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Abstract

Shape symmetry is an important cue for image under-
standing. In the absence of more detailed prior shape in-
formation, segmentation can be significantly facilitated by
symmetry. However, when symmetry is distorted by per-
spectivity, the detection of symmetry becomes non-trivial,
thus complicating symmetry-aided segmentation.

We present an original approach for segmentation of
symmetrical objects accommodating perspective distortion.
The key idea is the use of the replicative form induced by the
symmetry for challenging segmentation tasks. This is ac-
complished by dynamic extraction of the object boundaries,
based on the image gradients, gray levels or colors, concur-
rently with registration of the image symmetrical counter-
part (e.g. reflection) to itself. The symmetrical counterpart
of the evolving object contour supports the segmentation by
resolving possible ambiguities due to noise, clutter, distor-
tion, shadows, occlusions and assimilation with the back-
ground. The symmetry constraint is integrated in a com-
prehensive level-set functional for segmentation that deter-
mines the evolution of the delineating contour. The pro-
posed framework is exemplified on various images of skew-
symmetrical objects and its superiority over state of the art
variational segmentation techniques is demonstrated.

1. Introduction

Shape symmetry is a useful visual feature for image un-
derstanding [1, 8, 11, 12, 15, 20, 21, 31, 33, 36, 35]. This re-
search employs symmetry for object detection and segmen-
tation. In the presence of noise, clutter, distortion, shadows,
occlusions or assimilation with the background, segmenta-
tion becomes challenging. In these cases, object boundaries
do not fully correspond to edges in the image and may not
delimit homogeneous image regions. Hence, classic region-
based and edge based segmentation techniques are not suf-
ficient. We, therefore, suggest a novel approach to facilitate
segmentation of symmetrical objects by using their replica-
tive form induced by the symmetry. The model presented is
applicable for translational-symmetry, rotational-symmetry

and bilateral symmetry (reflection).

In a level set framework for segmentation [23], images
are represented via level-set functions where the object re-
gions are assigned to the positive levels. The resulting
parameterization-free shape description eliminates the need
to relate shape as a collection of points or features, giving a
meaningful interpretation to dissimilarity measure between
shapes. Moreover, any transformation applied on the im-
age changes the coordinate system of its level-set function.
The represented shape is thus transformed correspondingly,
simplifying the process of shape alignment.

The proposed method for symmetry-aided segmentation
benefits from the level-set formulation. Regarding shape
as one entity, we apply a symmetry operator on its level-
set representation to obtain its symmetrical counterpart.
We then use the distance between the shape representa-
tions to impose a shape constraint that facilitates the seg-
mentation. This approach is, thus, considerably different
from other methods that support segmentation by symme-
try [9, 16, 18, 34].

When symmetry is distorted by perspectivity, the detec-
tion of symmetry becomes non-trivial, thus complicating
symmetry aided segmentation. We approach this difficulty
by showing that an image of a symmetrical object, distorted
by a projective transformation, relates to its symmetrical
counterpart (e.g. reflection) by a projective transformation.
The explicit form of the homography between symmetrical
counterparts is shown and is used to define the limits on the
ability to recover the distorting projective transformation.

The paper contains two fundamental contributions. The
first is the use of intrinsic shape property - symmetry - as
a prior for image segmentation. The second is a theoretical
result concerns with symmetrical objects distorted by pro-
jective transformations which has significant implications
related also to 3D object reconstruction. We thus present
unified framework for segmentation of symmetrical objects
distorted by perspectivity, integrating region-based, edge-
based, smoothness and symmetry constraints. The proposed
method is exemplified and verified on various images of
roughly symmetrical objects in the presence of projective
distortion.
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2. Level sets for segmentation

In this section we review state of the art segmentation
with level sets. We describe and generalize fundamental
concepts of the two-phase region based segmentation ap-
proach of Vese and Chan [3, 32]. We then recall the ba-
sics of geometric active contours as introduced in [2] ex-
tended in [14] and represented in [13]. These are incor-
porated within the Chan-Vese level-set formulation. In the
subsequent sections we show how the symmetry cue can be
integrated, to establish a unified level set framework that
efficiently exploits all image features essential for segmen-
tation.

