
Segmentation, Diarization and

Speech Transcription:

Surprise Data Unraveled

Marijn Huijbregts

Samenstelling van de promotiecommissie:

Prof. dr. F.M.G. de Jong promotor
dr. R.J.F. Ordelman assistent-promotor
Prof. dr. ir. A.J. Mouthaan voorzitter en secretaris
Prof. dr. ir. A. Nijholt Universiteit Twente
Prof. dr. T.W.C. Huibers Universiteit Twente
Prof. dr. ir. D.A. van Leeuwen Radboud Universiteit, Nijmegen

TNO, Human Interfaces, Soesterberg
Prof. dr. ir. A.P. de Vries Technische Universiteit Delft

Centrum Wiskunde & Informatica,
Amsterdam

Prof. dr. S. Renals University of Edinburgh
Prof. dr. D. Van Compernolle Katholieke Universiteit Leuven

CTIT Ph.D. thesis Series No. 08-123
Centre for Telematics and Information Technology (CTIT)
P.O. Box 217 - 7500 AE Enschede - The Netherlands

SIKS Dissertation Series No. 2008-26
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School
for Information and Knowledge Systems.

ISBN 978-90-365-2712-5

ISSN 1381-36-17 (CTIT Ph.D. thesis Series No. 08-123)

Printed by PrintPartners Ipskamp, Enschede, The Netherlands

Copyright c© 2008 Marijn Huijbregts, Enschede, The Netherlands

SEGMENTATION, DIARIZATION AND

SPEECH TRANSCRIPTION:

SURPRISE DATA UNRAVELED

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 21 november 2008 om 13.15 uur

door

Marijn Anthonius Henricus Huijbregts

geboren op 29 oktober 1976

te Renkum

Dit proefschrift is goedgekeurd door:

Prof. dr. F.M.G. de Jong (promotor)
dr. R.J.F. Ordelman (assistent-promotor)

ACKNOWLEDGEMENTS

I like programming. Put me in a room with a computer (or preferably more than one),
provide me with a challenging task and I will probably enjoy myself solving puzzles
until my four years of funding run out. At the Human Media Interaction (HMI) group
of the Department of Electrical Engineering, Mathematics and Computer Science at
the University of Twente, I was provided with a computer and a challenging task, but
luckily also with the support of some great people that helped me to complete my
research. I would like to thank everybody at HMI who directly or indirectly supported
me these four years.

In particular I would like to thank my daily supervisor Roeland with whom I have
enjoyed countless discussions before, during and after our long lunch walks. My
supervisor Franciska also was of great help, especially during the writing process of
this thesis. I’m thankful that both Roeland and Franciska allowed me to explore many
research directions but also made sure that I wasn’t overdoing it.

A lot of people outside HMI helped as well. It was a lot of fun discussing various ASR
related topics with David. He pointed out interesting issues more than once and he
convinced me to go abroad for an internship at the International Computer Science
Institute (ICSI).

At ICSI I worked with Chuck on speaker diarization. I have never met anybody as
enthusiastic as Chuck, both in work as in pronouncing my name. He always made
time to discuss the results of my experiments and, above all, we’ve had a lot of fun.

For all the fun that I have had in Berkeley, I also want to thank everybody at ICSI
and the ‘Dutchies’. Because of the people at ICSI I felt at home in Berkeley instantly.
Thanks for the great lunch talks, foosball matches, barbecues, sight-seeing, movies
and of course the great nights at the pub. Thanks to the Dutchies for the same thing.
I hope you’ve burned those Halloween pictures.

v

Back home there were also quite some people that distracted me from work. Thanks
for this to all my friends and family, as to be honest, I don’t think I actually would
have enjoyed sitting behind a computer for four solitary years. Thanks to Piranha and
my team mates for some great years of playing water polo. Thanks to the Gonnagles
for some great years of playing tunes.

The biggest distraction from work in the last phase of my research has been Janneke.
Spending time with her in front of Taj Mahal, on the beach at Ameland or just in our
backyard made me realize that in fact Janneke is not distracting me from work, but
work is distracting me from Janneke.

My parents have always supported me in everything I do, from long before I started
my PhD until today, and for this I want to thank them most of all.

The work reported in this thesis was supported by the BSIK-program MultimediaN
which is funded by the Dutch government under contract BSIK 03031. Part of my
work was also funded by the European Union 6th FWP IST Integrated Project
AMIDA (Augmented Multi-party Interaction with Distant Access, FP6-506811). I
would like to thank these organizations for funding my research and providing a plat-
form for interaction with other researchers. I would also like to thank all other projects
and organizations with which I have worked. In appendix B you can find a short list
of these projects.

Marijn

vi

CONTENTS

1 Introduction 1

1.1 Fading memories . 1

1.2 Locked archives . 2

1.3 Unlocking archives . 2

1.4 Information retrieval . 4

1.4.1 Image retrieval . 4

1.4.2 Video retrieval . 5

1.4.3 Spoken document retrieval . 5

1.5 Automatic speech recognition for SDR 6

1.5.1 Keyword spotting and sub-word recognition 6

1.5.2 Large vocabulary continuous speech recognition 7

1.5.3 Sub-word recognition or LVCSR? 8

1.5.4 Segmentation and clustering . 8

1.5.5 Computational constraints . 8

1.5.6 Statistical models . 9

1.5.7 LVCSR for broadcast news recordings 10

1.5.8 Robustness . 10

1.5.9 Towards LVCSR for surprise data 10

1.6 About this thesis . 12

1.6.1 Research goals . 12

1.6.2 Development requirements . 14

1.7 Thesis outline . 15

2 State-of-the-art in ASR 17

2.1 Fundamentals . 17

2.1.1 Feature extraction . 18

2.1.2 Hidden Markov Models . 18

2.1.3 Gaussian Mixture Models . 19

2.1.4 Viterbi . 20

2.1.5 Acoustic models . 21

vii

2.1.6 Language model and vocabulary 22

2.1.7 Dictionary and pronunciation prefix tree 23

2.1.8 The decoder . 23

2.1.9 Decoder assessment . 25

2.2 NIST benchmarks for ASR . 26

2.2.1 NIST Benchmark procedures . 27

2.2.2 Benchmark results . 27

2.2.3 The broadcast news benchmark series 28

2.2.4 The 10xRT broadcast news benchmark series 30

2.2.5 The meeting rich transcription benchmark series 30

2.2.6 Existing techniques for creating robust systems 32

2.3 Segmentation . 32

2.3.1 Feature extraction for segmentation 33

2.3.2 Silence-based segmentation . 33

2.3.3 Model-based segmentation . 34

2.3.4 Metric-based segmentation . 34

2.3.5 Assessment of segmentation systems 35

2.4 Clustering and speaker diarization . 36

2.4.1 Agglomerative clustering . 37

2.4.2 Assessment of speaker diarization systems 38

2.4.3 NIST benchmark series for speaker diarization 39

2.4.4 The ICSI speaker diarization system 39

2.5 Techniques for robust ASR . 43

2.5.1 Feature and acoustic model normalization 43

2.5.2 Acoustic model adaptation . 45

2.5.3 Speaker adaptive training . 47

2.6 Final remarks . 47

3 The SHoUT system 49

3.1 Development strategy:

the fewer parameters the better . 49

3.2 Software architecture, some definitions 50

3.3 System description . 51

3.3.1 Speech activity detection . 52

3.3.2 Segmentation and clustering . 53

3.3.3 Automatic speech recognition 54

3.3.4 Acoustic model adaptation . 55

3.4 Summary . 55

4 Speech activity detection 57

4.1 What is considered speech? . 58

4.2 The algorithm and its steps . 58

4.2.1 Bootstrapping . 60

4.2.2 Training the models for non-speech 60

4.2.3 Training all models . 60

viii

4.2.4 Training speech and silence models 61

4.3 Feature extraction . 61

4.4 Confidence measures . 62

4.5 The bootstrapping component:
Dutch broadcast news SAD . 63

4.6 System parameters . 64

4.7 Evaluation . 65

4.7.1 Broadcast news evaluation . 66

4.7.2 Out-of-domain evaluation . 66

4.7.3 The IDIAP speech/music evaluation 66

4.7.4 Dutch TRECVID07 ASR evaluation 67

4.8 SAD for speaker diarization . 67

4.9 Conclusions and future work . 68

5 Speaker diarization 71

5.1 Agglomerative model-based speaker diarization 72

5.2 The RT06s submission, SHoUTD06 . 73

5.2.1 System description . 74

5.2.2 RT06s evaluation . 75

5.2.3 Post evaluation changes . 76

5.3 SHoUTD06 system analysis . 76

5.3.1 RT06s post-evaluation test set 77

5.3.2 Comparison to the ICSI RT06s system 78

5.3.3 Oracle experiments . 81

5.3.4 Reference transcripts . 81

5.3.5 Experimental set-up, six oracle experiments 82

5.3.6 Experiment results . 84

5.3.7 Discussion and conclusions . 85

5.4 The RT07s submission, SHoUTD07 and ICSI-RT07s 85

5.4.1 The ICSI-RT07s speaker diarization system 86

5.4.2 Test set . 86

5.4.3 Speech activity detection . 87

5.4.4 Smoothing SAD . 87

5.4.5 Blame assignment . 88

5.4.6 Noise Filtering . 89

5.4.7 Delay Features . 90

5.4.8 Discussion . 90

5.5 Speaker diarization for long recordings 91

5.5.1 The Cut&Mix system, SHoUTDCM 91

5.5.2 The multiple merges system, SHoUTD07∗ 95

5.6 Conclusions and future work . 97

5.6.1 System analysis . 97

5.6.2 Diarization for long recordings 98

ix

6 Automatic speech recognition 99

6.1 Modular decoder design . 100

6.1.1 Language models . 101

6.1.2 Acoustic models . 102

6.1.3 Pronunciation prefix tree . 104

6.1.4 Token-passing architecture . 105

6.2 Search space management . 106

6.2.1 Token pruning . 107

6.2.2 Language model look-ahead . 108

6.2.3 Experiments . 110

6.2.4 Discussion . 112

6.3 Robust ASR . 113

6.3.1 Vocal tract length normalization 114

6.3.2 Acoustic model adaptation . 116

6.3.3 Evaluation of the robustness techniques 117

6.3.4 Discussion . 120

6.4 Conclusions and future work . 120

7 System evaluation 123

7.1 N-Best . 123

7.1.1 System description . 124

7.1.2 Evaluation results . 127

7.1.3 Post-evaluation analysis . 127

7.1.4 Conclusions and discussion . 130

7.2 Surprise data: TRECVID . 130

7.2.1 System description . 131

7.2.2 Evaluation results . 131

7.3 Conclusions . 132

8 Conclusions 135

8.1 Research goals and future directions . 135

8.1.1 Segmentation . 135

8.1.2 Speaker diarization . 137

8.1.3 Automatic speech recognition 138

8.1.4 The sum of the three subsystems:

the full SHoUT system . 139

8.2 Development goals . 139

8.3 Extending the horizon for SHoUT . 140

8.3.1 Automatic speech recognition 140

8.3.2 Spoken document retrieval . 141

Appendices 144

x

A Data collections 147

A.1 Spoken Dutch Corpus . 147
A.2 N-Best . 147
A.3 Twente news corpus . 148
A.4 TRECVID07 data set . 148
A.5 Rich Transcription benchmark for meetings 149
A.6 The IDIAP speech/music evaluation set 149

B Projects and demonstrators 151

B.1 MultimediaN . 151
B.2 AMI and AMIDA . 152
B.3 CHoral . 152
B.4 N-Best . 152
B.5 TRECVID . 153
B.6 MESH . 153
B.7 MediaCampaign . 153

xi

CHAPTER 1

INTRODUCTION

1.1 Fading memories

Our holiday had been great. We drove through California in only two weeks, but that

was enough to collect stories that will stay with us for years to come. And thanks

to modern technology I have all those memories available on my laptop. It contains

more than five hundred photos taken with my digital camera, an endless amount of

video footage and even some video clips taken with the camera of my phone in some

pub that I’d rather forget about altogether.

Tonight we’re meeting to relive our adventure for the first time and of course, to

exchange our best photos and videos. I did it again though: lost in my latest coding

project, I forgot all about the time and now there is only little time left to prepare

the dessert I’m supposed to bring with me. Although I’m sure that the recipe must

be somewhere in my well organized recipe book, I decide to just search for it on the

internet and save myself some time.

With the fruit cocktail under one arm and my laptop under the other I struggle

to my car. I don’t even have to search for my friends phone number, I just yell out

his name to my phone and a few seconds later I’m explaining to him that I’ll be a bit

late because of this null pointer in my code.

I’m just finished explaining what a pointer is when my car navigation system tells

me that I have reached my destination. The technology saved my day. That is, until

we’re ready to watch our holiday footage.

We only skimmed through a tenth of our digital video archive before we loose

interest. We now realize that what we’ve had for breakfast at the third day of our

vacation wasn’t that exciting. Unfortunately, it’s hard to find the nice bits in between

all these hours of useless chatter. After a while I’m almost sorry that I’ve accidentally

deleted those video clips from the pub. We decide to forget about it and go out to

capture some new ones.

Chapter 1

1.2 Locked archives

Nowadays, creating large digital multimedia archives is no problem. The story in
the previous section contains a few examples of such archives. On the internet an
unlimited amount of recipes is stored, car navigation systems contain detailed maps
of entire continents and modern phones can store huge amounts of phone numbers. It
is easy to retrieve information from these three archives because special measures have
been taken to make the archives searchable. The holiday footage collection though
did not contain any extra tooling that could aid in searching for interesting fragments.
Due to the ever declining costs of recording audio and video (the footage would fit
on a disk of only 200 euros), the data set was easily created in only two weeks, but
because of its density, the information in the data set is hard to retrieve.

This problem is not limited to home made video archives. It is becoming more
common for example to record lectures1 or governmental or corporate meetings. With-
out special care, finding a specific lecture in an entire archive can be difficult. In a
project called the ‘Multilingual Access to Large spoken ArCHives’ (MALACH) a huge
number of Holocaust survivors was interviewed. This resulted in oral narratives of in
total 116, 000 hours of video in 32 different languages [Oar04]. It is obvious that an
archive this big is of little use without proper facilities to unlock its information. To
the extreme, although it might seem a bit strange to do so, in [Chu03] it is shown that
soon it will be affordable to store everything that a person sees, hears, says, reads and
writes in his entire lifetime on a single disk. As long as it is not possible to search
such a huge archive for interesting information, it is useless indeed to store a lifetime
of data. But if search facilities would be available, suddenly such an archive might
be very interesting to create. For some textual archives this is already the case. For
example, most people do a similar thing with their email accounts. They don’t throw
anything away, but instead just search their email archive when they need to.

1.3 Unlocking archives

Books often provide search facilities using an index. An index contains all important
words with the pages they occur on in an alphabetically ordered list. Systems that
provide automatic search in textual archives such as an email archive or search engines
on the internet often work in a similar fashion. Each time a document is added to
the archive, the index is updated with the words from the document. When the user
enters a query, describing his information need, the words from the query are looked
up in the index and a list with relevant documents is created.

Searching multimedia archives is less straightforward as searching textual archives.
In text retrieval, a query is typically of the same modality as the matching word in
the index. They both are represented by a sequence of characters and therefore it
is easy to match them. In case of multimedia archives, often the modality of the
query and the content do not match. The query is often formulated in written text
or sometimes in speech as in the example of the mobile phone, whereas the content

1for example http://videolectures.net

2

Introduction

of multimedia archives are moving images, sounds and speech. This phenomenon is
called the representation mismatch [Ord03].

