
Segmentation-Based Online Change Detection for Mobile Robots

Bradford Neuman, Boris Sofman, Anthony Stentz and J. Andrew Bagnell

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

{bneuman,bsofman,axs,dbagnell}@ri.cmu.edu

Abstract— The high cost of damaging an expensive robot or
injuring people or equipment in its environment make even
rare failures unacceptable in many mobile robot applications.
Often the objects that pose the highest risk for a mobile robot
are those that were not present throughout previous successful
traversals of an environment. Change detection, a closely related
problem to novelty detection, is therefore of high importance
to many mobile robotic applications that require a robot to
operate repeatedly in the same environment. We present a novel
algorithm for performing online change detection based on a
previously developed robust online novelty detection system
that uses a learned lower-dimensional representation of the
feature space to perform measures of similarity. We then further
improve this change detection system by incorporating online
scene segmentation to better utilize contextual information
in the environment. We validate these approaches through
extensive experiments onboard a large outdoor mobile robot.
Our results show that our approaches are robust to noisy
sensor data and moderate registration errors and maintain
their performance across diverse natural environments and
conditions.

I. INTRODUCTION

As robotics continues to advance, mobile robots are able

to navigate more difficult and diverse environments than

ever before. In the past several years we have seen robots

which can complete complex automated tasks robustly and

without major incident, especially in domains such as urban

or outdoor navigation [1], [2], [3]. These systems are still

not perfect and the chance of failure, however small, discour-

ages many commercial applications for mobile robots. It is

becoming increasingly difficult and expensive to continue to

improve the performance of these systems and account for

all the unknown situations that they may encounter.

Rather than having to operate perfectly in all environ-

ments, if a robot can detect situations that are potentially

dangerous or outside of its experience base, then it can either

avoid those areas entirely or stop and request the aid of a

human. For many applications of mobile robotics such as

construction, mining, driving supply routes and patrolling,

we can leverage the fact that the robot will be operating

repeatedly in the same area. If the robot has successfully

traversed an environment many times previously, then its

biggest sources of risk likely come from aspects of that

environment that have changed. The goal of change detection

is to robustly discover such changes online as the robot is

navigating through a previously traversed scene.

While change detection and the related problem of novelty

Fig. 1. An example of the system detecting a manikin that was not
previously present in this environment.

detection have been well-studied, most algorithms are un-

suitable for mobile robotics because they are not suitable for

online use and cannot deal with high-dimensional, noisy and

redundant features common in robotic perception systems.

In this paper we present a change detection system that ex-

tends the novelty detection system proposed in [4]. We then

show how this system’s performance can be dramatically

improved through the integration of an online scene seg-

mentation system. This system iteratively segments the scene

using a series of Markov Random Field (MRF) optimizations

and allows the change detection system to make decisions

about entire segments rather than individual 3D locations

(we refer to these discretized 3D locations as voxels). This

improved use of contextual information allows the system to

significantly reduce false positives.

The next section discusses related work in novelty and

change detection. Sections III and IV present our approach

for performing change detection in feature-rich 3D environ-

ments and discuss the online scene segmentation system used

within. In section V we discuss how these approaches can be

applied to the mobile robotics domain and describe the large

unmanned ground vehicle (UGV) on which we perform our

experiments. Results and analysis are presented in section VI

and concluding remarks and future work are in section VII.

II. RELATED WORK

Much previous work has been done in novelty detection

(sometimes called anomaly or outlier detection) and applied

to various domains. For example, work has been done

towards detecting structural faults [5], abnormal jet engine

operation [6], computer system intrusion detection [7], and

identifying masses in mammograms [8]. In the robotics

domain some have incorporated novelty detection systems

within inspection robots [9], [10]. Markou and Singh have

written a pair of extensive survey articles detailing many

additional novelty detection applications and techniques [11],

[12].

