. The key to integrating multiple local cues is to express them
on a common basis. We create such a basis by representintesidfiegtures through their
similarity to stored prototypes. We therefore extend ttogaition approach by keeping

a separate codeboa¥ for every cueq. Lete be a local descriptor computed at location
£. When matched to the codebook, it may activate several mﬂebntnescq with
probabilitiesp(¢ q\ e). Each matcheqtq then votes for instances of the object category
on at different locations and scalas_ (Ax,Ay,Ag) according to its learned occurrence
d|str|but|onP(on,)\|CI ,£,q). A feature’s contribution to an object hypothesis can theis b

expressedas  pio, Me.t.q) = 3 PlonAlc ) p(cfle). (1)

The contributions from all cues aré pooled in a shared 3Dngo$ipace, from which
maxima are extracted by Mean Shift Mode Estlmatlon with desadaptive kerneK

o0 = s 3 3 T plOn e hamk o Ple famPlan). )

whereb()) is the scale-adaptive kernel bandwidfi{gx, ¢k|gm) is an indicator variable
specifying which patches and locations have been sampteglfcand p(gm) is a prior
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Figure 1: Visualization of the multi-cue integration stages: (ajialidetection, (b) top-
down segmentation, (g)(figure) maps obtained bgveragecombination, (d) closeup
view of theargmaxvisualization (cf. eq.(9)) , (e) histogram of relative cuatributions.

determining how much this cue can be trusted. This prior easeh to reflect previously
observed performance. In order to avoid any bias, howeweleave it uniform.

Multi-Cue Segmentation. Once a hypothesis= (on,A) has been found, its top-down
segmentation can be inferred by backprojecting the sujpgpvbtes to the image and
combining them with the local patch segmentation masfks=fig.|on, A, Ciq7€) that have
been stored for each recorded codebook occurrence duaimjny. As shown in [10],
the per-pixel probabilities of each pixel containiiigure or groundcan then be obtained
by a double marginalization, first over sampled features; thver codebook entries. We
adapt this formulation here to compute a separate segrientat each cue

p(p=figlon,A,0) = 5 3 p(p=fig.on. A€ ¢, (,q)p(e, ¢, £, qlon,A) (3)

pe(el) ! q q
_ Z z p(p=f|9|0n A C_q E) p(onaMCi a&q)p(ci |e)p(ea£)
pe(E ) I P(On,A)

Based on these results, the final segmentation is computedildyng the likelihood ratio
betweerfigureandgroundprobabilities.

Segmentation-Based Cue Combination. Now we can proceed to combining the con-
tributions of different cues on the pixel level. For this, a@opt the idea of formulating
hypothesis selection as a Quadratic Boolean OptimizatioblBm in an MDL frame-
work [11]. Each hypothesis is evaluated in terms of $agingsthat can be obtained in
the description of an image by explaining part of ithyThe savings of each hypothesis
are expressed as Sim kit (1—Kp) N +K2 z f (p,h,Q) (5)
Ao AGpeSeg(h
whereN is the number of pixels that can be explainedhyy; is its expected areat
scaleo, K is a weighting factor to balance out the influence of a hypgif®area versus
its support in the image (left at a fixed value in our experitagrandk is the parameter
over which the final performance curves are plotted. If rpldthypotheses overlap, their
savings terms interact, since each pixel can only be asdigne single hypothesis.
Depending on the definition of, we can achieve different effects. The canonical
way of combining the different cues would be to simply ignpossible correlations and
marginalize over the cuep,. This can be expressed by the followisigmcriterion:

fsum(p,h, Q) =5 p(p = figureh, dm) p(am)- (6)

However, this marginalization has the problem that it magfogce local misclassifica-
tions if the cues are correlated. An opposite strategy i®topietely remove correlation
by only trusting the strongest cue. This leads torttexcriterion:
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Figure 2: Some detections and the corresponding relative cue catibits.