2.1. Region-based term

Let I : Ω → R
+ denote a gray level image, where

Ω ⊂ R
2 is the image domain. Let ω be open subset of

Ω. In the spirit of the Mumford-Shah model [22], we define
a boundary C ∈ Ω, C = ∂ω that delimits homogeneous
regions in I . Thus, for a general feature G(I), in the partic-
ular two phase case, we look for a curve C that maximizes
the difference between two scalars u+ and u− defined as
follows:

u+ = A+

∫
ω

G+(I(x))dx u− = A−
∫

Ω\ω

G−(I(x))dx

(1)

where x ≡ (x, y), A+ = 1/
∫

ω
dx and A− = 1/

∫
Ω\ω

dx.
The feature chosen depends on the image homogeneity. In
the work of Chan and Vese [3] the image is approximated
by a piecewise constant function whose values are given by
G+(I(x)) = G−(I(x)) = I(x). Hence u+ = Iin and
u− = Iout are the average gray levels in the object regions
and in the background regions respectively. In this study we
use the average gray level and the variance:

G+(I) = (I(x) − Iin)2 G−(I) = (I(x) − Iout)2 (2)

This was considered by [32] and by [19] in the past. In [27]
a probabilistic formulation to G has been proposed.

In the level set framework for curve evolution [23], an
evolving curve C(t) is defined as the zero level of a level
set function φ : Ω → R at time t:

C(t) = {x ∈ Ω| φ(x, t) = 0}. (3)

Following [3], the Heaviside function of φ

H(φ(t)) =
{

1 φ(t) ≥ 0
0 otherwise

(4)

is used to indicate the object-background regions in the im-
age that correspond the non-negative and negative levels in

φ, respectively. Practically, a smooth approximation of the
Heaviside function Hε is used [3]:

Hε(φ) =
1
2
(1 +

2
π

arctan(
φ

ε
)) (5)

The above formulation enables the construction of a re-
gion based cost functional with a well defined integration
domain:

ERB(φ) =
∫
Ω

[
(G+(I(x)) − u+)2Hε(φ)

+ (G−(I(x)) − u−)2(1 − Hε(φ))
]
dx

(6)

where the subscript RB stands for region-based. We use
boldface to denote vectors. The optimal curve would best
separate its interior from its exterior with respect to their
relative characteristic scalars (or vectors) u+ and u−. Note,
that the functional minimizer is φ. The evolving boundary
C(t) is derived from φ(t) using (3). The level set function
φ is updated according to:

φRB
t =δε(φ)

[
(G−(I(x)) − u−)2 − G+(I(x)) − u+)2

]
(7)

The evolution of φ at each time steps is weighted by the
derivative of the regularized form of the Heaviside function:

δε(φ) =
dHε(φ)

dφ
=

1
π

ε

ε2 + φ2

2.2. Geodesic active contour term

Edge based segmentation approaches usually define the
object boundaries by the local maxima of the image gra-

dients. Let ∇I(x, y) = (Ix, Iy)T =
(

∂I(x,y)
∂x , ∂I(x,y)

∂y

)T

denote the vector field of the image gradients. The inverse
edge indicator function is defined by;

g(x) = 1/(1 + |∇I|2) (8)

Let s be an arc-length parameter. The geodesic active con-
tour functional

∫ L

0
g(C(s))ds integrates the inverse edge

indicator along the curve. A minimizer C will be ob-
tained when g(C(s)) vanishes, that is when the contour C
is aligned with the image edges. The corresponding term
for φ takes the form:

EGAC =
∫

Ω

g(|∇I|)|∇Hε(φ(x))|dx, (9)

and the evolution of φ is determined by:

φGAC
t = δε(φ)div

(
g(|∇I|) ∇φ

|∇φ|

)
. (10)



Thus, the zero level of φ is constrained to follow the image
gradients. When g = 1 Eq. 10 reduces to:

ELEN =
∫

Ω

|∇Hε(φ(x))|dx (11)

This functional measures the curve length |C| and usually
indicates the curve smoothness [3]. Minimizing (11) with
respect to φ, we obtain the following evolution equation:

φLEN
t = δε(φ)div

(
∇φ

|∇φ|

)
. (12)

2.3. Alignment term

The geodesic active contour term (9) determines the lo-
cation of the zero level of φ. In [14] it is suggested to in-
corporate the directional edge information to refine the seg-
mentation. This is done by aligning the level set normal
direction, �n = ∇φ

|∇φ| with the image gradients direction ∇I .