The representation mismatch can be solved by either translating the query into
the format of the content, by translating the content into the format of the query, or
by translating both into a convenient third format. Program guides make it possible
to search for interesting programs in radio or television broadcasts by converting mul-
timedia content into textual form. A car navigation system translates the query into
coordinates (an address is queried in text, translated into coordinates and compared
to the database). Before the telephone number of a friend can be retrieved by speech
from a mobile phone, the user first needs to provide the phone with the pronunciation
of his friends name, a so called voice label. Although it is hidden for the user, the
mobile phone maps both the query (the pronunciation of the friends name when his
phone number is needed) as the voice label into a third mathematical representation
that allows for comparison of the two.

Figure 1.1: Solving the representation mismatch between content and query in a multimedia
retrieval system. The multimedia content is either indexed directly (1) or after it has been
translated to an alternative representation (2). If the representation of the query matches
the representation of the content, it can be used directly for retrieval (A). Otherwise it is
translated before being used (B).

In the program guide example, the name of each television program and the time
that it will broadcast are manually transcribed so that it is possible to switch to
a channel at the appropriate time instead of surfing aimlessly through all television
channels. In this example it is possible to solve the representation mismatch manually,
but in a lot of other cases, manually solving the representation mismatch is too time
consuming and therefore too expensive. For example, although it would unlock the
holiday video collection, it would be very time consuming to manually write down the
details of each single fragment of all video footage. Even if this could be done while
playing the raw footage, it would take as long as the footage itself. For the holiday
videos this means it could be done in two weeks, but for the example where an entire
lifetime of video content is stored on a single disk, it would take at least another
lifetime. Instead of attempting to solve the representation mismatch manually, a lot
of research is directed at automatically solving the problem.

3

Chapter 1

1.4 Information retrieval

Information Retrieval (IR) is the discipline of finding information in collections. Text
retrieval, image retrieval and video retrieval are subfields of IR. Typically research
on automatically solving the representation mismatch is done in image and video
retrieval. For text retrieval, in general both the query and the collection are text-
based so that there is no representation mismatch.

1.4.1 Image retrieval

In Content Based Image Retrieval (CBIR), images are retrieved from a collection of
images based on an index that is generated by automatically analyzing the content
of the images. Mostly the images are retrieved by keyword/key-phrase queries or by
query by example. In the query by example task, images are retrieved that contain
similar content as an example image that is used as query. Although the query images
and the images in the collection are of the same modality, it is not possible to compare
them directly. The representation of both query and collection need to be altered.
In order to compare the images, for each image a mathematical model, or signature,
is created. This signature contains low-level information about the picture such as
shape, texture or color information.

Directly comparing signatures is possible for the query by example task when the
results should be visually similar, but unfortunately when the queries are conceptual

of nature (‘Find a picture of a beach’, or: ‘Find the Tower of Pisa’) the signatures
do not provide enough information to solve the representation mismatch. This was
shown at a recent CBIR benchmark. These benchmarks, where participants all run
their system on the same task, have been initiated to compair the performance of
CBIR systems [MGMMC04]. Examples of such benchmarks are the Benchathlon and
imageCLEF. ImageCLEF is part of the Cross Language Evaluation Forum (CLEF)
benchmark. The benchmark of 2006 contained two retrieval sub-tasks that were both
executed on the same archive. This archive contained general, real-life photographs
annotated with captions containing high-level conceptual information (such as ‘sea’ or
‘Tower of Pisa’) [CGD+07]. In the first task, participants were allowed to incorporate
information from both the caption of each image and the images themselves into their
systems to perform CBIR. In the second task, which was of the so called type query-by-
example, for each query three example images were provided, but the captions could
not be used. The systems performed consistently better on the first task than on the
second task, illustrating that for CBIR tasks, it is hard to solve the representation
mismatch solely on the basis of low-level features [CGD+07].

In an attempt to partially solve the problem, a lot of CBIR systems work semi-
automatically. After providing an initial query and reviewing the results, the user can
refine the query and in this way, express his interpretation of the meaning of a picture.
An overview of recent CBIR research can be found in [DJLW06]. The first serious
CBIR applications date from the early 1990s [MGMMC04]. More recent public ex-
amples of CBIR technology are the Riya2 search engine and the Automatic Linguistic

2www.riya.com

4

Introduction

Indexing of Pictures - real-time (ALIPR) automatic annotation system [LW06].

1.4.2 Video retrieval

Where image retrieval focuses on stand alone images, in content-based video retrieval,
the goal is to support in searching video collections. For this purpose, various methods
of abstracting information from the video recordings are employed. Because video
consists of a sequence of still pictures that are played rapidly after each other, in video
retrieval a lot of image retrieval techniques can be re-used, but also other techniques
are used such as for example detecting scene changes or recognition of text that
is edited in the video (like people’s names). Because most videos contain people
speaking, it is also possible to use speech as a source of information.

Exploiting speech information can improve video retrieval systems considerably
as shown in the TREC3 Video Retrieval Evaluation (TRECVID) which is a yearly
benchmarking event for video retrieval. In 2006, there were 76 submissions from 26
different groups for the fully automatic search task [KOIS06]. The eight best sub-
missions all used information automatically obtained from speech [CHE+06, CHJ+06,
HCC+06, CNZ+06].

Comparable to the caption information for content based image retrieval, infor-
mation from speech helps in solving the representation mismatch considerably. The
text that the two sources consist of, is probably not precise enough to contain all

needed information, but the information that it does carry is represented nicely in
the same format as the query. Because of the ambiguous nature of language, the fact
that sometimes the meaning of sentences can be interpreted in more than one way, it
is still possible that a mismatch between the information need of the user and the in-
formation in the text sources occurs, but judging from the results of the benchmarks,
the gap is smaller than when solely using the other information sources.

1.4.3 Spoken document retrieval

Speech, in most multimedia archives, is a rich source of information for solving the
representation mismatch. Sometimes it is even the only reliable source of information.
Radio shows or telephone recordings do not contain any video. They might contain
some music or sound effects, but generally for those examples most information is in
the speech.

Spoken Document Retrieval (SDR) is a subfield of information retrieval that solely
focuses on the use of speech for retrieving information from audio or video archives. In
the most widely studied form of SDR, in order to solve the representation mismatch the
speech is automatically translated into written text by Automatic Speech Recognition
(ASR) technology. The output of this process, speech transcriptions, can be used in a
retrieval system (see figure 1.2). The transcriptions contain the exact time that each
word is pronounced so that it is possible to play back all retrieved words. This method
is similar to the earlier mentioned example of an index in a book where the page

3TRECVID is a video retrieval evaluation event. It is part of the Text REtrieval Conference
(TREC) series.

5

Chapter 1

number of each word is stored. Both such an index and speech transcriptions are often
referred to as metadata. Metadata is data about data. In the speech transcription
case, the words and the timing information provide information about the actual data,
the audio recordings.

Figure 1.2: Solving the representation mismatch between content and query in an SDR

system. The speech from multimedia documents is translated into written speech transcrip-

tions by the ASR component. As the query is already formulated in written text, it does

not need to be translated and can be used directly by the retrieval component to find relevant

video fragments.

If the speech transcriptions would always contain exactly what is being said, the
performance of the text retrieval system would be equally good as when searching in
written text. In general ASR systems are not perfect and any word that is recog-
nized incorrectly, potentially introduces errors in the retrieval component. This was
illustrated by the cross recognizer retrieval task during the seventh Text REtrieval
Conference (TREC-7) in 1998 organized by the National Institute of Standards and
Technology (NIST). Participants of the benchmark evaluation used speech transcrip-
tions of varying quality to perform text retrieval. The results showed that although
the speech transcriptions didn’t have to be perfect in order to obtain good retrieval
performance, there was a significant correlation between the quality of the transcrip-
tions and the performance of the retrieval system [GAV00]. This illustrates that
the success of an SDR system is highly depending on the performance of the ASR
component.

1.5 Automatic speech recognition for SDR

There is a number of methods that can be deployed for recognizing speech for SDR
purposes. The most widely used methods are keyword spotting, sub-word recognition
and large vocabulary continuous speech recognition.

1.5.1 Keyword spotting and sub-word recognition

One of the earliest speech recognition methods for SDR was keyword spotting [RCL91].
In this form of automatic speech recognition, the system does not translate all speech

6

Introduction

into words, but instead it tries to locate members of a pre-defined list of keywords.
The collection index is limited to this list and therefore the retrieval component is only
able to find information in terms of these keywords. The main advantage of keyword
spotting compared to other approaches is that it is computationally inexpensive.

The drawback of keyword spotting is that only a pre-defined set of keywords
can be used for retrieval. The approach in [JY94] solved this problem. First, an
automatic phone recognizer processes the audio documents and creates a special phone
representation called a lattice. At search time, the query is first translated into a
sequence of phones and then all lattices are searched for the phone sequence with a
method called phone lattice scanning.

Another way to make search for an unlimited set of words feasible is sub-word

recognition [SMQS98]. For sub-word recognition, a speech recognizer is built that
can recognize small speech units or sub-words such as syllables or phones. These sub-
words are used to create an index. During retrieval, the query words are translated into
sequences of sub-words and the index is searched for identical sub-word patterns. Note
that this approach is similar to phone lattice scanning. The two approaches differ in
that for sub-word recognition an index is created and the documents are not searched
directly for phone patterns. Although a bit more complex than keyword spotting,
sub-word recognition and phone lattice scanning are still relatively computationally
inexpensive. They have the advantage that it is possible to find information not just
for a limited set of keywords but for any word or sequence of words.

1.5.2 Large vocabulary continuous speech recognition

The most common form of ASR used for spoken document retrieval nowadays is
Large Vocabulary Continuous Speech Recognition (LVCSR). Similar to the sub-word
recognition approach, LVCSR recognizes small acoustic units using statistical models
called acoustic models. Typically for LVCSR, these units are phones and not syllables.
During the recognition process, the phones are combined into words with the aid of
a pronunciation dictionary and a language model. The dictionary maps sequences
of phones to words while the language model can be regarded as a grammar based
on statistics. Given a particular context, a language model can determine how likely
it is that a certain word is uttered. The language model often helps the system to
make correct decisions even if the acoustic models are causing errors. Because of this,
in general, LVCSR systems can output higher quality transcriptions than sub-word
systems. The downside of LVCSR systems is that in order to map the phones to
words and to be able to use a language model, a fixed set of words, a vocabulary,
needs to be defined. For such LVCSR systems, words that are not in this vocabulary
can never be recognized correctly. Each word that is added to the vocabulary will
increase the computational efforts during recognition, but fortunately, with todays
computer power, the number of words that can be put in the vocabulary is very high.
Vocabularies of 50, 000 words to more than 300, 000 words are no exception, reducing
the number of out-of-vocabulary words to a minimum.

7

Chapter 1

1.5.3 Sub-word recognition or LVCSR?

Sub-word recognition systems have two advantages over large vocabulary continuous
speech recognition. Sub-word recognition systems are computationally inexpensive
and they are not restricted by a vocabulary. The advantage of LVCSR systems is
that they can create transcriptions with high accuracy thanks to the additional infor-
mation of their language model. For recognition tasks such as recognizing speech in
broadcast news shows, where the number of out-of-vocabulary words can be reduced
to a minimum and good use of the language model can be made, in general, SDR
systems based on LVCSR will outperform sub-word based systems. For tasks where
it is more difficult to minimize the number of out-of-vocabulary words, it is hard to
predict which one is the better choice.

In a recent study on speech recognition in the meeting domain, the performance of
a sub-word recognition system was compared to an LVCSR system [SSB+05]. In this
study, the best retrieval results could be obtained with LVCSR, but the experiments
were slightly in favor of the LVCSR system because all query words were present in the
vocabulary of the LVCSR system to avoid the out-of-vocabulary problem. Because of
the out-of-vocabulary problem in LVCSR systems, some research groups prefer to use
sub-word based systems [Li08]. Other groups use hybrid systems that apply a com-
bination of LVCSR and sub-word techniques in order to solve the out-of-vocabulary
problem [MMRS08, ESS08, SFB08].

Given the target domains in this research (next to news also meetings and historical
data from the cultural heritage domain) it is expected that the benefit of having
additional information from language models is significant. As sub-word techniques
could always be applied in a hybrid fashion the LVCSR approach is chosen as starting
point.

1.5.4 Segmentation and clustering

Segmentation and clustering modules are part of most LVCSR systems. A segmenta-
tion module is responsible for segmenting speech input in smaller chunks that can be
processed by the recognizer directly. Often the segmenter also filters out non-speech
such as silence, lip-smacks, laughter or even tunes or sound effects. The clustering
module is used to group together segments with similar characteristics. Obvious char-
acteristics to cluster on are audio channel (broadband/telephony) or gender. Some
clustering systems, called speaker diarization systems, are able to cluster speech frag-
ments from individual speakers. Using the clustering information the recognizer can
process each cluster optimally. For example, special gender dependent models (see
section 1.5.6) can be applied when gender information is available or model adapta-
tion techniques can be applied for each separate speaker when a speaker diarization
system has been used.

1.5.5 Computational constraints

A very important characteristic of LVCSR systems for spoken document retrieval is
that they are not required to produce transcriptions instantly in real-time. Because

8

Introduction

of this, it is possible to apply high quality algorithms for segmentation, clustering and
ASR that process an entire recording before outputting the result. For other types of
ASR systems, such as for example dictation systems, this approach is not possible as
for these systems results should be available instantly and without intrinsic delay.

Although for SDR, the LVCSR system does not require to generate transcriptions
without any delay, it is not the case that they are not bound to any computational
constraints at all as such systems may need to process archives of hundreds of hours
of material or more in reasonable time.

1.5.6 Statistical models

Whatever types of ASR, segmentation or clustering methods are chosen, most of them
are based on statistical methods that require statistical models to take classification
or recognition decisions. Segmentation systems often use a speech model and a non-
speech model to distinguish between speech and non-speech events, while a lot of
speaker diarization systems make use of unified background speaker models, models
that represent speech from an ‘average’ speaker that can be adapted to each individual
speaker in the audio. Keyword and sub-word recognizers use acoustic models to
determine which sub-word units are most likely pronounced, while LVCSR systems
also use language models to determine how likely a word is pronounced given a certain
context. In figure 1.3, an example ASR system including all its statistical models is
shown.

Figure 1.3: Example of a basic ASR system. The segmentation module filters out all non-

speech while the clustering module determines the gender of the speaker in each segment. The

recognizer uses either male or female acoustic models to recognize the speech. All components

make use of statistical models that are created using example data.

The acoustic models and language models are created by obtaining statistical
information from example data. Machine learning techniques such as the Expectation-
Maximization method [DLR77] are used to slowly ‘teach’ the system how the models
should look like using these example or training data. The properties of the models
and thus the performance of the ASR system depend directly on the nature of the
training data. For example, when speech from telephone conversations is used as

9

Chapter 1

training data, the system will be good in recognizing speech recorded from telephone
lines, but it will probably perform poorly on speech recorded in a television studio
because the audio conditions with which the acoustic model was trained do not match
the conditions in the studio. Therefore it is important to choose training data wisely
when creating an ASR system.

1.5.7 LVCSR for broadcast news recordings

At the department of Human Media Interaction (HMI) at the University of Twente, a
spoken document retrieval system for Dutch broadcast news shows was built [Ord03].
This publicly accessible demonstrator4 processes broadcast news shows on a daily
basis. The models for its LVCSR component are trained using a newspaper text
corpus of in total some 400M words and an acoustic training set of approximately 20
hours of broadcast news speech. The performance of the LVCSR system is conform
the achievements at TREC-7 reported in [GAV00] and the quality of the generated
speech transcriptions indeed is high enough to adequately unlock the news archive.