Change detection is a much less studied problem but

many similar approaches can be used. Several researchers

in the computer vision community detect changes in video

streams using temporal difference methods [13], [14]. An-

other approach simply compares each current image with the

same background at a previous time [15]. These image-based

techniques are highly sensitive to varying viewpoints and

variations in lighting. Others have applied change detection

techniques to analyzing land-cover changes over long periods

of time. These include the analysis of forest defoliation [16],

reductions of tropical forests [17], and an analysis of land

use over time [18]. A survey of various change detection

techniques for monitoring land-cover changes can be found

in [19].

Most of the existing novelty and change detection tech-

niques are not applicable for mobile robotics because they

do not run online, cannot handle noisy and redundant data,

or rely on extremely accurate position estimation.

Our change detection system uses online scene segmen-

tation to leverage contextual information in the scene. The

problem of segmenting data into meaningful regions has been

extensively researched in the computer vision domain [20],

[21]. In 3D, people have used graphical methods based on

laser scans [22], and have considered splitting scenes into

several known classes using feature rich data [23], [24].

These approaches do not work for mobile robots or change

detection because they either make unrealistic assumptions or

require prior data about scenes they may encounter. Others

have used MRFs to segment 3D scenes, but they assume

representative training data which cannot be assumed for

novelty or change detection [25].

III. CHANGE DETECTION

In addition to the difficulties discussed in the previous

section, change detection is an exceptionally difficult prob-

lem for several reasons. First, the system must be able to

deal with natural variations in the environment from one

traversal to the next, including slight variations in paths

driven and resulting variations in sensing angles and density.

Such changes would obviously cause variations in computed

features between the two traversals that must be filtered to

avoid excessive false positives. Also, such techniques must

be able to handle small amounts of registration error typical

of real-world scenarios. The approach described in this

section is able to handle both challenges while maintaining

low rates of false positives.

We treat the problem of change detection as a location-

specific instance of novelty detection. Rather than trying to

identify situations that are novel with respect to everything

seen previously, a change detection system needs to identify

when a situation is novel with respect to how the situation

looked at an earlier time (from a stored log for example).

To accomplish this we leverage the robust online novelty

detection algorithm described in [4]. This approach uses

a kernel machine to make estimates of similarity where

seen examples generate an influence of familiarity in feature

space toward future examples. A supervised dimensionality

reduction technique, multiple discriminant analysis (MDA),

is used to create a lower-dimensional feature space with

the property that proximity implies similarity. This approach

causes the classes used for training to be projected into

clusters that are as compact as possible while being as far

away as possible from other cluster centers. In effect, this

creates a lower dimensional subspace that truly captures what

makes things novel. Novelty is then tested by measuring the

accumulated influences of previously encountered examples

on the query’s location in the feature space.

We use the more compact variation of this algorithm as

shown in Algorithm 1. Like in [4], we operate within a

lower-dimensional feature space created through supervised

dimensionality reduction using labeled classes acquired dur-

ing the training of the perception system. Since these classes

are only required during training this transformation (and not

during later use), this approach generalizes well to previously

unseen object classes.

Algorithm 1 Online change detection algorithm (modifica-

tion of algorithm in [4])

1: given: A set of voxel features (xi)1...N from a location

in the current scene; a sequence of corresponding voxel

features from a previous navigation S = (x̃i)1...M ; A

function N (i, S) which finds the neighbors within radius

r of (xi) in the set S; a novelty threshold γ

2: outputs: A sequence of hypotheses f =
(f(x1), f(x2), . . . , f(xN)) where f(xi) specifies if

voxel xi has changed from the previous iteration

3: for i = 1 to N do

4: y ← 0
5: y ←

∑

x̃∈N (i,S)

k(xi, x̃)

6: if y < γ then

7: f(xi)← true {This voxel has changed}
8: else

9: f(xi)← false {This voxel is un-changed}
10: end if

11: end for

We assume a log of all seen voxel features is available

from a previous traversal of the environment (only the

lower-dimensional representation of the features needs to be

stored since comparisons happen in the MDA-based sub-

space rather than the raw feature space).