ERA = −
∫

Ω

|〈∇I,
∇φ

|∇φ| 〉||∇Hε(φ)|dx. (13)

where RA refer to robust alignment, as defined in [13]. The
associated gradient descent equation:

φRA
t = −δε(φ)sign(〈∇φ,∇I〉)∆I (14)

2.4. Shape term

The image data by itself is not sufficient for accurate ob-
ject extraction in the presence of noise, occlusions or assim-
ilation with the background. Recent variational approaches
for segmentation suggest to incorporate a prior shape con-
straint to facilitate segmentation [4, 5, 6, 7, 17, 24, 28, 30].
When only a single image is given, such prior is not avail-
able. Nevertheless, if an object is known to be symmetrical,
its replicative form, induced by the symmetry, can be used.
Section 4 considers the incorporation of the symmetry con-
straint within a level-set framework for segmentation. The
formulation is established based on a result shown in sec-
tion 3.

3. Symmetry and Projectivity

3.1. Symmetry

An object is symmetrical with respect to a given opera-
tion if it remains invariant under that operation. In 2D ge-
ometry these operations relate to the basic Euclidean plane
isometries: reflection, inversion, rotation and translation.
We denote a symmetry operation by S. S is an isometry
operating on homogeneous vectors x = (x, y, 1)T repre-
sented as

S =
∣∣∣∣ sR t

0T 1

∣∣∣∣ (15)

where t is a translation 2D vector, 0 is a null 2D vector,
R is the 2 × 2 rotation matrix and s is the diagonal matrix
diag(±1,±1).

Specifically, we relate to either of the following transfor-
mations:

1. S is translation if t 	= 0 and s = R = diag(1, 1).

2. S is rotation if t = 0 and s = diag(1, 1).

3. S is reflection if t = 0, R = diag(1, 1) and s is either
diag(−1, 1) for left-right reflection or diag(1,−1) for
up-down reflection.

In the case of reflection, the symmetry operation reverses
orientation, otherwise (translation, rotation and inversion)
it is orientation preserving.

Definition 1 Let I denote an image defined w.l.o.g. on the
symmetrical domain Ω = [−a, a] × [−b, b],
I is symmetrical with respect to S, if

I(x) = I(Sx) for each x ∈ Ω. (16)

Î(x) ≡ I(Sx) is the symmetrical counterpart of I with
respect to S.

An image is identical to its symmetrical counterpart, if and
only if it is symmetrical.

We claim that the image of a symmetrical object dis-
torted by a projectivity is related to its symmetrical counter-
part by projective transformation different from the defining
symmetry. Before we proceed proving this claim we recall
the definition of projective transformation.

3.2. Projectivity

This subsection follows the definitions in [10].

Definition 2 A planar projective transformation (projectiv-
ity) is a linear transformation represented by a non-singular
3 × 3 matrix H operating on homogeneous vectors, x′ =
Hx, where,

H =


 h11 h12 h13

h21 h22 h23

h31 h32 h33


 (17)

Important specializations of the group formed by projective
transformation are the affine group and the similarity group
which is a subgroup of the affine group. These groups form
a hierarchy of transformations. A similarity transformation
is represented by

HS =
[

κR t
0T 1

]
(18)

where R is a 2 × 2 rotation matrix and κ is an isotropic
scaling. When κ = 1, HS is the Euclidean transformation



denoted by HE . An affine transformation is obtained by
multiplying the matrix HS with

HA =
[

K 0
0T 1

]
. (19)

K is an upper-triangular matrix normalized as |K| = 1. The
matrix HP defines the “essence” of the projective transfor-
mation and takes the form:

HP =
[

I 0
vT v

]
. (20)

A projective transformation can be decomposed into a chain
of transformations of a descending (or ascending) hierarchy
order,

H = HSHAHP =
[

A t
vT v

]
(21)

where v 	= 0 and A = κRK+tvT is a non-singular matrix.