1.5.8 Robustness

In general, a computer application is considered robust if it performs well under all
conditions, including unusual and unpredictable conditions. It is robust when it is able
to deal with unpredicted input with only minimal loss of functionality. This definition
of robustness is also valid for LVCSR systems [JH95]. In this thesis, an ASR system
is considered robust if it is able to perform well under various audio conditions and
for various applications without the need of manually re-tuning the system. A system
is robust if it is able to unravel any kind of audio recording that you surprise it with.

In [HOdJ05] it is illustrated that in this sense, the Dutch broadcast news system
is not robust. It was used to unlock a multimedia archive of interviews with the
famous Dutch novelist Willem Frederik Hermans5 (WFH). Without any changes to
the models, the quality of the generated speech transcriptions was too low for effective
SDR. Even after adjusting the models on the limited available acoustical and textual
data that could be considered typical for WFH, the ASR performance was not as
high as in the broadcast news domain. This illustrates that when speech with new
unseen characteristics needs to be recognized, new models trained on data with these
same characteristics are needed. New (large) training collections need to be bought
or created which is a time consuming and therefore expensive task.

1.5.9 Towards LVCSR for surprise data

As said, the system for Dutch broadcast news is able to adequately unlock a Dutch
broadcast news archive. A one time effort was needed to create the statistical models,
but once available, they can be deployed for the fully automatic transcription of

4http://hmi.ewi.utwente.nl/showcase/broadcast-news-demo
5The SDR system is part of an internet portal: http://www.willemfrederikhermans.nl

10

Introduction

broadcast news6. As the WFH example illustrates however, re-tuning the models
is required as soon as the characteristics of the audio changes. It shows that with a
broadcast news system, it is not possible to generate high quality speech transcriptions
for any arbitrary set of surprise data, a data set for which the audio conditions and
the topics of conversation are a surprise to the system. The problem of manually
creating speech transcriptions for each multimedia document is shifted to developing
relevant models for each multimedia archive.

Sometimes it is worth the effort to collect new training data and create new models.
Governments are willing to spend money on technology for the monitoring of telephone
lines and companies might be willing to invest in automatically creating minutes or
monitoring commercial campaigns of competitors, but in a lot of other cases training
data are not available and creating new data is simply too expensive. This problem
brings up the question: ‘Is it possible to develop a system that can handle any kind of
surprise data?’. In other words: ‘Is it possible to automatically or semi-automatically
adapt existing ASR systems to ASR systems for new application domains?’. In the
case of LVCSR systems that use two kinds of statistics (acoustic models and language
models), this question can be split up into two questions:

• How can a LVCSR system be made robust against new unseen audio conditions?

• How can a LVCSR system be made robust against new unknown language struc-
tures with potentially new words?

The audio conditions are determined by numerous factors during the creation and
storage of the audio. Not only background noise influences the audio quality, but
also other factors such as the microphones used for recording, the medium used for
storage and the location of the recording. Audible non-speech events also need to be
considered. Television shows may contain audible non-speech such as laughter and
applause or even (background) music and sound effects. Even recordings of meetings
that can normally be considered as ‘clean’, data might contain audible non-speech
such as papers shuffling, doors slamming or even colleagues playing table football in
another room.

When changing the application domain, it is likely that the language used in the
audio recordings will change as well. Broadcast news lingo is different from the lingo
in corporate meetings. The sentence structure will differ and also the kind of words
that are being used. These changes require a new vocabulary and language model,
but finding enough text data for training these models is often a problem.

The goal of the research described in this thesis is to answer the first question
and to demonstrate the proposed solutions using the Dutch broadcast news LVCSR
system developed at HMI as starting point. Although the second question is equally
important, changes in language affect the system only in one place: where the lan-
guage model is needed. It is expected that adapting a system to be robust against
changing audio conditions will require changes in all system components of which most

6Note that if the system is deployed for a longer period, some continuous effort is needed to keep

the statistical models up-to-date.

11

Chapter 1

are needed before the language model is used (for example removing sound effects).
Therefore it is justifiable to address the first problem before the second one is tackled.

1.6 About this thesis

In this chapter an introduction has been given into one of the problems that needs
attention when applying automatic speech recognition to spoken document retrieval of
collections with unknown characteristics. This problem will be turned into a research
agenda which distinguishes the various research goals and development requirements
underlying the PhD work presented here.

1.6.1 Research goals

The goal of the research described in this thesis is to address the fundamentals of
an ASR system that is able to process audio with new unseen characteristics. As
described in the previous section, the problem of processing audio with unseen au-
dio conditions is that these conditions are likely not to match the conditions in the
training data. LVCSR systems using statistical models trained on the training set
and parameters tuned on this set will perform suboptimal because of this mismatch.
This problem is observed in each of the three subsystems that can be distinguished
in most LVCSR systems: segmentation, clustering and ASR. Therefore, for each of
these subsystems, research will focus on answering the main research question:

• ‘How can a LVCSR system be designed for which all statistical models and
system parameters are insensitive to potential mismatches between training data
and target audio?’

There are two approaches in solving the mismatch problem: the models, param-
eters or the data can be normalized so that the mismatch is reduced, or a system is
developed that does not need models or parameters created using training data at all.
Under the first approach, in general the mismatch can be reduced but not completely
prevented. Therefore, the second method of overcoming the need of training data
and therefore removing the mismatch altogether, is appealing. In many cases though,
statistical methods that require training data simply outperform other methods, even
when there is a data mismatch. Therefore, it is not enough to ask how a system can
be created that reduces or removes the data mismatch, but the following question
needs answering as well:

• ‘What is the performance of the proposed system compared to the state-of-the-
art?’

In order to answer this question, the proposed system and isolated parts of the
system are evaluated on international benchmarks. This way the system performance
can be compared to the performance of other state-of-the-art systems that processed
the same task. The results are not only used to determine the relative performance,
but also to identify the weak steps and to find out which steps can be improved most.

12

Introduction

The procedure is the same for each of the three subsystems. In the sequel of
this section, first a method will be proposed that reduces or removes the mismatch
between training data and the data that is being processed. Next, the method will
be evaluated on a well known benchmark so that its performance can be compared to
that of others. Third, an analysis is performed that identifies the weaknesses of the
method. These steps can then be repeated and a new method can be proposed for
which the known flaws are addressed.

Segmentation

In general audio may not only contain speech but also various kinds of other sounds.
These non-speech fragments such as background noise, music or sound effects need
to be separated from the speech segments. A common method is to model speech
and each of the audible non-speech events so that they can be identified during seg-
mentation. This approach requires that the kind of non-speech encountered during
segmentation is known, which is often not the case. Also this method requires that
training data is representative for the data that needs to be segmented. In chapter 4
it will be shown that even when no audible non-speech is present in a recording,
the system performance will drop significantly if the statistical models are trained on
mismatching data. Therefore, the two following questions need answering:

• ‘How can all audible non-speech be filtered out of a recording without having
any prior information about the type of non-speech that will be encountered?’

• ‘How can the system perform speech/non-speech segmentation without the use
of statistical models based on training data?’

Speaker clustering

Speaker clustering systems suffer from the same problems as segmentation systems.
Because speakers are not known beforehand, it is impossible to train perfect statistical
models for them. Per definition the data to train models on will not be a perfect
match to the data that contain speech of the actual speakers. Therefore the following
question will be addressed:

• ‘How can a speaker clustering system be designed that does not require any
statistical models built on training data?’

In chapter 5, a system design will be proposed that can do this. A disadvantage
of this system is that it is computationally expensive for long recordings because
it requires pair-wise comparison of all fragments of the recording. The longer the
recording, the more of these comparisons are needed. Therefore in a second iteration,
a new system will be proposed that addresses the question:

• ‘How can a speaker clustering system be designed that is able to process long
recordings with reasonably computational effort?’

13

Chapter 1

Automatic speech recognition

From a software engineering point of view, the ASR subsystem is the most complex of
all three subsystems. This is the reason why in the chapter about ASR, chapter 6, a
number of development issues will be addressed. One of these development problems
is how to implement a decoder that can easily be modified for research purposes,
but that nevertheless can operate with reasonable computational requirements. One
technique that is very helpful in managing the computer resources during decoding, is
Language Model Look-Ahead (LMLA). Unfortunately, it is not straightforward how
to use this technique with the system architecture that was chosen in order to fulfill
the development requirements and therefore the following research question will be
addressed:

• ‘How can full language model look-ahead be applied for decoders with static
pronunciation prefix trees?’

For decades, research has been performed on making automatic speech recognition
more robust in various kinds of ways. For example, numerous methods have been
developed for noise reduction, for robust feature extraction in noisy environments or
for creating more uniform acoustic models. These methods all aim at the creation
of systems that are insensitive to the potential mismatch between training data and
target audio and address the question:

• ‘Which methods can be applied to make the decoder insensitive for a potential
mismatch between training data and target audio?’

Unfortunately it was not feasible to implement and experiment with all known
methods. Instead, a selection of methods was picked that proved itself in various
international benchmarks. In chapter 2, an overview of these methods will be given.

1.6.2 Development requirements

Development and implementation of the ASR system are important parts of the work
described in this thesis. It must be easy to implement new ideas quickly and transpar-
ently into every part of the software, so that they can be validated with experiments.
Such an environment makes it easy to replace parts of the system with alternative
implementations. Although the goal of this research is to create a system that is
as robust as possible for new audio conditions, no concessions shall be made to the
readability and transparency of the resulting software.

The flexibility of the framework is obtained by developing a modular software ar-
chitecture. Each module performs a separate task and interacts with other parts of
the software using well defined and transparent interfaces. The modules are built so
that it is possible to re-use them in another setting or replace them by alternative im-
plementations. Especially for the following three aspects of the design, the modularity
of the design is very important.

A strict distinction needs to be made between the algorithms that are independent
of what kind of data will be used and the part of the system that changes whenever

14

Introduction

the precise task changes. For example, a system may be created for both the Dutch
language and for English. All system parts that are different for the two languages
need to be strictly divided from the language independent parts. The language depen-
dent parts will be stored in binary statistical model files and defined in configuration
files, but not in source code. This distinction makes it possible to apply the overall
system to various languages without having to adjust any source code.

Second, the software in the framework must be modular with respect to function-
ality. Algorithms for handling language models may interact with other system parts,
but this must happen through well defined interfaces. It must be possible to replace
a component such as the software that handles the language model by an alternative
implementation without having to adjust any of the other components. This type of
modular design will make it possible to perform research on one particular topic (for
example on acoustic modeling) and create and test various methods without the need
of touching other parts of the source code.

Third, the framework needs to be set up so that it is possible, and easy, to re-
use general purpose components. For example, it must be easy for all algorithms
implemented in the framework to make use of a single component for Gaussian mixture
PDFs. As not all algorithms will input feature vectors of the same dimensionality, the
GMM component needs a flexible interface. This type of modular design will make it
possible to quickly implement various applications that are based on similar building
blocks.

1.7 Thesis outline

In the next chapter, an overview of the current state of the art in large vocabulary
continuous speech recognition will be given. A number of existing systems that scored
above average on recent benchmark evaluations will be described and commonly used
techniques are discussed. In chapter three, the approach taken to create a robust
system for unknown audio conditions is discussed and an overview of the proposed
system is provided. This system consists of three subsystems: the speech activity
detection subsystem, the speaker diarization subsystem and the automatic speech
recognition subsystems. These three subsystems will be discussed in-depth in chapters
four, five and six. The evaluation of each individual subsystem is presented in these
three chapters. In chapter seven, the overall system evaluation is described. In chapter
eight, the conclusions are summarized and directions for future research are suggested.

15

Chapter 1

16

CHAPTER 2

STATE-OF-THE-ART IN ASR

In this chapter an overview is given of today’s state-of-the-art in large vocabulary
continuous speech recognition. The overview is given to provide a foundation for
the following chapters and to formulate definitions from existing work. It is not
intended to provide the ASR history in full, but instead only the techniques needed in
the following sections are described and pointers to more information on the various
topics are given.

In this chapter, first the statistical methods that almost all state-of-the-art ASR
systems are based on will be discussed. Next, an overview is given of key concepts
underlying the systems that participated in the major LVCSR benchmark events.
The final three sections of this chapter discuss segmentation, speaker diarization and
automatic speech recognition.

2.1 Fundamentals

The task of a speech recognizer is to find the most probable sequence of words given
some audio represented as a sequence of acoustic observations O. This statistical clas-
sification task can be formulated as a search for the maximum a-posteriori probability
Ŵ over all possible sequences of words W . Using Bayes’ theorem this search can be
expressed as:

Ŵ = argmax
W

P (W | O)

= argmax
W

P (O | W) · P (W)

P (O)
(2.1)

= argmax
W

P (O | W) · P (W)

Because P (O) is the same for each sequence of words and will not influence the
search for Ŵ , it can be ignored. The remaining likelihood P (O | W) is calculated with

Chapter 2

the use of acoustic models and the prior P (W) with a language model. As mentioned
in section 1.5.2, most recognizers use phones as the basis for the acoustic models and
a dictionary is used for mapping words to sequences of phones. Often Hidden Markov
Models (HMM) are applied to model the phones. In turn these HMMs make use of
Gaussian Mixture Models (GMM).

2.1.1 Feature extraction

The first step in obtaining the sequence of acoustic observations O is to convert an
analog audio signal into a digital representation. During this analog-to-digital con-
version, the amplitude of the signal is measured at fixed time intervals and translated
to a floating point number. Because the information in this sequence of numbers is
highly redundant, it is transformed into a reduced representation so that the relevant
information is maintained but the data is less redundant. This step is called feature

extraction.
First, a short-time spectral analysis is performed on the amplitude sequence. This

spectral information is then used as input for a filter that modifies the information
according to a model for human hearing. Two commonly used methods for this are
Mel Filtered Cepstral Coefficient (MFCC) [DM80] analysis and Perceptual Linear
Predictive (PLP) analysis [Her90]. Both methods output a series of vectors. In a final
step, the first and second order derivatives are often concatenated to these feature

vectors.
A more extensive discussion on feature extraction can be found in [JM00]. The

MFCC and PLP algorithms are described in depth in [YEH+95].

2.1.2 Hidden Markov Models

The statistical model most often used to calculate the likelihood P (O | W), is the
Hidden Markov Model (HMM). An HMM consists of a finite number of states that
are connected in a fixed topology. The input of the HMM, the feature vectors, are
called observations. Each HMM state can ‘emit’ an observation oi from the observa-
tion sequence O = (o1, o2, ..., oT) with a certain probability defined by its Probability

Distribution Function (PDF). The first observation must be emitted by a state that
is defined to be one of the initial states. After this observation has been processed,
one of the states that is connected to the initial state is chosen to emit the next ob-
servation. The probability that a particular transition from one state to another is
picked, is modeled with the transition probability. The sum of all outgoing transition
probabilities of each state should be one, so that the overall transition probability is
also one. Eventually all observations are emitted by a state that is connected to the
state that emitted the previous observation (if the HMM contains self-loops this can
actually be the same state) and finally, observation oT should be emitted by one of
the final states. By taking multiple paths through the model, identical sequences of
observations can be generated. The actual path taken to create a specific state se-
quence is unknown to a theoratical observer and therefore this type of Markov Model
is called a ‘Hidden’ Markov Model.