As in the original algorithm, we simply use a Gaussian

kernel for the kernel function in line 5. For each seen voxel,

the kernel function is used to sum the measures of similarity

of that voxel with respect to all voxels near that location from

the previous traversal. If the example is novel with respect to

Fig. 2. The control flow through the segmentation-based change detection
system. The blue nodes are the steps added by segmentation.

that set of voxels, then the system specifies that the voxel has

changed from before. Voxels within some region around the

example are considered to allow the algorithm to be robust

to moderate amounts of registration error between the two

data sets, as well as natural variations in the scene such as

vegetation moving in strong wind. Because the addition of

any irrelevant voxels provides little contribution toward the

novelty threshold in the final prediction (only similar voxels

will contribute to the final measure), the addition of these

extra voxels does not influence the prediction in a majority

of scenarios.

IV. SEGMENTATION SYSTEM

The approach to change detection described in Section

III is analogous to a sliding window approach for image

classification. We expand this system to consider contextual

information by introducing the online scene segmentation

system presented in Algorithm 2. This segmentation system

uses a trained general purpose similarity classifier to itera-

tively segment a scene by constructing and solving a series

of two-class MRFs to identify each segment.

Once a segment has been found, the voxel-based change

detection algorithm (Algorithm 1) is used to vote on the

final classification of all voxels within the segment. This

improvement to the change detection system eliminates many

false positives by making decisions for regions of the scene

instead of individual voxels.

Fig. 2 shows an overview of the entire pipeline for

detecting changes using segmentation. Each major step is

highlighted in a subsection below, and extended details on the

proposed segmentation-based system can be found in [26].

A. Similarity Classifier

In a good segmentation, voxels in the same segment will

have a greater similarity than those in different segments. We

therefore want to create a classifier that measures similarity

between arbitrary voxels (rather than classifying those voxels

into any specific classes).

Typically, one would seek a classifier f(x) for a single

feature vector. Since we are classifying pairs of voxels, we

first apply a feature transformation function φ(x1, x2) → x

where φ is a symmetric mapping of the features of the

two voxels into a single feature vector. After extensive

experimentation, we converged on using a function which

concatenates the magnitude of the difference between the raw

features with the sum of the raw features. This allows the

classifier to learn based on both the difference between the

Algorithm 2 Segmentation-based change detection algo-

rithm

1: given: A set of voxel features (xi)1...N from a location

in the current scene; a novelty threshold γ; a segment

change threshold η

2: outputs: A sequence of hypotheses f =
(f(x1), f(x2), . . . , f(xN)) where f(xi) specifies if

voxel xi has changed from the previous iteration

3: while there are any voxels unassigned to a segment do

4: s ← seed(x) {The voxel index selected by the seed

selection algorithm (Section IV-B)}
5: if s = −1 then {Segmentation termination criteria

reached}
6: break

7: end if

8: Run the similarity classifier between xs and every

other unlabeled voxel (Section IV-A)

9: Create an MRF representing classifier output and

neighbor constraints (Section IV-C)

10: Solve MRF to get y, the labels for all voxels which

minimize the MRF energy function in equation 2

11: S ← {i ∀i : yi = 1} {All voxels labeled as part of

current segment}
12: g ← ∆(x,S, γ) {Evaluate each voxel in S indepen-

dently using Algorithm 1.}

13: if
|{gi = 1 ∀ i ∈ S}|

|g|
≥ η then

14: for each i in g do {Entire segment labeled

changed}
15: f(xi)← true

16: end for

17: else

18: for each i in g do {Entire segment labeled un-

changed}
19: f(xi)← false

20: end for

21: end if

22: end while

voxels as well as where in the feature space the voxels were.