fmax (P, N, Q) = maxp(p = figureh, gm) P(Gm)- (7)
However, this criterion is also problematic, since it relan the assumption that all cues
are well-behaved. If one or more cues respond too strondiatiground structures, the
whole system may become biased and additional false pesithay be generated. For
this reason, we also propose a third criterion, which is alioation of the two extremes.
It builds the per-pixelaverageover all cues that are sufficiently confident, i.e. where

p(p = figurelh,gm) > p(p = groundh, gm).
favg(p,h,Q) = a¥9p(p = figurgh, gm) p(m) (8)

These criteria implement a highly flexible combination t&gy. Instead of weighting
each cue just by a fixed prior, they can decide for each imags pnew which cues to
consider, where the decision is made based on the cues’ omfiience estimates. At
the same time, egs. (6) and (8) avoid putting all trust intingle cue that might bias
the results negatively. Figure 1 summarizes the final cuebgmation procedure. The
system first generates a set of hypotheses (Fig. 1(a)) byngoatble information from all
cues. For each hypothesis, it then computes a top-down segtioa per cue (Fig. 1(b)),
whereupon the verification criterion from eq. (3) is exeduteorder to fuse the individual
cues’p(figure) probability maps (Fig. 1(c)) into a common system response.

Discussion and Analysis. It is important to emphasize the difference of the proposed
cue integration scheme to the far simpler approach of rgnséveral region detectors in
parallel and pooling their features in a common codebookigasl e.g. in [4]). If only
a single kind of region descriptors is used, such an appraacid be similar to our
integration using theumcriterion. However, as soon as several different regiowcrijes
tors shall be employed, a combination into a common codel®ak longer possible,
since the different descriptors are not comparable. Oysgsed approach, on the other
hand, readily scales to this case and allows to combine ffexefit cue contributions on
a flexible per-pixel basis, which is something no other auiregproach can achieve.

The proposed cue integration scheme was motivated by tleatatof different local
cues to complement each other by interpreting the imagenrdton in different ways.
In order to visualize that this can positively affect recitign performance, we introduce
the followingargmanxcriterion as an analysis tool.

fargmax(P; h, Q) = argmaxp(p = figureth, gm) P(Gm) 9)

This criterion selects for each hypothesis pixel the indéxhe most confident cue.
Fig. 1(d) shows the resulting maps for the two example imagéere each shade of
gray corresponds to one of the five descrip®isT, GLOH, PCA-SIFT Shape Context
andPatch(c.f. Sec. 4). These images are readily interpretable. istance, it becomes
evident that in the top example, the outer rim of the front@ltibest captured bghape
Contextdescriptors, while the wheel's hub is better represente@b@H. In the bottom
example, on the other hand, changed contrast to the baakgjtms modified the image
content sufficiently that similar structures on the rear &lfaee better captured ISIFT.
We can further quantify the relative importance of each oueparticular hypothesis
h by building up a histogram of their individual contributgrFig. 1(e) shows the corre-
sponding cue importance histograms. As can be seen, thizealaportance of the cues
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Figure 3. Single-cue EER performances for all detector/descriptomtmnations on
the TUD motorbikes. The plots show the performance gradatiben the cluster-
ing/matching threshold is varied. In all following expesnts, we use only the best-
performing parameter setting for each cue.

changes also quantitatively. Some more examples for difteest images are shown in
Fig. 2, further corroborating this observation.

4 Experimental Setup

In the rest of the paper, we evaluate our proposed methodabwild detection tasks.
We first describe the selection of cues we build upon and staltga sets.

Interest Region Detectors. We compare three scale-invariant interest region detector
The Harris-Laplace(HarLap) and Hessian-LaplacéHesLayp) detectors look for scale-
adapted maxima of the Harris function and Hessian detemhinaspectively [14], where
the locations along the scale dimension are found by thedcapt-of-Gaussian. TH20G
detector [12] finds regions at 3D scale-space extrema of iffierBnce-of-Gaussian.