18

State-of-the-art in ASR

Figure 2.1: A typical Hidden Markov Model topology for modeling phones in ASR. This

left-to-right topology contains three states that are each connected to their neighboring state.

Figure 2.1 is a graphical representation of a typical HMM topology used to model
phones. It consists of three states State1, State2 and State3, and each state is con-
nected to itself and to the following state. State1 is the only initial state and State3

is the final state.
Three problems arise when using HMMs: the evaluation problem, the decoding

problem and the optimization problem. The evaluation problem is the problem of
finding the probability that an observation sequence was produced by a certain HMM.
The decoding problem is the problem of finding the most likely path of state transitions
given that an observation sequence was produced by a certain HMM. The optimization
problem is the problem of optimizing the parameters (the transition probabilities and
the PDFs) of a certain HMM given a set of observation sequences. The decoding
problem can be solved using the Viterbi algorithm and the optimization problem with
the Expectation Maximization (EM) theorem. Both algorithms are used extensively in
automatic speech recognition. EM is used to train the HMM parameters and Viterbi
is used for recognition of the audio.

An in depth description of Hidden Markov Models and the use of Hidden Markov
Models in ASR can be found in [Jel97] and [JM00].

2.1.3 Gaussian Mixture Models

In ASR, the probability distribution functions of the HMMs are often Gaussian Mix-
ture Models (GMM). A GMM is a continuous function modeled out of a mixture
of Gaussian functions where the output of each Gaussian is multiplied by a certain
weight w. The Gaussian weights sum up to 1 and the Gaussian functions themselves
are defined by their mean vector µ and covariance matrix Σ. The covariance matrix
Σ is mostly restricted to diagonal form because this simplifies the decoding and train-
ing process considerably. The following formula defines a GMM with i Gaussians for
input vectors of n dimensions where (o − µi)

T is the transpose of (o − µi):
1

f(o) =
∑

i

wi

1
√

(2π)n |Σi|
e−

1

2
(o−µi)Σ

−1

i
(o−µi)

T

(2.2)

1Note that in order to obtain the true probability of a certain observation using a GMM, the
integral of f(o) by the integration interval of the input variable o should be taken.

19

Chapter 2

The mean vector, covariance matrix and weight of each Gaussian in the GMM need
to be set so that f(o) is maximal for the class of observations that the GMM represents
(a certain phone). This optimization is done simultaneously with the optimization of
the HMM transition probabilities using the EM theorem.

Instead of using one GMM as PDF, some systems use multiple GMMs to calculate
the observation emission probability. In such a multi-stream setup, the PDF output
is the weighted sum of these GMMs. Each stream in a multi-stream GMM can be
trained with features of its own type. For example, one stream can be using MFCC
features while a second stream uses PLP-based features.

2.1.4 Viterbi

The Viterbi algorithm is used to solve the HMM decoding problem of finding the most
likely path through an HMM given a sequence of observations. The Viterbi algorithm
also provides the actual probability given this most likely path. This algorithm is
nicely described in [JM00]. A very short explanation will be given here, followed by
a convenient implementation method of Viterbi, the token passing algorithm.

Viterbi using a matrix

The optimal path through an HMM and its corresponding score can be calculated
using a matrix with one row for each state s in the HMM and one column for each
time frame t. Each cell in the matrix will be filled with two types of information: the
maximum probability of being in state s at time t and the state at time t − 1 from
which the transition was taken to obtain this maximum probability.

The matrix is filled as follows. First, all cells in column t0 that correspond to one
of the starting states will be set to one and the remaining cells to zero. Then, each
cell in the next column will be filled with the new score of value v:

v(sx, ti) = argmax
S

v(S, ti−1) · PS(ot) · Pt(S, sx)

where PS is the PDF of state S and Pt(S, sx) is the transition probability from
state S to state sx. The number of the state that resulted in the maximum score is
stored as well.

The last column that represents the final time frame T , contains all probabilities
after emitting all observations. The maximum value of all cells corresponding to one
of the final states is the probability of the most likely path. The path itself is obtained
by backtracking all state numbers back to the first column.

Viterbi using the token passing algorithm

A convenient method of calculating the Viterbi score is using the token passing al-
gorithm [YRT89]. In this algorithm, each state in the HMM is able to hold a so
called token, containing the optimum probability of being in that particular state at
a certain time ti. At t0, only the initial states will be provided a token. At each

20

State-of-the-art in ASR

time frame, these tokens, with initial value one, will be passed to all connected states.
Before doing this, the value of the token is updated and also the state it came from
is marked on the token. If a state has more than one outgoing transitions, the token
will be split and passed to all connected states. The new value of the token v in state
sy coming from state sx will be:

v(sy) = v(sx) · Psx
(ot) · Pt(sx, sy)

where Psx
is the PDF of state sx and Pt(sx, sy) is the transition probability from

state sx to state sy. It is possible that two tokens arrive at the same state at the same
time. In this case, the token with the highest value will be obtained and the other
token will be discarded. At time T , from all tokens that are in one of the final states,
the token with the highest value is chosen. The value of this token is the probability
of the most likely path through the HMM. The actual path is marked down on the
token itself2.

2.1.5 Acoustic models

As mentioned earlier, most LVCSR systems use phones as the basis for acoustic mod-
eling. A fixed set of phones is defined and an HMM with the topology of figure 2.1 is
used to model each phone. In [SCK+85] it was shown that because the pronunciation
of phones is affected significantly by their neighboring phones, recognition perfor-
mance increases when the pronunciation context of each phone is taken into account.
Instead of training one model for each phone, a model for each phone with unique left
and right neighboring phones, called a triphone can be created. For a phone set of
N phones, this means that a set of N3 context-dependent phones need to be trained.
Unfortunately, this causes a data scarcity problem as not enough training data will
be available for most of these contexts. In [SCK+85] this problem was solved by using
both context-independent phone models and context-dependent phone models and
weight them by a factor depending on the amount of available data.

In [YOW94], a tree-based method was used to solve the data insufficiency problem.
This effective clustering method uses a binary phonetic decision tree to cluster phone
contexts, so that each cluster contains sufficient training data for the HMM. A list of
questions about the type of phone to the left or to the right of the phone that needs to
be trained is used for this clustering. Typical questions are: ‘is the phone to the left a
vowel?’, ‘is the phone to right a fricative?’ or: ‘is the phone to the left the m-phone?’.
The following algorithm is used to create a decision tree using this list of questions:

• First, an initial data alignment is created so that all observations are assigned
to one of the three HMM states.

• For each state, the data is placed in the root of the decision tree and the likeli-
hood of the entire data set using a single Gaussian function is calculated.

2typically as a linked list of state numbers

21

Chapter 2

• The data is split into two according to the question that increases the total
likelihood the most after a single Gaussian function is trained for each of the
two new clusters.

• Splitting the clusters is repeated as long as each cluster contains a minimum
amount of data and the likelihood increases more than a certain threshold.

Using this algorithm, a tree such as shown in figure 2.2 can be created. For each of
the leaf clusters, an HMM state is trained (the GMMs and transition probabilities).
During recognition, for each triphone, the state trained on the corresponding cluster
(the node reached by answering all the questions in the decision tree for the particular
triphone) is used. This means that for all triphones, also the ones that did not occur
in the training set, a model is available.

Figure 2.2: An example of a phonetic decision tree (from [YOW94]). By answering the
questions in the tree, for each triphone a leaf node will be found that contains a corresponding
model.

2.1.6 Language model and vocabulary

The a-priori probability P (W) in formula 2.1, where W is a sequence of words
w1, w2, ..., wn, is calculated using a language model. LVCSR systems normally use
a statistical n-gram model as language model. In n-gram models, for each possible
sequence of n − 1 words, the probability of the next word wi is stored. The a-priori
probability calculated using a trigram (3-gram) language model is as follows:

P (W) =
∏

i

P (wi | wi−1, wi−2) (2.3)

The probability P (wi | wi−1, wi−2) of all possible word combinations are obtained
from statistics of large text corpora. For word combinations of which not enough
statistical evidence is found, lower order n-grams are calculated. Multiplied with

22

State-of-the-art in ASR

a ‘back-off’ penalty, these probabilities can be used instead of the higher order n-
grams. Because obtaining these statistics is only possible when the set of possible
words is limited and fixed, a vocabulary needs to be defined before the n-gram model
can be created. In LVCSR systems, vocabularies are defined that consist of more
than 50K words. Some systems even use vocabularies with more than 300K words.
With these large vocabularies the risk is minimized that words are encountered in
audio recordings that do not occur in the vocabulary. Words that are missing in the
vocabulary are called out-of-vocabulary (OOV) words and in [Ord03] it is shown that
for a Dutch broadcast news system, the percentage of OOV words, the OOV rate, for
a vocabulary of 65K words is only 2.01%.

2.1.7 Dictionary and pronunciation prefix tree

The pronunciation, in terms of sequences of phones, of each word in the vocabulary
is stored in a dictionary. This dictionary is needed so that the HMM phone models
can be concatenated into word models. Two HMMs with a topology as in figure 2.1
are concatenated by connecting the outgoing transition of state3 of the first HMM
to the incoming transition of state1 of the second HMM. The outgoing transition
probability of state3 is used as new transition probability (so that the sum of all
transition probabilities of state3 remains 1). The word models that are created by
stringing phone HMMs together like this are HMMs as well. In fact, it is even possible
to create one big HMM out of all the word models by placing the models in parallel
and connecting all incoming transitions of state1 of the first phone of each model and
all outgoing transitions of state3 of each final phone with a so called non-emitting
state. These kind of states do not emit observations, but only contain state transition
probabilities [JM00].

Because this single model, containing all words from the vocabulary, is one big
Hidden Markov Model, it is possible to use the Viterbi algorithm to solve the decoding
problem. Solving the decoding problem, the problem of finding the optimum path
through an HMM, will result in finding the most probable pronounced word given
the sequence of observed feature vectors. Unfortunately, the number of states in a
big model such as this is very high making it computationally expensive to perform
Viterbi. Therefore, often a Pronunciation Prefix Tree (PPT) is used instead. In
a PPT, the word models are not connected in parallel, but instead words with the
same initial phones share those phone models as shown in figure 2.3. A Viterbi
search through this HMM topology will have the exact same result as when parallel
word models are used but because the PPT consists of less states, the search will be
computationally less expensive.

2.1.8 The decoder

The application that is responsible for finding Ŵ in formula 2.1, is often called a
decoder because it decodes a noisy signal (‘noise’ from the articulatory system and
transmission through the air are added to the word sequence) back into words. It is

23

Chapter 2

Figure 2.3: Two HMM topologies representing the four words: ‘redundant’, ‘reduction’,
‘research’ and ‘robust’. In the topology at the top, all word models are placed in parallel. In
the topology at the bottom, the pronunciation prefix tree (PPT), all words with the same ini-
tial phones share the phone models. Although using the Viterbi algorithm, the most probable
pronounced word will be the same for both topologies, the PPT requires a lot less states.

also the application that needs to solve the HMM decoding problem on the pronun-
ciation prefix tree.

The decoder uses a dictionary and HMM phone models to create a pronunciation
prefix tree. After feature extraction is performed and the sequence of feature vectors
(O) is available, the Viterbi algorithm can be used on this tree to find the first most
probable word and its posterior probability P (O | w1). The language model is then
used to find the a-priori probability P (w1).

Figure 2.4: Top-level overview of a decoder. The AM and dictionary are used to create a
PPT. In this example, after the LM probability is incorporated to the acoustic probabilities,
the word history is stored and the PPT is re-entered at the initial states.

In order to decode a sequence of words instead of just one single word, the PPT
needs to be extended so that it is possible to form unique paths through the HMM of
n words when an n-gram LM is used. Without special measures, just connecting the
final states of the PPT with the initial states would make it impossible to distinguish
between word histories and calculate P (wi | wi−1, ..., wi−n). One solution to this
problem is to place copies of the PPT on the outgoing state transition of each word

24

State-of-the-art in ASR

and repeat this n−1 times. The transitions of the final PPTs can then be connected to
the initial states of the corresponding PPT at the final level as is shown in figure 2.5.
Another solution to the problem is to simply connect the final states of the PPT with
the initial states, but to add the word path history information to each token during
Viterbi token-passing. Tokens that do not share the same history will not compete
for a place in a state, but can occupy a state simultaneously. This means that instead
of a token administration, a token-list administration is needed in each state.

Whatever method is chosen, either tree copying or extending the token adminis-
tration, the number of possible paths in the resulting HMM will be huge. Therefore,
decoders often use the beam search method in which the least promising paths are
pruned out of the search. This method makes it possible to decode faster, but when
the search beam is too narrow and too many paths are pruned away, it is possible
that also the best solution is disregarded.

Figure 2.5: One way of keeping track of word history is to create PPT copies. This is an

example of how a trigram topology would look like for a PPT containing the two words A

and B. At each arrow in this diagram it is possible to calculate the corresponding LM score.

Note that connecting PPTs becomes more complex when context dependent phones
(see section 2.1.5) are used. For within-word dependency, where only the context of
phones within a word are used, connecting the PPTs is not affected. But when cross-

word dependency is applied, where also the context of the first phone of the next word
is used, special measures need to be taken. A straightforward method is to replace the
initial and final phones of the PPT (of each word) with a set of phones representing
all contexts and connect the appropriate phones [FFKW99, DDCW00].

2.1.9 Decoder assessment

The performance of a decoder can be measured in two ways: in degree of speed or
degree of accuracy. The standard evaluation metric used to measure the accuracy
of a decoder is the Word Error Rate (WER). WER is defined as the minimum edit
distance between the reference transcription of the test material and the output of the

25

Chapter 2

decoder, the hypothesis transcription, as a percentage of the length of the reference
transcription. The minimum edit distance between the reference transcription and
the hypothesis transcription is the sum of the number of deletions D, insertions I

and substitutions S that are minimally needed to align the words of the reference
transcription to the words of the hypothesis. The word error rate is defined as:

WER =
D + I + S

Nref

· 100% (2.4)

where Nref is the number of words in the reference transcription. Note that the
word error rate can be higher than 100%. For example when the hypothesis contains
more words then the reference and all of these words are incorrect. In this case the
number of substitutions would be equal to the number of words in the reference and
on top of that there would be insertion errors.

The word error rate is often used to compare systems, part of systems or new
algorithms. For the development of algorithms, it is common practice to evaluate
a system on a test set with and without the proposed algorithm. A significant im-
provement in WER proves that the algorithm functions well. It is very important to
determine that two hypothesis are actually significantly different because, especially
when the test set is relatively small, it is possible that a decrease in WER is simply
due to chance. In [GC89], two significance tests are proposed for ASR: the McNemar’s
test and the matched-pairs test. It is stated that especially the matched-pairs test is
suitable for significance testing of connected speech. With this test, it can be calcu-
lated what the probability p is that two hypothesis are the same. If p is very small
(typically 0.05, 0.01 or even 0.001), the two hypothesis are considered significantly
different. An application that calculates p for two hypothesis is described in [PFF90].
This application will be used in the remainder of this work for performing significance
tests.

The speed performance of a decoder is often measured with the real-time (RT)
factor. The real-time factor is the time that it took to decode the test material (D)
divided by the length of this material (L):

RT =
D

L
· 100% (2.5)

Note that the real-time factor on its own does not provide sufficient information.
The computer system used to run the decoder should be specified as well (speed and
type of the processor).