We will refer to our classifier as c(x1, x2) = f(φ(x1, x2))
which is positive if the voxels appear similar (and therefore

likely part of the same segment) and negative if they appear

dissimilar. The magnitude of the prediction is used as a

measure of confidence for that classification.

Training examples for this classifier are created from

different-class voxels and adjacent same-class voxels in

labeled data collected during perception system training. We

use a kernelized support vector machine (SVM) classifier

with symmetric Gaussian radial basis functions to efficiently

capture the wide range of possible perception inputs1.

1For this work, we use the kernelized SVM implementation provided by
libsvm[27]

B. Seed Selection and Termination Criteria

We use an iterative segmentation approach in which the

first step is to select a seed voxel from which to grow

the segment. We want the selected voxel to be a strong

representative of one of the remaining distinct segments.

Such a voxel needs to correlate strongly with a significant

number of remaining voxels. When we discover a segment

stemming from this seed, we remove all the voxels belonging

to that segment and choose a new seed from the remaining

unsegmented voxels.

We select a set of k (12 in our case) random seed candidate

voxels V from the remaining unsegmented voxels and choose

the one which maximizes the scoring function:

s(xi) =
∑

xj∈V,i 6=j

max{0, c(xi, xj)} (1)

This function selects the candidate voxel which is most

similar to the other randomly selected voxels (implying they

are in the same segment), without regard for those that are

likely in different segments.

When the maximum score falls below a threshold (im-

plying that there are no well-defined segments remaining)

or there are only a small number of voxels remaining, the

algorithm terminates.

C. MRF-based Smoothing

Our similarity classifier gives us segmentation estimates

which consider only two voxels at a time. For each pass

of the classifier, we have a result representing the similarity

between each voxel in the scene and the chosen seed voxel.

This approach produces too many false positives because it

does not take global smoothness into account. To address this

limitation, we use an MRF to represent the constraints from

our similarity classifier and our prior smoothness assumption.

We solve this MRF by minimizing the energy function:

E(y1...N) =

N
∑

i=2

Ec(x1, xi) +

λ
∑

{i,j}∈N

δ(yi = yj) + (2)

∞δ(y1 6= 1)

Ec(x1, xi) =

{

|c(x1, xi)| if δ(c(x1, xi) > 0) 6= yi
0 otherwise

}

Where:

• yi = 1 means voxel i is in the same segment as

the seed voxel and yi = 0 means voxel i is not in

the same segment as the seed voxel. At the start of

the optimization, y contains the result of the similarity

classifier.

• c(xi, xj) is the output of the similarity classifier de-

scribed in Section IV-A

• λ is the neighbor smoothness weight

The first term in Equation 2 represents the degree to

which the segmentation agrees with the evaluations of the

classifier. If the sign of the classifier does not match the

assignment of the labels, a penalty equal to the magnitude

(confidence) of the classifier is applied. The second term

applies a neighborhood constraint by penalizing mismatching

neighbors by the smoothness parameter λ. Finally, we ensure

that the seed voxel x1 is in segment 1 by applying an infinite

penalty if this constraint is not met.

In general, minimizing the energy of a k-class MRFs is

NP-hard, but the 2-class problem is a special case that can

be solved optimally in polynomial time using a min-cut

algorithm if the energy of the distribution of each pair of

binary variables is submodular [28], [29].

To solve our MRF represented by the energy function in

Equation 2 using the min-cut algorithm, we construct a graph

as follows. We turn each remaining voxel in the scene into a

node. We next connect nodes corresponding to neighboring

voxels with an edge, as in the example in Fig. 3(a). We then

create two additional virtual nodes to function as the source

and the sink nodes in the graph. These nodes represent the

two classes (in-segment and out-of-segment) to be computed

by this iteration of the segmentation process. If the classifier

says the voxel is the same as the seed, we connect that

voxel to the source node with an edge with weight equal

to the classifier’s confidence. If the classifier predicts that

the voxel is different from the seed, we instead connect that

voxel to the sink. Finally, the seed node is connected to the

source node by an edge with infinite weight, ensuring that

it will be part of that class, as seen in Fig. 3(b). Because all

edge weights are positive, this graph meets the submodularity

requirement for exact 2-class MRF optimization.