3.3. Relation between symmetrical counterparts

In this subsection we consider the relation between an
image of symmetrical object distorted by planar projective
transformation H and its symmetrical counterpart.

Theorem 1 Let IS denote a symmetrical image as defined
by (16). The image IA is obtained from the symmetrical
image IS by applying the planar projective transformation
H: IA(x) = IS(Hx). Let ÎA(x) = IA(Sx) denotes the
symmetric counterpart of IA with respect to a symmetry op-
eration S. The images IA and ÎA are related by planar
projective transformation, represented by a 3 × 3 matrix of
the form

M = S−1H−1SH. (22)

Proof 1 The symmetrical counterpart ÎA can be generated
from IA either by the symmetry operation S or by a projec-
tive transformation M .

IA(x) = IA(H−1Hx) = IA(H−1y)
= IS(y) = IS(Sy)
= IS(HH−1Sy)
= IA(H−1Sy) = IA(H−1SHx)
= IA(SS−1H−1SHx)
= ÎA(S−1H−1SHx) = ÎA(Mx)

(23)

The chain of equalities in (23) is equivalent to the following
sequence of operations:

1. Apply the inverse of the projective (distorting) trans-
formation, H−1 on IA to generate a symmetrical im-
age IS .

2. Apply the symmetry operation S on IS , under which it
remains invariant.

3. Multiply IS by the projective transformation matrix H
to obtain back the image IA.

4. Apply again the symmetry operation S on IA to obtain
its symmetrical counterpart ÎA.

Let N = M−1 = H−1S−1HS. N and thus M are projec-
tive transformations since HN = S−1HS is a projective
transformation according to:

S−1HS = S−1

[
A t
vT v

]
S =

[
A′ t′

v′T v′

]
= H′

(24)

The claim is exemplified for two particular cases. Con-
sider the image of the symmetrical object and its left-right
reflection shown in Fig. (1)a-b. Suppose that the image
symmetry has been distorted by an Euclidean transforma-
tion of the form:

HE =


 cos θ − sin θ tx

sin θ cos θ ty
0 0 1




Note that the Euclidean transformation is an isometry and
thus preserves the object symmetry. However, it draws the
symmetry axis of the object away from the symmetry axis
of the image, rotating it by angle θ and translating it by tx.
Fig. (1)a relates to its symmetrical counterpart by:

M = S−1H−1
E SHE =


 cos 2θ − sin 2θ 2tx cos θ

sin 2θ cos 2θ 2tx sin θ
0 0 1


 ,

where S = diag(−1, 1, 1). Fig. (1)a can thus be obtained
from Fig. (1)b by a translation by 2R(θ)[tx, 0]T and a rota-
tion by 2θ. Note that any translation parallel to the symme-
try axis (in this case ty) cannot be recovered from M .

Consider, next the images shown in Fig. (1)c-d. The ob-
ject is distorted by a projective transformation HP :

HP =


 1 0 0

0 1 0
v1 v2 1




The relation between the two images can be described by:

M = S−1H−1
P SHP =


 1 0 0

0 1 0
2v1 0 1




When v2 	= 0 the object shape is distorted but its symme-
try is preserved, thus v2 cannot be recovered from M . In
general, any operation that does not distort the object sym-
metry can not be recovered from M . Refer to [26] for the
complete proof.



(a) (b) (c) (d)
Figure 1. (a) An image of a symmetrical object transformed by an Euclidean transformation. The object’s symmetry axis deviates by tx

and by angle θ from the symmetry axis of the image. (b) The symmetrical counterpart of the image in (a). (c) An image of a symmetrical
object distorted by projective transformation. (d) The symmetrical counterpart of the image in (c).

4. Symmetry based segmentation

4.1. Symmetry constraint

The discussion in the previous section related to images.
We will now refer to the dynamic object indicator functions
represented by Hε(φ(t)). Let φ̂ : Ω → R denote the sym-
metrical counterpart of φ with respect to a symmetry op-
eration S. Specifically, φ̂(x) = φ(Sx) where S is either
a reflection or rotation or translation. We assume that the
S is known. We denote by Tp the alignment function be-
tween Hε(φ) and Hε(φ̂S). Tp captures the deviation of the
object symmetry axis from that of the image and the projec-
tive transformation that distorts its symmetry. Note, how-
ever, that this information is not known in advance. Tp is
recovered by a registration process held concurrently with
the segmentation, detailed in subsection 4.3.