2.2 NIST benchmarks for ASR

The US National Institute of Standards and Technology (NIST) has organized speech
recognition evaluation benchmarks since 1987 [Pal03]. In these benchmarks, partic-
ipants perform ASR on an evaluation set provided by NIST. The results of these
benchmarks provide an overview of the state-of-the-art in speech recognition. In this
section some of these benchmark events will be discussed.

26

State-of-the-art in ASR

2.2.1 NIST Benchmark procedures

The procedures for the ASR benchmarks organized by NIST are similar for all events.
First, participants receive training data that match the evaluation audio as good as
possible. The training audio is manually transcribed for the task under evaluation.
For ASR this is a time aligned transcription on word basis. For speaker diarization
(see section 2.4) this is a time aligned transcript of which speaker is talking when.
The training data can be used to develop a system although it is allowed to use other
data as well.

Well before the evaluation dead-line (approximately a month), participants receive
the evaluation audio. Participants may not manually manipulate this data. It is
expected that the system processes the data fully automatically. The hypothesis files
are sent back before the evaluation dead-line and NIST will score the submissions using
a manually created reference transcript (see section 2.1.9). The scores are ranked and
the result is sent back to the participants together with the reference transcriptions so
that they can perform post-evaluation analysis. After the evaluation, NIST organizes
a workshop where each participating team can present its results.

Often, a benchmark consists of multiple tasks. There is always at least one main
task that each team is required to perform. Sometimes, contrastive tasks are also for-
mulated. In the rich transcription benchmark series of meetings for example, various
types of microphones where used for recording. For this benchmark, one contrastive
task is to perform ASR using the head-set microphones while the main task is to use
the microphones placed on the tables.

2.2.2 Benchmark results

Over the years various tasks have been evaluated by NIST. Figure 2.6 shows the best
results for these tasks per year. With each benchmark a trend towards lower word
error rates can be seen. This is of course because systems improved, but in general
also because over the years more training data have become available for the specific
tasks.

From 1996 to 1999 the recognition of Broadcast News (BN) recordings was the
main task. In 2003 and 2004 the BN task was repeated, but this time the competing
systems needed to perform in less than ten times real time (10xRT) (one hour of
audio had to be processed with the use of less than ten hours of CPU power). In
2004 NIST started a benchmark series on tasks in the meeting domain. For this task,
that is still running, recorded speech from real meeting room discussions needs to be
recognized. This task proves to be difficult because of the unconstrained vocabularies,
spontaneous and overlapping speech and the variation in recording conditions.

The systems that participated in these three benchmark series, BN with unlimited
resources, 10xRT BN and the meeting benchmarks, are especially interesting to be
investigated for this research. The first BN systems because the available training data
until 1998 is comparable to the amount of data that is currently available for Dutch.
The systems that participated in 2004 for the 10xRT BN benchmark are interesting
for this research because they are more state-of-the-art than the 1998 systems and

27

Chapter 2

Figure 2.6: The NIST benchmark test history until May 2007 (from [FA07]). The blue
lines represent the lowest obtained WER at each BN benchmark (10xRT,1xRT and unlimited
time) and the purple lines represent the best results for the meeting benchmarks.

therefore provide more information on techniques already applied to make ASR more
robust against varying audio conditions. The meeting benchmark is interesting first of
all because the most recent systems participated in that benchmark and also because
for this task limited amounts of training data are available.

In the remainder of this section a top level overview of the most commonly used
system components in the three benchmark series are discussed. This discussion will
mainly focus on techniques for acoustic modeling because the goal of this thesis is to
prepare a system for unseen audio conditions. In the following sections the discussed
components will be investigated further.

2.2.3 The broadcast news benchmark series

Of course none of the participating systems for the BN benchmarks from ’95 until
’99 were exactly the same. In fact, most systems had a number of distinct fea-
tures and very interesting experiments were conducted on these features during this
benchmark series. However, a number of system characteristics were common be-
tween participants. The most common characteristics are shown in figure 2.7. They
will be discussed here. In depth information about specific systems can be found in
the proceedings of the 1999 DARPA Broadcast News Workshop ([CEG+99, GLAJ99,
ZWG99, HCS99, CCE+99, BAHU+99, WLY+99]).

For all participating teams of the 1998 benchmark, the first step of the system
was segmentation. Audio fragments not containing any speech were removed by the
segmentation component. Mostly two categories were distinguished: speech and non-

28

State-of-the-art in ASR

speech such as silence or background noise. Some participants also used a music
category to filter out the BN jingles [CEG+99, ZWG99].

After segmentation, most systems employed a clustering component. This compo-
nent clustered segments that showed similar acoustic characteristics. Clustering was
done mainly on basis of speakers or groups of speakers [CEG+99, GLAJ99, BAHU+99],
and/or gender [GLAJ99, ZWG99] or bandwidth [GLAJ99]. Being able to cluster au-
tomatically, enables the possibility of using specific acoustic models such as telephone
and broadband models or gender specific models. Automatic clustering also makes
it possible to adapt models or normalize feature vectors on meaningful clusters of
speech, such as speech from one single speaker.

Although not all systems used the same feature extraction procedures (for exam-
ple the modulation-filtered spectrogram features in [CCE+99]), most commonly used
feature extraction methods were MFCC and PLP. The first decoding step was often
a rough and fast ASR run. The results of this run were used to adapt the acoustic
models (using MLLR, see section 2.5.2) or to normalize the feature vectors (VTLN,
see section 2.5.2).

For modeling acoustics, with the exception of one system that used neural network
technology [CCE+99], in the benchmark of 1998 all systems used HMMs with GMMs
to model the probability distribution functions. Without exception, recognition was
performed on phone basis.

Some systems performed an ASR run in order to generate lattices [HCS99, CCE+99]
or word graphs [GLAJ99, WLY+99]. Lattices and word graphs are mathematical
structures containing multiple possible recognitions. Compared to the initial possible
number of word hypotheses, the number of possible recognitions is reduced dramati-
cally. This reduced search space makes it possible for a following decoding run to use
higher order language models without running out of computer memory.

Another interesting technique aplied at the broadcast news benchmark series is
Recognizer Output Voting Error Reduction (ROVER) [Fis97]. This method that was
used by a number of systems [CEG+99, ZWG99, CCE+99], is able to combine the
output of multiple recognizers into one single recognition using a voting scheme.

Figure 2.7: Top level system overview of most systems that participated the BN benchmarks

between 1995 and 1999. After segmentation and clustering, two ASR passes are performed.

The first pass is used for speaker or cluster adaptation. A third lattice re-scoring pass is

sometimes performed with a higher order LM and when multiple ASR outputs are available,

ROVER is applied.

29

Chapter 2

2.2.4 The 10xRT broadcast news benchmark series

The systems used in the 10xRT BN benchmark series were more sophisticated than
their predecessors in a number of ways. Especially heteroscedastic linear discriminant
analysis, speaker adaptive training and discriminative training were commonly applied
in this benchmark event for the first time (see figure 2.8).

For improved feature vectors, most participants used Heteroscedastic Linear Dis-
criminant Analysis (HLDA) [MS03]. HLDA is a method for estimating a linear pro-
jection of a vector with a certain dimensionality on a smaller sub-space. Instead of
using the first two derivatives of MFCC or PLP features, the first three derivatives are
added to the vector. HLDA is then used to find the most important components of the
feature and to reduce the dimensionality (mostly back to 39). In the BN benchmark of
’98 [BAHU+99] already used Linear Discriminant Analysis (LDA) in order to reduce
the vector dimensionality, but in this benchmark series virtually all participants used
HLDA [KEH+03, NAA+04, VSW+04].

A technique called Speaker Adaptive Training (SAT [AMSM96]) was commonly
applied. Earlier benchmarks had already shown that it helps to normalize features as
much as possible (CMN/CVN, VTLN, see section 2.5.1) so that the variety in train-
ing data for each phone is minimized and the model parameters can be determined
more precisely. SAT uses this same principle of minimizing training set variability.
The variation in speech among the speakers of the training set is minimized by mod-
eling the speaker characteristics explicitly as linear transformations of the acoustic
parameters during the EM training procedure. This way, the acoustic parameters will
be modeled truly speaker independently. Descriptions of systems using SAT can be
found in [KEH+03, NAA+04, VSW+04].

Also new in this benchmark event was the use of discriminative acoustic model
training methods (for example [KEH+03, VSW+04]). In EM training, for each phone
the model parameters are optimized only using its own training data. Discriminative
training methods aim at increasing discriminability by also using out-of-class data, the
training data for other phones. Because discriminative methods are computationally
expensive compared to EM, they weren’t used during the earlier BN benchmark tests.

Due to the real-time constraints, it was not possible for the combined system of the
two participant groups LIMSI and BBN to merge the results using ROVER [SCD+04].
Instead the results of the ASR run with the LIMSI decoder were used to adapt the
model parameters of the BBN decoder. The results using this cross-system acoustic

adaptation method were equally good as using ROVER. In 2004 when both decoders
had become faster, a combination of ROVER and cross-system adaptation was per-
formed [NAA+04].

2.2.5 The meeting rich transcription benchmark series

In contrast to the BN benchmark series, the Rich Transcription (RT) benchmark for
meetings only consists of spontaneous speech. The meetings under evaluation typically
involve three to eight people discussing various unknown topics. The meetings contain
a lot more overlapping speech than the BN recordings and the audio conditions are

30

State-of-the-art in ASR

Figure 2.8: System overview of most systems that participated the 10xRT BN benchmarks

in 2003 and 2004. HLDA projection is performed for feature extraction, speaker adaptive

training and discriminative training are often used for AM training and sometimes cross

system model adaptation is used in the adaptation phase.

different as well. Although each speaker is equipped with his or her own microphone
(close-talking microphone or Individual Headset Microphone (IHM)), the main task
is to recognize the speech captured by microphones mounted on the walls or placed
on the table. The fact that the characteristics of these Multiple Distant Microphones
(MDM) vary per recording and that in general these recordings are of a lower quality
than the IHM recordings, makes the MDM task difficult and challenging.

A new task in the RT benchmark series is speaker diarization. Participating sys-
tems need to determine fully automatically: ‘who spoke when?’. Each speaker of the
recording needs to be assigned a unique ID and the exact moments that each speaker
is talking needs to be annotated3. Most systems in the BN benchmark series already
contained some form of clustering, but these clustering components were mainly used
for adaptation purposes and often did not output the actual number of speakers but
just a fixed number of clusters.

Because the audio signal of most MDM microphones are noisy, most participants
use some sort of software filter for noise reduction. The multiple signals are processed
differently by each site, but combining the signals into one (hopefully) cleaner sig-
nal before feeding it into the ASR or diarization system is a popular method. Once
the signals are combined, ASR systems similar to the systems described in the pre-
vious section are employed. The cross-system adaptation method as applied earlier
by [NAA+04] is now often used [HBD+07, WSK07, HMV+07, SAB+07]. Mostly mul-
tiple systems are created by using different feature types as input. In [HMV+07] not
the feature type, but only the acoustic models themselves where varied. Different
models are created by not always choosing the question for the decision tree with
the highest increase in likelihood when determining context-dependent clusters (see
section 2.1.5), but choosing from the top five options randomly.

3Note that speaker diarization should not be confused with speaker identification. Speaker iden-

tification is a classification task where should be identified if a recording of someone’s voice actually

is or is not from that particular speaker.

31

Chapter 2

Because there is only a limited amount of meeting audio available for training
ASR models, in [HBD+07] the AMI team used all channels of the MDM recordings
separately. Because the characteristics of the microphones vary, they used a speaker
adaptive training approach called CHannel Adaptive Training (CHAT). As in SAT
training, the channel characteristics were modeled during training and the acoustic
models trained without these characteristics were truly channel independent. This
proves that the concept of SAT can also be used to create models that are more
robust for channel variation.

2.2.6 Existing techniques for creating robust systems

This section overviewed three NIST benchmark series that are highly relevant to the
goal of this thesis: to build a Dutch LVCSR system that is robust against unknown
audio conditions (see section 1.6.1). A number of techniques that where used in these
benchmarks to improve the ASR result were discussed in this section. A selection of
these techniques will be investigated further in the following sections.

The systems described in this section all perform segmentation and clustering
before running ASR. In the meeting benchmarks, speaker clustering is even a task on
its own. Without the segmentation and clustering steps it is not possible to apply the
various techniques that make the acoustic models more robust and improve recognition
accuracy. In the next two sections existing segmentation and clustering algorithms
are presented.

For decoding, a number of techniques to improve feature extraction and acous-
tic modeling have been discussed. These techniques will be further investigated in
section 2.5.

2.3 Segmentation

In this thesis segmentation is defined as the process of cutting up an audio stream in
segments and labeling these segments with a specific class such as ‘silence’, ‘speech’
or ‘music’. The main reasons to perform segmentation in a LVCSR system is to
filter out the parts of the audio that the decoder won’t be able to handle and also to
provide the decoder with extra information about the segments so that decoding can
be optimized. A third reason to perform segmentation is to enrich the ASR output
with the segment information.

The earlier mentioned silence and music classes are obvious examples of audio
classes that the decoder won’t be able to process successfully. Discarding these seg-
ments will speed up the decoding process and most likely keep the word error rate
low (fewer insertions). Classes that are often used directly to optimize the decoding
process are the ‘audio channel’ (telephone/broadband) and ‘gender’ (female/male)
classes. For example, the system can train gender specific acoustic models and during
decoding use each model according to the segmentation information.

A more complex, but also effective way of optimizing the decoding process is to
cluster all segments of the same class together and use this larger amount of audio

32

State-of-the-art in ASR

for unsupervised adaptation of the acoustic models or feature vectors. Adaptation
can often be done with higher precision when more data is available and therefore
it is interesting to group segments with the same acoustic characteristics together.
For example, the first step in finding all segments containing only speech from one
single speaker is called speaker segmentation or speaker change detection. In this case,
segments labeled with speech are split at the points in time where a speaker change
is detected.

Three main approaches of performing segmentation can be defined: silence-based,
model-based and metric-based [CG98, KSWW00]. In the remainder of this section
these three approaches will be described briefly. In the next section the process of
clustering segments is discussed.

2.3.1 Feature extraction for segmentation

As segmentation is a statistical classification problem, just as for decoding a set of
acoustic observations is needed. Although feature types such as MFCC or PLP were
not designed to distinguish between speakers, most state-of-the-art segmentation sys-
tems actually use these feature extraction methods. For speaker change detection,
sometimes feature vectors with a higher number of coefficients are used. A nice ex-
ample of a system that does not use standard MFCC or PLP features is [AMB03].
Here ‘entropy’ and ‘dynamism’ are used to classify between speech and music.

2.3.2 Silence-based segmentation

For some tasks it is assumed that the audio only contains speech and silence. For ex-
ample, BN recordings might contain some jingles, but the major part of the recording
consists of speech and small pauses between utterances or topics [HOvH01]. Some
systems make use of this by segmenting on basis of the silences in the audio. If the
segments are later needed to cluster speakers, these systems assume that there is
always a short silence between speakers. In case of BN recordings, this assumption
is often valid. Unfortunately, for recordings with more spontaneous speech such as
recordings of meetings, this assumption is often not valid at all.

There are two common methods of finding silences in an audio stream. The first
method is calculating the energy of short (often overlapping) windows. The local
minima of this energy series are considered silence. The second method, decoder-

based segmentation, is to run a fast ASR decoder [WSK07]. Most decoders contain a
silence ‘phone’ that takes care of pauses between speech.