After the min-cut optimization is performed, the voxels

connected to the source node become the current segment

while the voxels connected to the sink node are assumed to

be part of other segments and remain for future iterations.

Any edge that is broken in the optimal segmentation is a

similarity constraint that was violated. In Fig. 3(c) we see the

final segment, circled. We can see that the top right voxel was

left out of the segment due to the neighborhood constraint,

even though the voxel-classifier supposed (weakly) that the

voxel was in the segment.

D. Parameter Optimization

This system has several important parameters which must

be properly tuned to achieve good performance.

The similarity classifier SVM (Section IV-A) has two

parameters, the slack variable and the kernel bandwidth,

which were optimized using a grid search.

The weight on the neighborhood constraint in the MRF,

λ (see Equation 2), determines to what extent the MRF

optimization can overrule the classifier and enforces the

smoothness of the computed segments. A low smoothing

parameter would cause the algorithm to under-smooth and

increase false positives but would also potentially help in

discovering smaller objects, while a large λ will over-

smooth the segments and potentially cause the system to

miss important changes.

(a) Neighbor constraints (b) Min-cut representation of MRF (c) Final segmented MRF

Fig. 3. MRF optimization process for a sample problem.

The segment change threshold η (Algorithm 2 Line 13)

is the fraction of a segment which must be novel in order

for the entire segment to be labeled as novel. Low values

may cause the algorithm to be overly sensitive to noise

within segments while high values will potentially miss

important changes, especially when segmentation quality

is poor, but will decrease false positives. This parameter

is closely coupled to the smoothness parameter because

the size of segments effects the ability of the system to

isolate changes in the environment. Both parameters can

be optimized through gradient-based optimization and cross-

validation.

V. APPLICATION TO MOBILE ROBOTICS

Fig. 4. The E-Gator robotic system (left) and a high-level description of
the perception system data flow (right).

An important application of these techniques is to mobile

field robotics. We implemented and tested our change detec-

tion techniques on the modified John Deere E-Gator shown

in Fig. 4. The perception system assigns traversal costs

by analyzing the color, position, density, and point cloud

distributions of the environment [30], [31]. A large variety

of engineered features that could be useful for this task are

computed in real-time (see Fig. 5) and the local environment

is divided into columns of 20 cm3 voxels in order to

capture all potentially relevant information. Additionally, a

real-time ground height estimate is maintained to aid in

feature generation and computation [32]. In total, the system

generates 30 features for each voxel in the scene. These

features are often noisy and redundant and the system is

Fig. 5. Example raw and engineered features from the UGV’s perception
system used by the change detection algorithm. NDVI (normalized differ-
ence of vegetation index) is a useful metric for detecting vegetation.

subject to moderate GPS error, so drift of up to a meter is

common.

For change detection, we use features from the existing

perception system. We train the similarity classifier in Sec-

tion IV-A with voxels which are labeled with an object class

such as “grass” or “building”, although we do not need or

infer any classes online.

The results presented in the next section are based on

experiments performed on the E-Gator UGV system using

logged data on similar hardware.

VI. QUANTITATIVE RESULTS AND ANALYSIS

We do not quantitatively evaluate the direct performance

of the segmentation system itself for several reasons. First,

unlike in the case of a classification problem, an ideal

segmentation is highly subjective and it is impossible to label

a ground truth. Also, we use segmentation as an intermediate

step in the change detection system pipeline, so for our

purposes its performance is better measured by the degree

to which it improves the overall systems accuracy.

Change detection performance is evaluated with and with-

out segmentation on pairs of logs from different traversals

of the same scene against human-labeled changes. We vary

γ (in Algorithm 1) to create an ROC curve representing the

system’s sensitivity.