Region Descriptors. In addition, we evaluate five different region descript@8:T de-
scriptors [12] are 3D histograms of gradient locations amehtations with 4x 4 location
and 8 orientation bins. The resulting descriptor has 12&dsions.GLOH descriptors
[14] are an extension @IFT. They use 17 location and 16 orientation bins organized in
a log-polar grid. PCA is used to reduce the dimensionalit§28. PCA-SIFT[8] are
vectors of image gradients inandy direction sampled within the support region and re-
duced to 36 dimensions with PCShape ConteXiSC) [2, 14] descriptors are histograms
of gradient orientations sampled at edge points in a logspglid with 9 location and

4 orientation bins and thus 36 dimensions. For comparis@ninslude 25« 25 pixel
Patcheqd1, 10], which lead to a descriptor of length 625. This setedatiptors was ex-
plicitly chosen to sample different sources of informati@FT, GLOH, andPCA-SIFT
are based on gradient informatid®C descriptors are based on edges; Batthegake
the full image region into account.

The evaluation is performed with an own implementation & HoG detector (de-
notedeDoGin the figures) andPatchdescriptor. For all other detectors and descriptors,
we used the implementations publicly available at [16].cRas were compared using
Normalized Correlationall other descriptors were compared using Euclidean miists.

Training and Test Data. We first evaluate the different stages of our approach on the
TUD motorbike set, which is part of the PASCAL collection .[S[his data set consists
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Figure 4: Cue combination performances on the TUD motorbikes: (ajlsioue per-
formance; (b) performance of the different combinatioatstgies using all 5 descriptors
with the same detector; (c) cue combination performancewithe same descriptors are
applied to different detectors.

of 115 images containing a total of 125 motorbikes at diffieigcales and with clutter
and occlusion. Training is done on 153 motorbike side viewmfthe CalTech training
set [6] which are shown in front of uniform backgrounds allogvfor easy segmentation.
We then show that the results generalize also to other sosrigrapplying the approach
to two more challenging data sets using the same paramdtigigse The first is the
VOC motorbikest est 2 set, which has been used as a localization benchmark in the
2005 PASCAL Challenge [5]. This data set consists of 202 esagpntaining a total of
227 motorbikes at different scales and seen from differemtpoints. Only about 37% of
those motorbikes are shown in side views, though, thusitimthe maximally achievable
recall for our system. Finally, we apply our method to thegstdan test set from [11]. It
consists of 209 images containing crowded scenes with baf®5 pedestrians, mostly
shown in side views but with significant overlap and occlasidraining for this test
is done on 216 side views of pedestrians for which a segnientatask was available,
using the same parameter settings as for the motorbike iexpats. In all three cases,
the task is to detect and localize the objects in the testémagd determine their correct
bounding boxes (using the evaluation criterion from [11] thee first and third test set,
and the criterion from [5] for the second test set).

5 Reaults

Single-Cue Performance. In order to obtain an unbiased estimate of the cues’ polentia
it is important to ensure that they are evaluated at theinggtsetting. As a first step, we
therefore evaluate each cue separately and try to find ifspesince optimum.

One open parameter has to be adjusted for each cue, namejyabtton how much
the clustering step should compress the training featueing codebook generation.
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Figure5: Performance comparison on the TUD motorbikes (left), theaiifficult VOC
motorbiket est 2 set (middle), and the pedestrian test set (right). The raigdbt is
rotatedd(* to make it consistent with the ones in [5]. Please note thaevaur detector
is exclusively trained on side views, only 39% of the motkeiin the VOC set are shown
in side views, thus limiting the maximally achievable récal

When using agglomerative clustering, this translates ¢oghestion how compact the
codebook clusters should be for optimal performance. Otiers to define aninimum
similarity after which clustering should be stopped. Another optiotoifix a certain
cluster compression rati@#featureg#clustery. Previous evaluations [13] have favored
the latter option, but it is not guaranteed that this chasoggatimal.

In order to analyze the clustering/matching thresholdisi@nce on recognition per-
formance, we applied all 15 detector/descriptor combamegtio the TUD motorbikes set
and compared their equal error rate (EER) detection pednomfor 5-7 different thresh-
old settings. Figure 3 shows the results of this experinmsott) separated per descriptor
and per detector. We can make two observations. First, wherparing descriptors
across different detectors, a clear performance optimumbeafound at a certain simi-
larity for SIFT, GLOH, PCA-SIFT andSC The cluster compression ratio, on the other
hand, does not seem to have a consistent influence. We cafidtesformulate the rec-
ommendation to use the cluster similarity as a criteriorsfdecting the clustering level
for those descriptors. Second, the results allow to ranki#dtector/descriptor combina-
tions based on their single-cue performance. For the qeecsi SIFT and SC perform
consistently best over all three detectors. For the detediesLapand DoG perform
best in all but one case. In terms of combinatidbeG+SIFT andDoG+SCobtain the
best performance with 87% EER.