In [PH03] the ASR acoustic models are used to create two special models: one
for silence and one for speech. The speech model is created by combining the most
dominant Gaussian mixtures of all phones into one GMM. A small HMM is then
created containing only two states. The first state uses the silence GMM for its PDF
and the second state uses the speech GMM. A Viterbi decoding run using this HMM
will result in the speech/silence segmentation. Decoder-based segmentation systems,
although they only distinguish between silence and speech, can also be considered to
be model-based segmentation systems.

33

Chapter 2

2.3.3 Model-based segmentation

Model-based segmentation systems train one GMM for each segmentation class. These
GMMs are used as PDF in a hidden Markov model where each state is connected to
all other states. Performing a Viterbi decoding run using this HMM results in the
segmentation of an audio file. The advantage of this method is that it is very easy to
add segmentation classes. The systems in [HJT+98, GLAJ99] train a silence, speech
and music GMM, but it is possible to create models for other classes such as sound
effects or even known speakers (for example the anchor-man in BN recordings).

Without taking special measures, HMMs with one state for each class tend to
produce short segments, even when the transition probabilities from one class to the
other are set low. In order to force minimum time constraints on segments, sometimes
HMMs are created with a string of states per class that each share the same GMM.
Each state in a string is connected to the next state and only the final state has a self-
transition (see figure 2.9). The number of states in the string determine the minimum
time of each segment. Another approach is to post-process the segmentation and join
short speech segments or remove short silence segments.

Figure 2.9: An example HMM used in model-based segmentation. Each string of states

represents one segmentation class and all states of a string share the same PDF.

The major disadvantage of model-based segmentation is that the GMMs need to
be trained on some training set. If the acoustic characteristics of the audio under
evaluation are too different from the characteristics of the training data, the accu-
racy of the segmentation will be poor. Model-based segmentation has recently been
used in various systems for finding speech and non-speech regions [HJT+98, GLAJ99,
HMV+07, SAB+07, vLK07].

2.3.4 Metric-based segmentation

One of the most common segmentation methods to date is metric-based segmentation.
In metric-based segmentation, a sliding window is used to investigate a short portion of
the audio at each step. Typically, the window is cut in the middle and it is determined
if this point in time should or should not be marked as a segment border. Some kind

34

State-of-the-art in ASR

of distance metric is used to measure whether the two segments Si and Sj belong to
the same class S, or if they are actually part of two separate segments.

In the literature, a number of distance metrics have been proposed. Most of these
metrics make use of models (often Gaussians or Gaussian mixtures) that are trained
on Si, Sj and S in order to calculate distances [Ang06]. The most common distance
metric is the Bayesian Information Criterion (BIC) [Sch78]. This metric uses some
model Mi with #(Mi) parameters representing a segment of data Si with Ni time
frames (feature vectors) and it determines how well the model fits the data:

BIC(Mi) = log L(Si, Mi) −
1

2
λ#(Mi) log Ni (2.6)

λ is a free parameter that needs to be tuned on a training set. The value of this
parameter influences when the BIC value is positive, meaning that the model fits the
data, or negative, meaning that the model does not fit the data very well. Formula 2.6
can be used to determine if the data of the two segments Si and Sj fit Mi and Mj

best or if the data of the two segments together (Si+Sj=S) fit the model M trained
on S the best:

∆BIC(Mi, Mj) = BIC(M) − (BIC(Mi) + BIC(Mj))

= log L(S,M) − (log L(Si, Mi) + log L(Sj, Mj)) (2.7)

− λ∆#(Mi, Mj) log N

where ∆#(Mi, Mj) is #(M)−(#(Mi)+#(Mj)). If ∆BIC is negative, the model of
the total segment S fits the data not as good as the two separate models and a segment
border is placed between the two segments. ∆BIC was first used for segmentation
and clustering in [CG98]. In [Ang06] a mathematical proof of formula 2.7 is given.
Note that when ∆#(Mi, Mj) is zero, meaning that the number of free parameters in
M equals the number of free parameters in Mi and Mj, the design parameter λ no
longer influences the equation.

In combination with speaker clustering, the Bayesian Information Criterion has re-
cently been used for speaker change detection in a number of systems [Cas04, IFM+06,
vLK07, RSB+07].

2.3.5 Assessment of segmentation systems

Two measures are regularly used for assessing segmentation results. The first one is to
measure for each class the percentage of time that the class was correctly assigned, or
if one overall number is required, the percentage of time that all classes were correctly
assigned:

Score =

∑

c

(Cc)

L
· 100% (2.8)

35

Chapter 2

where Cc is the total time that class c was classified correctly and L is the total
audio length.

The second method of assessing segmentation systems is to consider the result to
be a special case of a speaker diarization system [NIS06]. This was done at the NIST
benchmarks in 2005 and 2006 for the Speech Activity Detection (SAD) task. SAD is
a segmentation task with two classes: speech and non-speech. All reference speakers
were joined in one cluster and any speaker overlap was removed. The measurement
explained in section 2.4.2 was then used to score the SAD results. Because overlapping
speech is not measured and therefore the number of ‘speakers’ is always zero or one,
for SAD systems, formula 2.10 in section 2.4.2 can be formulated as:

SAD =
M + F

S
· 100% (2.9)

where S is the total time of speech, M is the total time of speech that was not
classified as speech (missed speech) and F is the total time of silence that was falsely
classified as speech (false alarms). Note that this measurement results in an error
percentage while the first measurement (formula 2.8) results in a percentage of cor-
rectly assigned classes. Also, the SAD measurement is a percentage of the total time
of speech in the reference transcript, while using the first measurement for a SAD
system would result in a percentage of the total time of the evaluation audio.

2.4 Clustering and speaker diarization

Clustering acoustically similar speech segments is helpful for adaptation of the acoustic
models or feature vectors. For most adaptation techniques the individual segments are
too short to accurately determine the values of the parameters needed for adaptation
(see section 2.5.2) and therefore the segments that are most similar are clustered and
the entire cluster is used for adaptation.

The most common technique used for clustering is hierarchical clustering. In
fact, all ASR teams of the RT07s benchmark [HBD+07, WSK07, HMV+07, SAB+07,
LBG+07] applied this clustering technique. Hierarchical clustering can be done in
two ways: either top-down or bottom-up. In top-down clustering, initially all speech
segments are placed in one cluster and iteratively the cluster is split into multiple
clusters until an optimum number of clusters is reached. In bottom-up clustering,
also called agglomerative clustering, a high number of initial clusters is initially cre-
ated (sometimes even one speech segment per cluster) and the clusters are iteratively
merged until an optimum number of clusters is reached.

For ASR purposes, the optimum number of clusters is not necessarily the exact
number of speakers in the audio recording. Because it is important that a mini-
mum amount of data is available for acoustic adaptation, speakers that did not speak
long enough can be placed in a cluster with other speakers (as done for example
by [SAB+07]). For the speaker diarization task of the NIST rich transcription bench-
mark series though, where the task is to determine automatically ‘who spoke when?’,
obviously it is the goal to assign exactly one cluster to each speaker of the recording.

36

State-of-the-art in ASR

This requirement led to the use of a number of new, more accurate, approaches for
clustering. In this section, first the agglomerative clustering method is described and
then a number of systems that participated in the NIST speaker diarization bench-
marks is discussed.

2.4.1 Agglomerative clustering

Agglomerative clustering consists of four iterative steps. First, initial clusters need
to be defined. Often, each speech segment that is found during segmentation is
considered a single cluster. Next, the distance between these clusters needs to be
determined. Often this is done pairwise and the distance between each pair of clusters
is stored in a matrix. This matrix is used in the third step to determine if there are
any clusters that can be merged into one cluster or if the optimum number of clusters
is reached. If this stopping criterion decides that the optimum is not yet reached, in
the fourth step the clusters with the smallest distance are merged and the process is
iterated starting at the second step. The distance metrics that are used to determine
the distance matrix, are often the same metrics as used during segmentation. This
means that for each cluster a model is created and during the merging phase a new
model is created for each pair of clusters that are merged.

Figure 2.10: Agglomerative clustering is an iterative process where a high number of initial

clusters is iteratively reduced to the optimum number of clusters.

A popular metric used for clustering is BIC (see section 2.3.4). Similar to the
usage of BIC during segmentation, for each cluster and for each pairwise combination
of clusters a model is created. For segmentation purposes, only a model trained on
data of two segments needs to be trained when those segments are bordering each
other, but when BIC is used for clustering, the BIC score for each combination of
clusters is calculated and a combined model of each combination of clusters is needed.
When segmenting, the segment data can be modeled by a single Gaussian (with full
covariance matrix), but one single Gaussian is not able to model the clusters with
enough precision. Therefore, GMMs are mostly used. The λ parameter (equation 2.7)
needs to be tuned on a training set, but when the number of Gaussians (the number
of free parameters) in the combined model equals the sum of the number of Gaussians
of the cluster models, the λ factor is eliminated (section 2.3.4). The higher the value
of ∆BIC, the more similar the two clusters that are being compared. Therefore, the
clusters with the highest ∆BIC score will be considered for merging first.

Not only the distance matrix can be calculated using BIC. Often, BIC is also used
as stopping criterion. When the ∆BIC score is negative, the two separate models
represent the clusters better than the combined model and therefore the clusters

37

Chapter 2

should not be merged. In other words, when all values of the distance matrix are
negative, the process should stop. Otherwise, the clusters with the highest scores can
be merged. As mentioned earlier, for some applications BIC is not used as stopping
criterion, but merging is repeated until a fixed number of clusters is reached.

2.4.2 Assessment of speaker diarization systems

Speaker diarization systems need to segment and cluster audio recordings on speakers.
The metric used to evaluate the performance of these systems is called Diarization
Error Rate (DER) [NIS07]. It is computed by first finding an optimal one-to-one
mapping of the reference speaker segments to system output and then obtaining the
error as the fraction of time that the system did not attribute correctly to a speaker
or to non-speech. Finding the optimal mapping is needed because the system does
not need to identify speakers by name and therefore its speaker labels will differ from
the labels in the reference transcript. The DER is calculated as follows:

DER =

∑
S

s=1 dur(s) · (max(Nref(s), Nsys(s)) − Ncorrect(s))
∑

S

s=1 dur(s) · Nref

(2.10)

where S is the entire set of segments. In this case, a segment is defined as a
fragment in the audio in which no speaker change is occurring in either the reference
transcription or the hypothesis transcription. Because of overlapping speech it is
possible that multiple reference or hypothesis speakers are talking during one segment,
but the number of reference speakers Nref(s) and the number of hypothesis speakers
Nhyp(s) do not change during one segment s. Further, dur(s) is the duration in
seconds of segment s and Ncorrect(s) is the number of reference speakers speaking in s

for whom their mapped hypothesis speakers are also speaking in s.

Another metric, mainly used for system analysis, is hypothesis speaker purity.
Each speaker in the hypothesis SPKh is mapped to the reference speaker SPKr that
is represented the most amount of time by that hypothesis speaker. The purity of a
hypothesis speaker is then:

Purity(spkh, spkr) =

∑
S

s=1 dur(s) · SPK(s, spkh) · SPK(s, spkr))
∑

S

s=1 dur(s) · SPK(s, spkh)
(2.11)

where SPK(s, spkr) is one when speaker spkr is talking in segment s and zero
otherwise. Note that it is possible that multiple hypothesis speakers are mapped to
the same reference speaker. If the purity of a hypothesis speaker is a hundred percent,
this means that all speech of this speaker can be mapped to one single reference
speaker and no noise of other speakers is present. This does not mean though that
the hypothesis speaker will not contribute to the DER as the reference speaker might
be mapped to another hypothesis speaker. In chapter 5 purity is used for analyzing a
diarization system.

38

State-of-the-art in ASR

2.4.3 NIST benchmark series for speaker diarization

Since the year 2000, NIST has been organizing benchmarks for speaker diarization.
At first telephone speech was evaluated (2000, 2001 and 2002), later broadcast news
(2002, 2003 and 2004), and now evaluation focuses on the meeting domain (2002, 2004,
2005 and 2006). Since 2004, the speaker diarization task is part of the rich transcrip-
tion benchmarks. The same data is used for diarization as for ASR, only the close
talking microphones are not used. This leaves two main conditions for diarization:
the single distant microphone and the multiple distant microphone recordings.

Numerous interesting speaker diarization systems have participated in the NIST
rich transcription benchmark series for meetings. Mostly metric-based segmentation
and clustering is being used [Cas04, vL06, RSB+07, IFM+06], but also model-based
segmentation is popular [ZBLG07, FS07, AWP07]. The Bayesian Information Crite-
rion is used most as distance measure for all three tasks: segmentation, picking models
to merge and as stopping criterion [Cas04, vL06, RSB+07]. But also other measures
such as the Generalized Likelihood Ration (GLR) [MFP+04, JLSW04, IFM+06] and
Mahalanobis distance [Cas04] have been used for segmentation or clustering. A hi-
erarchical top-down clustering approach was taken by [FS07] using an HMM adding
new states (representing speakers) at each iteration while re-segmenting the speech
data. In [ZBLG07, AWP07] a bottom-up approach was taken, also using an HMM to
realign the data after each iteration.

The main condition of the benchmark series was the Multiple Distant Microphones
(MDM) condition where for each meeting, multiple recordings were available. Some
systems just picked a single channel [vL06, ZBLG07], while others segmented each
channel separately [JLSW04] before combining the results or performed some form of
pre-processing [FS07, AWP07] to combine the channels into one single recording.

In [Ang06], a good short description of all these systems is provided. Although
every one of them is interesting, only one single system, the speaker diarization system
of the International Computer Science Institute (ICSI), will be described in depth in
this section. The ICSI system is extra interesting because of its consistently high
performance at the benchmark series4 and because of its strategy not to use any
models or parameters that need to be tuned on training data [AWPA06, AWP07].
The absence of the need of training data during system development, makes the
system robust for unknown audio conditions. No training data means that it is not
possible to have a mismatch between training and evaluation data.

2.4.4 The ICSI speaker diarization system

The speaker diarization system of the International Computer Science Institute (ICSI)
is based on a system originally described in [ABLM02]. First the ICSI system partici-
pated the speaker diarization benchmarks for BN (2003 [AW03] and 2004 [WFPA04])
and later for rich transcription of meetings [AWPA06, AWP07, WH08]. The system
consists of three main components: feature extraction, speech activity detection and

4The rules of the benchmark series prohibits publication of ranking results, but these rankings

can be found at the web page of each benchmark: http://www.nist.gov/speech

39

Chapter 2

speaker diarization. These components will be described as they were implemented
for the rich transcription benchmarks in 2005 and 2006 [AWPA06, AWP07]. The work
performed on this system in 2007 will be described later in this thesis.

This section will provide an overview of the ICSI speaker diarization system.
In [Ang06] the system itself and also the various techniques aimed at improving the
basic system are discussed in-depth.

Feature Extraction

The meetings under evaluation are recorded with multiple distant microphones. The
audio signal of each microphone is first passed through a Wiener filter for noise re-
duction where noise is assumed to be additive and of a stochastic nature [WN49].
The implementation of the Wiener filtering that was used, was taken from the noise
reduction algorithm developed for the Aurora 2 front-end proposed by ICSI, OGI and
Qualcomm [ABD+02]. After Wiener filtering, the channels are combined into one
‘enhanced’ channel using delay and sum beamforming software (BeamformIt5). This
software determines the delay of each signal relative to the other signals and removes
this delay before summing all signals together [Ang06].