Let D = D(Hε(φ), TpHε(φ̂)) denote a dissimilarity
measure between the evolving shape representation and its
symmetrical counterpart. Note that if Tp is correctly recov-
ered and φ captures a perfectly symmetrical object (up to
projectivity) then D = 0. D thus quantifies the distortions
of object symmetry which are not caused by the projectivity.
Whenever these distortions are due to false detection of the
object boundaries (caused by noise, occlusions, clutter, etc.)
and not features of the object shape, D defines an appropri-
ate symmetry constraint. In [24], D measures the none-
overlapping object-background regions between the evolv-
ing segmentation and a well-defined prior φ̂:

D(φ, φ̂) =
∫

Ω

[
Hε(φ(x)) − TpHε(φ̂(x))

]2

dx. (25)

Nevertheless, since in our case Hε(φ̂) is identical to Hε(φ)
up to an isometry, it is subject to the same distortions and
thus cannot replace a well defined prior. A different for-
mulation is then needed, to be described in the following
subsection.

4.2. Biased shape dissimilarity measure

Consider, for example, the approximately bilateral sym-
metrical (up to projectivity) images shown in Fig. 2a,d. The

objects symmetry is distorted by either deficiencies or ex-
cess parts. We would like to use the symmetry to overcome
these shape distortions. Nevertheless, incorporating the un-
biased shape constraint (according to Eq. 25) in the cost
functional for segmentation, results in the undesired seg-
mentation shown in Fig. 2b,e. The symmetrical counterpart
of a level-set function φ is as imperfect as φ. To support
a correct evolution of φ by φ̂, we have to account for the
specific type of corruption.

Refer again to the dissimilarity measure in Eq. (25).
The cost functional integrates the non-overlapping object-
background regions in both images indicated by Hε(φ) and
Hε(φ̂). This is equivalent to a pointwise exclusive-or (xor)
operation integrated over the image domain. We may thus
rewrite the functional as follows:

D(φ, φ̂) =
∫
Ω

[
Hε(φ)

(
1 − Hε(φ̂T )

)
+ (1 − Hε(φ)) TpHε(φ̂)

]
dx

(26)

Note that the expressions (25) and (26) are approximately
identical, since Hε(φ) ≈ (Hε(φ))2 (equality is obtained for
ε → 0). There are two types of ‘disagreement’ between
the labeling of Hε(φ) and TpHε(φ̂). The first additive term
in the right hand side of (26) does not vanish, if there exist
image regions labeled as object by φ and labeled as back-
ground by its symmetrical counterpart φ̂. The second addi-
tive term of (26) does not vanish if there exist image regions
labeled as background by φ and labeled as object by φ̂. We
can change the relative contribution of each term by a rela-
tive weight parameter µ ≥ 0:

ES(φ, φ̂) =
∫
Ω

[
µHε(φ)

(
1 − TpHε(φ̂)

)
+ (1 − Hε(φ)) TpHε(φ̂)

]
dx

(27)

The associated gradient equation for φ is then:

φS
t = δε(φ)[TpHε(φ̂) − µ(1 − TpHε(φ̂))] (28)

Now, if excess parts are assumed, the left penalty term
should be dominant, setting µ > 1. Otherwise, if deficien-
cies are assumed, the right penalty term should be domi-



(a) (b) (c)

(d) (e) (f)
Figure 2. (a, d) Images of symmetrical objects up to a projective transformation. The objects are distorted either by deficiencies (a) or by
excess parts (d). (b, e) Segmentation (red) of the images in (a) and (d) respectively, using unbiased dissimilarity measure between φ and
its transformed reflection as in Eq. (25). Object segmentation is further spoiled due to the imperfection in its reflection. (c, f) Successful
segmentation (red) using the biased dissimilarity measure as in Eq. (27).

nant, setting µ < 1. Fig. 2c,f show segmentation of sym-
metrical objects with either deficiencies or excess parts, in-
corporating the shape term (27) within the segmentation
functional. We used µ = 0.5 and µ = 2 for the segmen-
tation of Fig. 2c and Fig. 2f, respectively.