Combining Different Descriptors. Next, we examine cue combination in a maximally
correlated setting. For this, we apply all five region dgxoris to the output of the same
region detector and compare the performance of the thrg@peal combination strate-
gies. The results of this experiment can be seen in Fig. }(BdyHarLap andHesLap
there is a significant difference between the three perfoomaurves, witlsumcombina-
tion performing worst, themaxcombination, an@veragecombination performing best.
This confirms our expectations from Section 3. Comparededitkst single-cue perfor-
mance withSIFT or SCdescriptorsaveragecombination achieves a small performance
increase from 77.6% to 80.0%lérLap) and from 82.4% to 85.6% EERHgsLayp), re-
spectively. FODoG, a significant performance increase from 87.2% to 91.2% Edttbe
shown if all descriptors exceptCA-SIFTare combined. Includin@CA-SIFTdegrades
overall performance to 85.6%, suggesting that those gescsiare not as informative as
the others, perhaps because of their projection onto a geperpose PCA basis.



Figure 6: Example multi-cue detections of our approach on difficulagras from the
VOC motorbikes and the pedestrian set (at the EER).

Combining Different Detectors. The opposite experiment is to apply the same descrip-
tors to three different region detectors and compare thebawed performances. This is
shown in Fig. 4(c). As there are only small differences betwthe performance of the
three combination strategies, we just display the curve¥eragecombination in order

to reduce clutter. The most remarkable observation frosékperiment is the improve-
ment of over 10% EER obtained by tké OH descriptors from 76.0% to 86.4%. Ap-
parently, this descriptor benefits most from additional gl@sin the image. In contrast,
SIFT shows only a small improvement to 88.8% EER. The best atesplrformance is
achieved by th&Ccombination with 92.8% EER. THRCA-SIFTandPatchdescriptors,
finally, do not profit from the evaluated combination.

Full Multi-Cue Combination. Finally, we present results combining multiple detec-
tors and multiple descriptors at the same time. Fig. 5(t&fthpares the performance of
SIFT+SCand SIFT+GLOH+SCwith all three detectors. Although those combinations
do not increase EER performance any more, further improuémen be observed in
terms of precision. In particular, recall at the zero-fgiesitive level is increased from
50% (onlySQ over 62% GIFT+SQ to 75% (all three descriptors). This is an important
result, since high precision is a prerequisite for many-veald applications.

In order to ensure that the results generalize also to diftesettings, we apply our
multi-cue approach to the more challenging VOC motorbikeaising the same param-
eter settings as for the first experiments. Fig. 5(middlenshthe results of this exper-
iment. As can be seen from the plot, the combination of mieltques again improves
performance and increases the detection precision caabige As a comparison with
[5] shows, it is the best result reported for this data setaso The best combination of
SIFT+SCachieves 21% recall with zero false positives and scale® D% recall at
90% precision. Considering that the test set contains dobut39% side views, this
is an excellent result. Fig. 6 visualizes the range of makerbppearances that are still
reliably detected by our approach. Although the system hnaslmeen trained on a sin-
gle viewpoint, the increased robustness from multi-cuegrdation makes it possible to
compensate for a certain level of out-of-plane rotation.

Last but not least, we apply our multi-cue approach to theepeihn test set from
[11] using the same clustering/matching thresholds asfontotorbikes. The results are
shown in Fig. 5(right). Again, the combination of multiplaes increases performance
significantly from 80% EER for the best single cues to 84.7%36 with all three de-
tectors and to 82.6% withlesLapwith SIFT+GLOH+SC In comparison, we show the
results from [11], which are clearly outperformed by our thalie system.
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6 Discussion & Conclusion

In conclusion, we have proposed a robust and flexible mukiintegration scheme that
operates even when the cues are highly correlated. It hasdb@svn to improve perfor-
mance consistently on three different data sets and for ategories. The improvementis
particularly visible in terms of recognition precision affar the motorbike test sets, high
recall values at the zero-false-positive level. Compaced tanonical cue combination
strategy of simply adding the weighted cue responses, aposed approach can react
more flexibly to varying cue performance and adapt itselbmatically. This advantage
could also be verified quantitatively in cases where the weaze strongly correlated.