From the resulting 16kHz audio file, Mel Frequency Cepstral Coefficients (MFCC)
are extracted. The feature vectors are calculated using 30ms Hamming windows that
are shifted 10ms at a time. Twenty-four melscale filters are used to calculate vectors
containing the first nineteen cepstral coefficients. A second feature stream is created
by using the BeamformIt tool to calculate the delay values between the different audio
channels. When using BeamformIt to produce these delay features, a 10 ms step size
is used instead of the 250 ms step size used for performing beamforming. This way,
the second feature stream contains the same number of vectors as the MFCC feature
stream.

Speech activity detection

In 2005 speech/non-speech segmentation was performed using a model-based ap-
proach [AWPA06]. One model for speech and one model for non-speech were trained
on a training set of meetings. Each model contained three states and the first twelve
MFCC coefficients were used as input. The downside of this system was that new
models needed to be trained as soon as the evaluation conditions changed. Therefore
in 2006, the system was replaced by a two step algorithm [AWP07]. First, a silence-
based set-up was used to find all segments with low energy. It was assumed that
silence was the only form of non-speech in the meetings and that this first step was
able to find enough representative speech and silence segments to use in the second
step. In this second step, the segments were used to train a model-based system with
two states: one for speech and one for non-speech. The HMM was used to realign
the data and using the new alignment, new GMMs were trained. After a number of
iterations the final speech/non-speech alignment was obtained.

5http://www.icsi.berkeley.edu/~xanguera/beamformit

40

State-of-the-art in ASR

The advantage of the 2006 system is that no training data is needed for the speech
and non-speech models. The downside is that this system is only able to distinguish
between speech and silence. Because in the first step an energy-based segmentation
is created, all non-speech with high energy will be classified as speech. In the second
step this error will not be corrected. Fortunately, the assumption that all non-speech
in the meetings under evaluation is silence is often valid.

Speaker diarization

The diarization system is based on the use of HMMs with GMMs as probability density
functions. The HMM is identical to the topology earlier discussed in figure 2.9. The
string of HMM states drawn horizontally each represent one speaker and all states
in a string share a single GMM. In an ideal situation, each GMM is trained on all
the speech of one unique speaker. The speaker segmentation, the final system result,
is found by performing a Viterbi alignment of all audio that contains speech. All
audio that is processed by the same string of states during this alignment is grouped
together as speech from one speaker. By using a string of states to represent each
speaker (instead of a single state), a minimum duration of each speech segment is
guaranteed.

Clustering is done using the agglomerative clustering method. Initially too many
HMM states are created. The number of states is then iteratively decreased and the
GMMs are slowly trained on speech from a single speaker until the correct number of
GMMs is reached. In order to obtain this optimal topology, an algorithm with five
steps is executed. An overview of these steps is drawn in figure 2.11.

Figure 2.11: A schematic representation of the speaker diarization algorithm. In order to

evaluate the five steps of this algorithm, each step can be replaced by an oracle component.

The second and fifth step each consist of a number of training and re-alignment iterations.

First, SAD is performed as described earlier. The speech segments are then passed
to the speaker diarization system for initialization.

The system is initialized with a large number of models (strings of HMM states).
The number of models should be significantly higher than the assumed maximum
number of speakers in the audio file. For the meeting benchmark series, 16 initial

41

Chapter 2

clusters for each meeting were used. In order to create the initial sixteen speaker
models, the available speech data is cut up into small pieces and these pieces are
randomly divided in a number of bins. Each bin is used to train one of the multi-
stream (MFCC and delay-sum features) GMMs with five Gaussians. Although the
GMMs are trained using multiple speakers, in general one speaker will fit the GMM
a little bit better than the other speakers. Therefore, when a Viterbi alignment is
performed, this GMM will be assigned more speech from this speaker. The data will
be re-aligned a number of times and after each iteration, the GMMs are re-trained.
After each iteration the model will fit the dominant speaker better than before. The
result of this step is a group of models that are all trained with as much data as
possible of one dominant speaker and as little data as possible of the other speakers.
In the remaining steps, the models that are trained on the same dominant speaker
will need to be merged.

In the third step it is determined which two models are most likely trained on the
same speaker. This is done by calculating the local ∆BIC score for each combination
of two models (see formula 2.6). For this BIC comparison, a new model is trained
containing the sum of the number of Gaussians of the two original models. This
merged model is trained on the training data of the original two models. As discussed
in section 2.3.4, no scaling parameter is needed in the ∆BIC equation, because the
total number of Gaussians, the number of free parameters, will remain unchanged
after replacing the two models by the merged model. If the BIC score is positive, the
two original models are considered to be trained on data of the same speaker. The
higher the BIC score, the more the two models were similar. Therefore, the cluster
pair with the highest BIC score will be chosen as the candidate for merging and in
the fourth step, the decision to merge the candidate cluster pair is positive if the BIC
score is bigger than zero and negative if the BIC score is negative.

In this last case the final Viterbi alignment will be performed and the algorithm is
finished. But if the BIC score is positive, in the fifth step, the two merge candidates
are replaced in the HMM by the merged model. The data is re-aligned over the models
and the models are re-trained with the new data. After this, a new merging iteration
is started.

System parameters

The speaker diarization system is designed to have no system parameters that need
to be tuned on external data, making it robust for changes in audio conditions or
application domain. Because the GMMs are trained on the data under evaluation,
no models created on a training set are needed. Also, because BIC is used with
preservation of system complexity, no scaling parameter is needed. Unfortunately,
five system parameters still exist, although these parameters do not seem sensitive
for changes in audio conditions [AW03]. The first parameter is the number of initial
clusters (set to 16), the second parameter is the number of Gaussians of each initial
GMM (set to 5). Third, the number of states in each string, the minimum segment
duration is a tunable parameter (set to 250, 2.5 seconds). The final two parameters
are the number of training iterations used for GMM training and the number of times

42

State-of-the-art in ASR

that the data is re-aligned during each training run.
The first ICSI diarization system that used the sum delay information as a second

feature stream, proposed in the meeting benchmark of 2005, needed to tune the stream
weights on a training set [AWPA06]. In 2006 though, a method of automatically tuning
these weights during evaluation was proposed [AWP07] and the training set was no
longer needed.

2.5 Techniques for robust ASR

In section 2.2 a number of techniques were introduced that is commonly used to
improve robustness in ASR. Some of these techniques are designed to normalize the
features and acoustic models so that any unwanted differences in data is minimized.
The normalization procedure is used during training to minimize differences in training
data which makes it easier to create appropriate models, and it is also used during
decoding so that the evaluation data fit the models as good as possible.

Other techniques aim at adapting acoustic models so that they better fit their task.
For example, acoustic models can be adapted for optimally decoding a specific speaker
or specific recording conditions. For adaptation of acoustic models, adaptation data,
consisting of time aligned occurrences of the phones, are needed that can either be
obtained by manually time aligning the data (supervised adaptation) or by using the
results of the decoding run (unsupervised adaptation). In the case of unsupervised
adaptation two decoding runs are needed. The results of the first run are used to
adapt the models and these models are applied in the second decoding run.

Next, in section 2.5.1 techniques that are based on normalization are discussed.
The acoustic model adaptation techniques are discussed in section 2.5.2.

2.5.1 Feature and acoustic model normalization

Countless techniques for feature and AM normalization have been proposed in the
literature. Here, a small subset of these techniques that was repeatably used during
the NIST benchmarks will be described.

Audio preprocessing

In the RT meeting benchmarks, the meetings under evaluation are recorded with
multiple distant microphones. Because farfield microphones in a meeting setting are
more likely to pick up noise than the microphones in broadcast news studios, reducing
noise is an important preprocessing step for systems in the RT meeting benchmarks.
A common method of reducing noise is to pass the audio signal of each microphone
through a Wiener filter [WN49]. With Wiener filtering the noise is assumed to be
additive and of a stochastic nature. An implementation of Wiener filtering that is
used by multiple teams, is taken from the Aurora 2 front-end proposed by ICSI, OGI
and Qualcomm [ABD+02].

When multiple microphones are used for recording, it is possible to create a single
recording that is in general of higher quality than the separate signals. This ‘enhanced’

43

Chapter 2

channel is created using the delay and sum beamforming method. This method de-
termines the delay of each signal relative to the other signals and removes this delay
before summing all signals together [Ang06]. The resulting single and noise reduced
signal can then be used to perform feature extraction.

Cepstrum mean and variance normalization

Cepstrum Mean Normalization (CMN) and Cepstrum Variance Normalization (CVN)
are well known normalization techniques that are applied to the individual cepstrum
coefficients of the feature vectors. When applying CMN, the mean of each coefficient
is normalized to zero and with CVN, the variance of each coefficient is normalized to
one. For this, first the actual mean and variance are calculated and the mean is then
subtracted from each coefficient and the result is divided by the variance. CMN and
CVN can be conducted on an entire recording or on parts of the recording (such as
speech segments or speaker clusters). For online ASR applications it is also common
practice to perform CMN and CVN on a running window.

Vocal tract length normalization

Variation of vocal tract length between speakers makes it harder to train robust acous-
tic models. Vocal Tract Length Normalization (VTLN) can be applied to normalize
for this variation. Using VTLN, the Mel-scale windows of the feature vectors are
shifted by a certain warping factor. If the warping factor is smaller than one, the
windows will be stretched and if the factor is bigger than one, the windows will be
compressed. To normalize for the vocal tract length, large warping factors should be
applied for people with a low voice and small warping factors for people with a high
voice6. For the best performance, VTLN is not only used during decoding, but also
during training of the acoustic models.

Typically, the warping factor is determined by performing a grid search. A range
of warping factors is used during the decoding of a number of utterances of a speaker.
The warping factor with which the hypothesis with the highest score is obtained is
then chosen as the warping factor for that particular speaker. This procedure requires
a number of decoding runs which is computationally expensive. In order to speed up
the process it is possible to decode speech with an AM that was not normalized and
then use a range of warping factors to perform forced alignment of the hypothesis
on the normalized features. Again, the warping factor is chosen that was responsible
for the forced alignment with the highest score. Unfortunately, this approach still
requires an initial decoding pass.

In [WMOP96] a fast method to determine warping factors was proposed. Instead
of decoding a number of utterances, all speech features, normalized using a range of
warping factors, are passed through a single GMM that was trained on all speech
from a collection with balanced male and female speakers. The warping factor that
reproduces the highest score will be picked as warping factor for the particular speaker.

6note that according to how the factor is used for shifting the windows, sometimes this is reversed:

sometimes big warping factors are linked to high voices instead of low voices

44

State-of-the-art in ASR

In order to obtain the most accurate results, the general speech GMM is created in a
number of iterations. After each iteration, the warping factors of the training speakers
are determined and a new model is trained using features that are normalized with
the newly obtained warping factors.

2.5.2 Acoustic model adaptation

The goal of acoustic model adaptation is to change the acoustic model parameters,
say θ, in a way so that they will perform better when decoding specific data. For
example, speaker independent models may be adapted to perform well for a specific
speaker (and become a speaker dependent model) or for a specific noisy recording
condition. In order to adapt the AM parameters, example data Y = {y1, y2, ..., yT}
of a specific speaker or recording condition, the adaptation data, are needed. The
two most common methods for acoustic model adaptation are Maximum Likelihood
Linear Regression (MLLR) and Maximum a Posteriori (MAP) adaptation. In most
systems these methods are used to adapt the Gaussian means of the AMs. Sometimes,
also the Gaussian variance is adapted.

Maximizing the likelihood or the posterior

With Maximum Likelihood Linear Regression (MLLR), the model’s Gaussian means
or variances are adapted using a linear transformation [LW95]. For this, similar to
training the models, the Expectation Maximization (EM) theorem is applied. EM
is used to optimize θ by iteratively optimizing the likelihood of the models on the
adaptation data (formula 2.12).

MLLR : θ̂ = argmax
θ

P (Y | θ) (2.12)

Instead of maximizing the likelihood, Maximum a Posteriori (MAP) adaptation
maximizes the posterior [LLJ90]. Because this is done in the Bayesian framework
(see formula 2.1), MAP is also called Bayesian adaptation. In order to maximize the
posterior, not only the likelihood, but also a meaningful prior, P (θ), of the parameter
settings is needed. This prior is not the same as the prior for decoding (the lan-
guage model). Instead the prior should describe the expected optimal values of the
parameter settings θ (see 2.13).

MAP : θ̂ = argmax
θ

P (Y | θ) · P (θ) (2.13)

The prior makes it possible to restrict the new parameter settings θ̂ to reasonable
expected values. A good prior aids in reducing the risk of over-fitting the model pa-
rameters to the adaptation data. Therefore, especially when only little adaptation
data is available, MAP outperforms MLLR adaptation. On the other hand, when
enough adaptation data is available, in general the prior will restrict the adapta-
tion and MLLR will outperform MAP. Note that when the prior is not informative,

45

Chapter 2

when it does not actually add information about preferable parameter settings to the
framework, MAP is identical to MLLR adaptation.

Regression classes

When sufficient adaptation data is available, it is possible to adapt each model directly

on its own part of the data, the pronunciations of that specific triphone. When less
data is available, it is possible to cluster together data for a number of models and
perform adaptation on each cluster. All models from one cluster will then be adapted
using one single transformation. This type of adaptation is called indirect adaptation
and the clusters are generally called regression classes. Indirect adaptation makes it
possible to adapt models even if little or no adaptation data is available for certain
phones.

Regression classes can be chosen manually on basis of knowledge of a language, or
based on statistics. For example, in [YEH+95] the Gaussian mixtures of all models
are placed in the root of a binary tree and the node is then split on basis of the
overall mean of the mixtures. This process is repeated until small regression classes
are formed in the leaf nodes.

The choice of regression classes and adaptation method influences the quality of the
AM adaptation considerably. In both cases, the optimal choice is highly dependent
on the available adaptation data. Regression classes need to be optimized for the
available data as too general classes are likely to result in no or little adaptation
and small classes might result in over-fitted models. Similarly, MLLR is best used
for small amounts of data, while MAP performs best when more data is available.
In [SML00] a method called Structured Maximum a Posteriori Linear Regression
(SMAPLR) is introduced that is less sensitive for these choices and is therefore more
robust when applied for unsupervised adaptation where it is not beforehand clear how
much adaptation data will be available.

Structured Maximum a Posteriori Linear Regression

In [SML00], Structured Maximum a Posteriori Linear Regression (SMAPLR) is in-
troduced. This adaptation method consists of two steps. First, a tree is created that
contains one regression class in each leaf node. Second, MAP adaptation is performed
on each regression class. The robustness of this method lies in the method chosen
for creating the regression classes and in the method of defining the prior for each
regression class.

For creating the tree, the method in [SL98] was used where the tree is created
by clustering bottom-up. Small regression classes are created and clustered using
Kullbach divergence until one single cluster is formed in the root node of the tree.
The initial classes can for example be triphone GMMs or perhaps all triphone models
of each phone grouped together. Next, in order to avoid regression classes that are
represented by too little data, a minimum amount of data that should be available for
each class is enforced. If a leaf node is represented by less than the minimum amount
of data, it is removed from the tree and its parent node automatically becomes the
leaf node.