We have found experimentally that in most cases incorpo-

rating the online segmentation system significantly improves

change detection performance. Our total performance across

all logs for change detection with segmentation was 84%
true positives with 17.76% false positives when we weigh

true and false positives equally. To achieve the same true

positive rate without segmentation, we would have to incur

a 35% false positive rate.

For comparison, we test against two natural occupancy-

based methods. We first consider a direct voxel-based occu-

pancy method where we directly compare each voxel against

the same 3D location in the previous traversals log and

consider a location changed if there was a voxel in one scene

and not another. The second method searches for a matching

voxel in the previous scene at the same height within a one

meter window. As expected, this second approach results in

fewer false-positives but misses many changes as a result.

These naive algorithms performed extremely poorly across

all logs. This poor performance can be explained by a variety

of reasons including extreme vulnerability to registration

error and sensitivity to non-rigid obstacles, sensing variations

and uncertainty stemming from scene discretization.

Fig. 6 shows the system’s performance across all logs.

For these ROC results, the system operated at 20% of real-

time speed (the perception system runs online at 2 Hz),

however there are several performance optimizations that

would allow real-time online performance. First, while the

change detection system currently runs sequentially after the

core perception system, it can run in parallel, decreasing the

overall run-time of a perception system iteration. Further-

more, since segments represent disjoint regions of the scene,

each segment could be processed for changes in parallel,

significantly reducing change detection run-time on a multi-

processor system.

Fig. 6. Performance of the change detection system with and without
segmentation

In order to better evaluate the robustness of our system,

we tested the system’s performance under various amounts

of additional registration error (on top of the registration

error inherent in the logs). We increased the radius r (in

Algorithm 1) to better fit the assumed error model and

found that system performance remains stable. Fig. 7 shows

this resistance to positioning error by plotting the area

under each ROC curve under the various additional errors.

Both systems maintain their performance well even under

large additional registration error, but the segmentation-based

change detection system is clearly more resistant due to its

improved ability to eliminate false positives as portions of

objects drift begin to mismatch.

Fig. 7. Area-under-curve for the ROC curves of each approach under
additional introduced registration error.

There are several factors that we believe influence the

performance of segmentation, and thus change detection.

Since we have no a priori assumptions about parameters like

number or size of segments, some logs prove very difficult

to segment. For example, the log depicting a manikin on a

pile of logs in Fig. 8(c) is poorly segmented and results in a

poor ROC curve. This may be due to the complexity of the

scene and limits to the expressive ability of the perception

system. Logs like the one in Fig. 8(a) on the other hand

yield excellent segmentation performance and result in high

change detection performance.

It is important to note that a large source of error also

comes from poor human labeling of the change detection

pair data logs. When labeling this data it was very difficult to

determine exactly which voxels should be marked, especially

at the borders of objects. In logs where changes were

partially occluded by vegetation, it was extremely difficult

to differentiate between voxels belonging to vegetation and

those belonging to the added object. The discretization of

the scene added further ambiguity.

VII. CONCLUSIONS AND FUTURE DIRECTION

The techniques presented in this paper provide a way for

a mobile robot to detect potentially hazardous changes in its

environment. We further demonstrate how this system can

be improved through the use of an online scene segmenta-

tion system. We demonstrate experimentally the approach’s

(a) Despite never having trained on an object this shape or color, the system has no problem identifying the manikin as a change.

(b) Despite good ROC performance, this segmentation fails to detect the second manikin entirely.

(c) The segmentation is so poor that none of the segments surpass the segment change threshold η and we see no detected changes at all.

(d) In this log the gate which was previously opened is now closed. The segmentation for the gate is imperfect, but is still helpful. This is a dangerous
scenario for a robot because a gate like this may appear traversable due to the low density of the sensor data.