4.3. Recovery of the transformation

We now look for the optimal alignment function Tp that
minimizes ES defined in eq. (27). The operation of Tp on
Hε(φ̂) is equivalent to the transformation of the coordinate
system of φ̂(x) by a projective transformation H.

TpHε(φ̂(x)) = Hε(φ̂(Hx)) (29)

The matrix H is defined in Eq (17). The eight unknown
ratios of its entries ĥij = hij/h33 are recovered through
the segmentation process, alternately with the evolution of
the level set function φ. The parameters ĥij are obtained by
minimizing (27) with respect to each.

∂ĥij

∂t
=

∫
Ω

δε(Tp(φ̂)) [(1 − Hε(φ)) − µHε(φ)]
∂Tp(φ̂)

∂ĥij

dx

(30)

Derivation of ∂Tp(φ̂)

∂ĥij
is done similarly to [25].

4.4. Unified segmentation functional

Symmetry-based, edge-based, region-based and smooth-
ness constraints can be integrated to establish a comprehen-
sive cost functional for segmentation:

E(φ) = EPS + ELEN + EGAC + ERA + ES (31)

with the equations ( 6, 11, 9, 13, 27). The evolution of φ in
each time step, φ(t + 1) = φ(t) + φt is determined by

φt(φ) = φRB
t + φLEN

t + φGAC
t + φRA

t + φS
t (32)

using a weighted sum (wi) of equations (7, 12, 10, 14, 28).
Refinement of the segmentation can be obtained for im-

ages with multiple channels, I : Ω → R
n, e.g. color im-

ages. The region-based term φRB
t and the alignment term

φRA
t sum of the contributions of each channel Ii. Figure 5

demonstrates segmentation of a color image. Further explo-
ration could address the use of Beltrami flow [29].

4.5. Algorithm

The algorithm for segmentation of a symmetrical objects
in the presence of projectivities is summarized as follows:

1. Choose an initial level-set function φ(t = 0) that de-
termines the initial contour within the image.

2. Set initial values for the transformation parameters ĥij .
For example set H = I where I is the identity matrix.

3. Compute u+ and u− according to (1), based on the
current contour interior and exterior, defined by φ(t).

4. Generate φ̂, the symmetrical counterpart of φ.

5. Update the alignment term Tp by recovering the trans-
formation parameters hij . according to (30)

6. Update φ using the gradient descent equation (32).

7. Repeat steps 3-6 until convergence.

5. Experiments

We exemplify the proposed algorithm for the segmen-
tation of skew-symmetrical objects. The images are dis-
played with the initial and final segmenting contours. Seg-
mentation results are compared to those obtained using the
functional in Eq. (31) without the symmetry term. The con-
tribution of each term in the gradient descent equation (32)



(a) (b) (c)
Figure 3. (a) Input image of a roughly symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without the
symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm.

Figure 4. (a) Input image of a roughly symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without the
symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm. Original image courtesy of George Payne. URL:
http://cajunimages.com

(a) (b) (c)
Figure 5. (a) Input image of a roughly symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without the
symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm. Original image courtesy of Richard Lindley. URL:
http://www.richardlindley.co.uk/links.htm

is normalized to [−1, 1] avoiding the need to “guess” their
relative weights. In Fig. 3 the upper part of the guitar is
used to extract its lower part correctly. In the butterfly im-
age, Fig. 4, a left-right reflection of the evolving level set
function is used to support accurate segmentation of its left
wing. In Fig. 5 we used the image colors in addition to the
symmetry constraint to facilitate the extraction of the swan
and its reflection.

6. Summary

This paper has two major contributions. First, it presents
a level-set framework for the segmentation of symmetri-

cal objects distorted by projective transformations. Second,
it shows the explicit form of the homography that relates
the image of a skew-symmetrical object to its symmetrical
counterpart. This homography captures the projective dis-
tortion in the object symmetry. It is recovered through the
segmentation process, thus revealing an important geomet-
ric information on the object of interest.
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