In order to further evaluate its performance we have coratliah extensive study,
comparing 3 state-of-the-art interest region detectods &nifferent descriptors in the
context of multi-cue integration. The results of this ewion allow to rank the cues both
based on their individual performance and their suitgbftir integration. In addition,
we can draw several interesting conclusions. When set tagheclustering levelSIFT
andSCfeatures performed consistently better than all otherrifgses in this evaluation.
In addition, feature combinations with eith8€C descriptors and several different region
detectors oDoG/HesLapregions with several different descriptors achieved tighést
overal performance level. These two extremes thus providex@ along which the set
of cues can be varied depending on implementation tradécdfseither sampling more
points or using the sampled information more efficiently).
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References

[1] S. Agarwal, A. Atwan, and D. Roth. Learning to detect @lgein images via a sparse, part-based repre-
sentation.PAMI, 26(11):1475-1490, 2004.

[2] S.Belongie, J. Malik, and J. Puchiza. Shape matchingodjett recognition using shape conteX@aMl,
24(4):509-522, April 2002.

[3] C. Brautigam, J.-O. Eklund, and H. Christensen. A mdde¢- approach for integrating multiple cues. In
ECCV’98 1998.

[4] G. Dorko and C. Schmid. Selection of scale invariant péor object class recognition. ICCV’03,
2003.

[5] M. Everingham et al. (34 authors). The 2005 pascal visugkect class challenge. I8elected
Proceedings of the 1st PASCAL Challenges WorkshdyAl. Springer, to appear.htt p: / / vwwy.
pascal - net wor k. or g/ chal | enges/ VOC .

[6] R.Fergus, A.Zisserman, and P. Perona. Object clasgnétan by unsupervised scale-invariant learning.
In CVPR’03 2003.

[7] A. Garg, S. Agarwal, and T. Huang. Fusion of global andaldaformation for object detection. In
ICPR’02, 2002.

[8] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive regentation for local image descriptors. In
CVPR’04 2004.

[9] J.Kittler, M. Hatef, R. Duin, and J. Matas. On combiningssifiers.PAMI, 20(3):226-239, 1998.

[10] B.Leibe, A. Leonardis, and B. Schiele. Combined ob@tégorization and segmentation with an implicit
shape model. IECCV’'04 Workshop on Stat. Learn. in Comp. V&004.

11] B. Leibe, E. Seemann, and B. Schiele. Pedestrian diteict crowded scenes. @VPR’'05 2005.

12] D. Lowe. Distinctive image features from scale-ineati keypoints.|JCV, 60(2):91-110, 2004.

13] K. Mikolajczyk, B. Leibe, and B. Schiele. Local featsrfor object class recognition. I€CV’05, 2005.

14] K. Mikolajczyk and C. Schmid. A performance evaluatiohlocal descriptors.PAMI, 27(10):31-37,

2005.

15] M.E. Nilsback and B. Caputo. Cue integration througscdminative accumulation. 16VPR’04 2004.

16] Oxford interest point webpagét t p: / / www. r obot s. ox. ac. uk/ ~vgg/ research/ af fi ne/.

17] Z. Sun. Adaptation for multiple cue integration. @VPR’03 2003.

18] J. Triesch and C. Eckes. Object recognition with miétifeature types. IRCANN’98 1998.

19] J. Triesch and C. von der Malsburg. Democratic intégratSelf-organized integration of adaptive cues.
In Neural Computationpages 2049-2074, 2001.

[20] K.Woods, W.P. Kegelmeyer Jr., and K. Bowyer. Combimratf multiple classifiers using local accuracy
estimation.PAMI, 19(4):405-410, 1997.