Fig. 8. Performance on selected individual data logs. The ROC performance, scene segmentation, and detected changes are shown from left to right.

ability to run online and deal with localization error and

high dimensional, noisy, and redundant data. This work

takes a step toward the goal of increasing the fieldability

of autonomous mobile robots.

One promising idea to improve performance is using

multiple segmentations and combining the results. One could

then rank confidence of an entire segment, weighing votes

between multiple segmentations with different parameters

and seeds, and combining the best of the segmentations

to make the overall change detection more accurate. This

idea has been successfully applied in computer vision to

determine properties of objects [33], [34].

There are also recent techniques in graphical models which

allow the optimization of a graph like our MRF through

margin-based approaches. This approach has shown promise

in 3D segmentation where the classes are known ahead of

time [25], [35].

A key question to consider is how to interact with human

supervisors once a change is detected to optimize the hu-

man’s time. If a human decides that a detected type of change

is acceptable, such a change can be handled autonomously

in the future. By optimizing humans’ time, fewer people can

oversee many robots, increasing the efficiency of the entire

system.

Another interesting area of future research is an extension

of such algorithms to teams of robots. By sharing information

it may be possible for groups of robots to detect and handle

changes more robustly. This is especially interesting because

one of the ideal uses of change detection is in a setting where

humans are working with large robot teams.

As robotic systems continue to improve, incorporating

the approaches described in this paper into these systems

can allow earlier and more effective deployment by acting

as a safeguard against the inevitable dangers of unfamiliar

domains.

VIII. ACKNOWLEDGMENTS

Bradford Neuman is partially supported by a Graduate

Research Fellowship from the National Science Founda-

tion. Boris Sofman is partially supported by a Sandia Na-

tional Laboratories Excellence in Engineering Fellowship.

We would also like to thank Dominic Jonak, Balajee Kannan,

Freddie Dias, Jimmy Bourne, Nisarg Kothari, David Silver

and other members of the R-CTA Program.

REFERENCES

[1] C. Urmson, et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” Journal of Field Robotics, 2008.

[2] S. Thrun, et al., “Stanley: The robot that won the DARPA grand
challenge,” J. Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[3] A. Stentz, J. Bares, T. Pilarski, and D. Stager, “The crusher system
for autonomous navigation,” in AUVSIs Unmanned Systems North

America, 2007.
[4] B. Sofman, J. A. Bagnell, and A. Stentz, “Anytime online novelty

detection for vehicle safeguarding,” in IEEE International Conference

on Robotics and Automation, May 2010.
[5] K. Worden, “Structural fault detection using a novelty meassure,”

Journal of Sound and Vibration, vol. 201, no. 1, pp. 85–101, 1997.
[6] P. Hayton, B. Schölkopf, L. Tarassenko, et al., “Support vector novelty

detection applied to jet engine vibration spectra,” in NIPS, T. K. Leen,
T. G. Dietterich, and V. Tresp, Eds. MIT Press, 2000, pp. 946–952.

[7] J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion detection with
neural networks,” in Advances in Neural Information Processing

Systems, M. I. Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10.
The MIT Press, 1998.

[8] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady, “Novelty detec-
tion for the identification of masses in mammograms,” in Proceedings

of the Fourth International IEEE Conference on Artificial Neural

Networks, vol. 409, 1995, pp. 442–447.
[9] S. Marsland, U. Nehmzow, and J. Shapiro, “On-line novelty detection

for autonomous mobile robots,” Robotics and Autonomous Systems,
vol. 51, no. 2-3, pp. 191–206, 2005.

[10] T. Pilarski, J. Bagnell, and A. Stentz, “Hazard detection for famil-
iar terrains via change detection,” Master’s thesis, Carnegie Mellon
University, 2007.

[11] M. Markou and S. Singh, “Novelty detection: a review - part 1:
statistical approaches,” Signal Processing, vol. 83, no. 12, pp. 2481–
2497, 2003.

[12] ——, “Novelty detection: a review - part 2: neural network based
approaches,” Signal Processing, vol. 83, no. 12, pp. 2499–2521, 2003.

[13] S. Huwer and H. Niemann, “Adaptive change detection for real-time
surveillance applications,” in Third IEEE International Workshop on

Visual Surveillance. Dublin: IEEE, July 2000, pp. 37–45.
[14] N. Paragios and G. Tziritas, “Detection and location of moving objects

using deterministic relaxation algorithms,” in International Conference

on Pattern Recognition, 1996, pp. I: 201–205.
[15] Y. Kuno, T. Watanabe, Y. Shimosakoda, and S. Nakagawa, “Automated

detection of human for visual surveillance system,” in International

Conference on Pattern Recognition, 1996, pp. III: 865–869.
[16] D. M. Muchoney and B. N. Haack, “Change detection for monitoring

forest defoliation,” Photogrammetric Engineering and Remote Sens-

ing, vol. 60, no. 10, pp. 1243–1251, Oct. 1994.
[17] C. Tottrup, “Forest and land cover mapping in a tropical highland

region,” Photogrammetric Engineering and Remote Sensing, vol. 73,
no. 9, pp. 1057–1066, Sept. 2007.

[18] K. Solaimani, S. Modallaldoust, and S. Lotfi, “Investigation of land
use changes on soil erosion process using geographical information
system,” no. 3/603010, 2009.

[19] J.-F. Mas, “Monitoring land-cover changes: A comparison of change
detection techniques,” 1999.

[20] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-
age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, Sept. 2004.

[21] L. G. Shapiro and G. C. Stockman, Computer Vision. Prentice-Hall,
2001.

[22] A. Golovinskiy and T. Funkhouser, “Min-cut based segmentation of
point clouds,” princeton University.

[23] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classi-
fication of 3-d point clouds with learned high-order markov random
fields,” the Robotics Institute, Carnegie Mellon University.

[24] D. Huber, A. Kapuria, R. R. Donamukkala, and M. Hebert, “Parts-
based 3d object classification,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 04), June 2004.
[25] D. Anguelov, et al., “Discriminative learning of markov random fields

for segmentation of 3D scan data,” in CVPR, 2005, pp. II: 169–176.
[26] B. Neuman, “Segmentation-based online change detection for mobile

robots,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-
10-30, August 2010.

[27] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector ma-

chines, 2001, software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[28] R. Zabih, O. Veksler, and Y. Y. Boykov, “Fast approximate energy
minimization via graph cuts,” in ICCV, 1999, pp. 377–384.

[29] Kolmogorov and Zabih, “What energy functions can be minimized via
graph cuts,” IEEETPAMI: IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, 2004.
[30] D. M. Bradley, R. Unnikrishnan, and J. Bagnell, “Vegetation detection

for driving in complex environments,” in ICRA. IEEE, 2007, pp. 503–
508.

[31] J.-F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot
mobility,” Journal of Field Robotics, vol. 23, no. 1, pp. 839 – 861,
November 2006.

[32] C. Wellington, A. Courville, and A. Stentz, “Interacting markov ran-
dom fields for simultaneous terrain modeling and obstacle detection,”
in Proc. of Robotics Science and Systems, June 2005.

[33] T. Malisiewicz and A. A. Efros, “Improving spatial support for objects
via multiple segmentations,” in British Machine Vision Conference

(BMVC), September 2007.
[34] D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a

single image,” in ICCV, 2005, pp. I: 654–661.
[35] B. Taskar, V. Chatalbashev, and D. Koller, “Learning associative

markov networks,” 2004.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Related Work
	Change Detection
	Segmentation System
	Similarity Classifier
	Seed Selection and Termination Criteria
	MRF-based Smoothing
	Parameter Optimization

	Application to Mobile Robotics
	Quantitative Results and Analysis
	Conclusions and Future Direction
	ACKNOWLEDGMENTS
	References