46

State-of-the-art in ASR

Starting in the root node, MAP adaptation is performed on all nodes in the tree.
The posterior probability obtained at each node is passed to its children nodes. The
children nodes use the posterior probability of their parent as prior probability for
their own MAP adaptation. For the root node, the prior is not informative and
therefore at the root node, MLLR adaptation is performed. It is assumed that the
transformation obtained in parent nodes provide useful information for constraining
the child nodes and that at each step deeper into the tree, the priors get more refined as
the posteriors are better modeled. When a lot of training data is available, this means
that the adaptation transformations can be determined with higher accuracy and at
the same time, when not that much data is available, the priors will restrict MAP from
over-fitting the data. This means that the system is less sensitive for the minimum
needed amount of data that was picked for creating the regression classes [SML00].
That this is actually the case can be illustrated by a simplified example. Let’s say
that all probabilities are represented by single Gaussian functions that are modeled
based on the adaptation data. When there is a lot of data available in the root of the
tree, the posterior of the root node will be a Gaussian with a relatively high variance.
Such a Gaussian will not be very restrictive when used as prior and therefore the child
node will be able to adapt freely on its own data. On the other hand, when there are
less data available in the root node, the variance of the Gaussian will be relatively
small. This small variance will act very restrictive when used as a prior in the child
node.

2.5.3 Speaker adaptive training

Speaker Adaptive Training (SAT) is a mix of model normalization and adaptation. For
each speaker in the training set the acoustic models are first adapted. These speaker
dependent models are then used during training of new acoustic models instead of the
old speaker independent AM. The transformation matrices used during adaptation
can be regarded as information about the speaker that is filtered out before training
the new models. This means that the new models will be truly speaker independent.
This method can be compared to VTLN where the vocal tract length of each speaker
is filtered out before the acoustic models are trained.

The SAT acoustic models do not outperform unnormalized acoustic models in the
first decoding run. They do increase decoding precision though when they are used
as initial models for speaker adaptation. Therefore, often unnormalized models are
used in a first decoding iteration to obtain an initial hypothesis and the SAT acoustic
models are then used to create speaker dependent models that are applied in the
second decoding iteration [AMSM96].

2.6 Final remarks

In this chapter, the state-of-the-art in speech activity detection, speaker clustering
and automatic speech recognition was given. Fundamental techniques such as Viterbi
decoding and BIC comparisons were discussed as well as the performance of various

47

Chapter 2

systems in the major benchmarks.
The theory described in this chapter is the foundation for the work that will be

discussed in the remainder of this thesis. The agglomerative model based clustering
method described in section 2.4.4 was used as a starting point for the diarization
subsystem introduced in chapter 5 and it was also an inspiration for creating the
speech activity detection subsystem described in chapter 4. The ASR subsystem
described in chapter 6 makes use of the fundamental ASR techniques discussed in this
chapter and incorporates a number of techniques found in the systems discussed in
the benchmark section (section 2.2). Before describing the three subsystems in-depth,
in the following chapter an overview of the proposed system, called SHoUT will be
provided.

48

CHAPTER 3

THE SHOUT SYSTEM

In this chapter, the ASR system that has been developed to be robust for new, un-
known audio conditions will be introduced. The development strategy for this software
framework will be discussed in section 3.1. The strategy has been guiding the deci-
sions on which existing techniques to incorporate and on which new algorithms to
develop. After discussing the development strategy, in order to avoid confusion, in
section 3.2 some system related terms will be defined that will be used in this thesis.
In the remainder of this chapter the proposed system and the encountered research
topics are described. These research topics are addressed in-depth in the following
chapters.

3.1 Development strategy:

the fewer parameters the better

Instead of using existing available software as a starting point, a completely new
system for automatic speech recognition has been created. An important reason for
doing this is that by starting from scratch, no existing software constraints can pre-
vent using new techniques. Of course the newly developed software will have its own
limitations, but the system can be developed so that there are no problems incorpo-
rating the currently state-of-the-art techniques as described in the previous chapter.
Also, the software can be developed so that it is possible and easy to re-use parts of
the ASR software for the SAD and clustering subsystems and so that it is flexible
for performing research on specific topics (see for example the implementation for
Language Model Lookahead in chapter 6). Positive side effects of creating the system
from scratch are that there are no legal restrains on the resulting software and that
developing the toolkit itself is a valuable learning experience. The applications that
were written for this research are grouped together in a software toolkit that will be
referred to as the SHoUT toolkit. SHoUT is an acronym for SpeecH recognition Uni-
versity of Twente (or in Dutch: Spraak Herkennings Onderzoek Universiteit Twente).
SHoUT is available under the GNU General Public License, version 2.

Chapter 3

In section 3.3 the SHoUT system will be introduced. The system consists of three
subsystems: speech/non-speech segmentation, clustering and ASR. Segmentation is
needed to identify the fragments in the audio that actually contain speech. Speaker
clustering is incorporated to the system to make unsupervised adaptation possible on
a speaker basis. The ASR subsystem performs the actual decoding.

The strategy is to use as few parameters that need tuning on a training set as
possible. Tuning parameters is only useful when the conditions of the training set
represent the conditions of the test set. As it is unknown what the conditions of the
test set will be, it is hard to tune parameters correctly. It is not needed to create
a system that is completely free of parameters. Parameters that are not affected by
changing audio conditions, but that are set once to an optimal value can be used
without risking a decrease of system performance.

The problem of test set conditions not matching the training set conditions exists
for statistical models as well. As the conditions of the training set might not represent
the test set, the models that are trained on this training set might perform poor on
the test set. Therefore, the use of models created on training data is limited as much
as possible.

This approach will prove to be feasible for SAD and clustering, but unfortunately
tunable parameters and acoustic models are hard to get rid of for automatic speech
recognition. Therefore for ASR, instead of not using models developed on a training
set, it is tried to make the models as independent of the audio conditions as possible.
A huge amount of techniques are described in literature for normalizing the models
(see chapter 2), but unfortunately it is not practically possible to combine all of these
approaches in one framework during this research. Therefore a number of existing
techniques that proved itself during benchmark evaluations will be used to make the
models and also the feature vectors more robust against changing audio conditions.
Once an initial speech transcription is generated, it is possible to apply unsupervised
adaptation of the models. For acoustic model adaptation the same strategy as before
is followed: the fewer tunable parameters the better.

Before an overview of the proposed system is given, some definitions will be formu-
lated to avoid confusion in the remainder of this thesis. The specific research topics
defined in the following sections will be discussed in-depth in the following chapters.

3.2 Software architecture, some definitions

The terms used in this thesis to discuss the software architecture of the SHoUT sys-
tem are based on the definitions formulated in [BCK03]. In this book on software
architecture, three types of architectural representations, so called structures, are de-
fined: component-and-connector structures, module structures and allocation struc-
tures. The component-and-connector structure defines the functionality of each part
of the software (components) and how these parts interact with each other (connec-
tions). The module structure defines how the source code, the actual implementation,
is structured. The allocation structure defines how the software elements will allocate
resources such as processors, files or memory. The discussions in this thesis will focus

50

The SHoUT system

on the first two types of structures.
For the component-and-connector representation of the software, the following

definitions will be used:

• The total of all software building blocks that work together to create speech
transcripts from audio recordings is called the system.

• The SHoUT system consists of three subsystems that each perform a particular
task: segmentation, diarization and ASR.

• The part of a subsystem that is responsible for a high level functional procedure
is called a component. For example, the part of the diarization subsystem that
handles picking GMMs to merge is called a component. At the highest abstrac-
tion level, each subsystem can be broken up into a number of these functional
components.

Although segmentation, diarization and ASR are only steps in the total system
and are therefore called subsystems, these subsystems may be used stand-alone. This
has proven to be valuable for example in the NIST benchmarks where diarization is
not applied as part of a bigger system. In such a context it would be confusing to
refer to diarization as a subsystem because this implies that not the entire procedure
is described but only a part of it. Therefore, when subsystems are employed for
stand-alone tasks, they are not referred to as subsystem, but simply as a system on
its own.

For discussions on the module structure of the software architecture, the following
terminology will be used:

• The implementation of each component, the actual source code that performs
the task defined by the component, is called a software application. An appli-
cation is a single stand-alone software program that does not need any other
applications to perform its task.

• A module is a collection of source code from an application that is responsible
for basic tasks such as GMM or LM handling. Each module is supposed to
be reusable for other applications and easily replaceable by alternative module
implementations.

• The collection of all applications in the system, but also the helper applications
that create the statistical models, is called the SHoUT toolkit.

3.3 System description

Figure 3.1 is a graphical representation of the system work flow that starts with speech
activity detection (SAD) in order to filter out the audio parts that do not contain
speech. In contrast to the SAD subsystem in the BN system, this SAD subsystem
needs to be able to filter out all kinds of sounds such as music, sound effects or

51

Chapter 3

background noise with high volume (traffic, cheering audience, etc). As a speech
decoder will always try to map a sound segment to a sequence of words, processing
audible non-speech portions of the data would introduce noise in the transcripts due
to assigning word labels to non-speech fragments. Even processing silence fragments
is unwanted as the ASR subsystem will claim unnecessary processor time. Also the
performance of the clustering subsystem will decrease when its data is polluted with
non-speech fragments.

Figure 3.1: Overview of the decoding system. Each step provides input for the following

step. There are three subsystems: segmentation, diarization and ASR.

After SAD, the speech fragments are segmented and clustered. In this step, the
speech fragments are split into segments that only contain speech from one single
speaker with constant audio conditions (speech from a telephone recording and high
quality recordings will be separated, even if the speech comes from only one speaker).
Each segment is labeled with its corresponding speaker ID. Next, as part of the ASR
subsystem, for each segment feature extraction is performed. In order to create as
robust features as possible, the cluster information is used to normalize these features.
Decoding is done using an HMM-based Viterbi decoder. In the first decoding iteration,
triphone acoustic models and trigram language models are used. For each speaker,
a first best hypothesis aligned on a phone basis is created for un-supervised acoustic
model adaptation. The second decoding iteration uses these speaker adapted acoustic
models to create the final first best hypothesis aligned on a word basis. Also, for each
segment, a word lattice is created that can be used for re-scoring.

3.3.1 Speech activity detection

As mentioned earlier, although generally HMM-based SAD systems perform very well
in controlled audio conditions, when the training data do not match the evaluation
data, the performance can drop significantly. Because of the large variety in collections
such as the TRECVID07 collection (see appendix A) it is difficult to determine a good
set of data on which to train the silence and speech models. Also it is difficult to
determine what kind of extra models are needed to filter out unknown audio fragments
such as music or sound effects and to collect training data for those models.

The SAD method proposed by [AWP07] at RT06s (chapter 2, section 2.4.4) uses
regions in the audio that have low or high energy levels to train new speech and
silence models on the data that is being processed. The major advantage of this
approach is that no earlier trained models are needed and therefore the method is
robust for domain changes. The downside of the method is that it is only able to
distinguish between speech and silence and not between speech and audible non-

52

The SHoUT system

speech. In chapter 4 this approach will be extended for audio that contains fragments
with high energy levels that are not speech.

Instead of using energy as an initial confidence measure, the proposed SAD sub-
system uses the output of an HMM-based broadcast news SAD component. This
component is only trained on silence and speech, but because energy is not used as
a feature and most audible non-speech will fit the more general silence model better
than the speech model, most non-speech will be classified as silence. After the ini-
tial segmentation the data classified as silence is used to train a new silence model
and a sound model. The silence model is trained on data with low energy levels and
the sound model on data with high energy levels and both models are trained solely
on data of the recording that is being processed. After a number of training itera-
tions, the speech model is also re-trained using solely the recording. The result is an
HMM-based SAD subsystem with three models (speech, non-speech and silence) that
are trained solely on the data under evaluation, solving the problem of mismatching
training and evaluation conditions.

3.3.2 Segmentation and clustering

Similar to the approach taken for the SHoUT SAD subsystem, the speaker diarization

system described in [AWP07], is developed to have no tunable parameters or models
that are created using a training set (see chapter 2, section 2.4.4). Although this
system has proven itself in the rich transcription meeting benchmarks where audio
conditions are constant for each recording, the same clustering approach can be used
to distinguish between speech from different audio conditions (for example distin-
guishing between speech from one person speaking either in a studio or outside in the
street). The aim not to use tunable parameters or models and the high performance
of the system make this a very good approach for clustering data with unknown audio
conditions. Unfortunately, this algorithm rapidly becomes slower for long recordings.
The majority of processing time is spent on pairwise comparing models. At each merg-
ing iteration, all possible model combinations need to be recomputed. The longer a
recording is, the more initial clusters are needed. With this, the number of model
combinations that need to be considered for merging increases more than linearly.

The diarization step is incorporated into the system in order to make it possible
for the ASR subsystem to apply normalization and adaptation techniques on clusters
of speech from individual speakers. It is also possible, and more straightforward to
apply simple clustering methods in order to obtain clusters for ASR normalization
and adaptation. Although these clusters would not contain speech of exactly one
single speaker, it has been shown that also these rough clustering techniques help at
improving ASR performance. For this research, the diarization approach is preferred
above the simple clustering approach because the speaker information obtained by
diarization can be a valuable source of information for future research on spoken
document retrieval. The information can be used for example for speaker tracking,
but also for refining SDR search possibilities.

In chapter 5 the speaker diarization subsystem will be discussed. In this chapter,
two approaches to speed up the algorithm are proposed. The first method, referred to

53

Chapter 3

as Cut and Mix, replaces the pairwise BIC comparisons with a computationally less
demanding merging criterion. The second method merges multiple models at each
iteration step. More than two models can be merged at once as long as the BIC score
for each combination of models is positive.

Also in chapter 5 a thorough analysis of the diarization subsystem is provided. This
analysis revealed the performance of each component of the subsystem and this knowl-
edge was used for the 2007 ICSI speaker diarization submission at RT07s [WH08].
This submission together with post-evaluation analysis are also described in depth in
chapter 5.

3.3.3 Automatic speech recognition

As shown in figure 3.1, the ASR subsystem consists of four steps. First, feature
extraction is performed in a manner so that the features are as much normalized for
speaker and audio variations as possible. The results of the first decoding pass are
used to adapt the acoustic model for each cluster. These cluster dependent models
are then used in the final decoding iteration.

Feature extraction

For feature extraction, two existing techniques were chosen that aim on normalizing
the features as much as possible for variation in the audio due to speaker and audio
characteristics. A first simple but effective normalization technique that is applied is
Cepstrum Mean Normalization (CMN). Vocal Tract Length Normalization (VTLN)
is used to normalize for the variation in vocal tract length of the various speakers in
both the training set as the evaluation set.

Decoding

The ASR decoder applies a time synchronous Viterbi search in order to retrieve its hy-
pothesis. The Viterbi search is implemented using the token passing paradigm [YRT89].
HMMs with three states and GMMs for its probability density functions are used to
calculate acoustical likelihoods of context dependent phones. Up to 4-gram back-off
language models (LMs) are used to calculate the priors. The HMMs are organized
in a single Pronunciation Prefix Tree (PPT) and instead of copying PPTs for each
possible linguistic state (the LM N-gram history), each token contains a pointer to
its LM history (see chapter 2, section 2.1). Two issues that were encountered while
developing the decoder are discussed in-depth in chapter 6: modularity of the source
code and management of the search space.

Because the decoder will be used for research purposes, it is especially important
that it is developed to be modular. The code for each type of model should be imple-
mented in its own module. It needs to be possible to easily replace the implementation
of each model type by another solution without affecting the source code for the other
model types. For example, it should be possible to replace the GMMs that are used
as probability density functions by other probability functions without having to re-

54

The SHoUT system

write the HMM module. In order to assure this modular design, special care is given
to how the models interact. For this, an approach similar to [DDCW00] is chosen.

Managing the search space is the second important topic that will be discussed in
chapter 6. In order not to run out of memory, the number of tokens in the decoder
needs to be kept as small as possible. Various forms of beam pruning and histogram
pruning are applied to achieve this. These pruning methods work best when the
likelihood of tokens can be compared to each other no matter where they are in
the PPT. If the LM probabilities are incorporated at once at the end of the PPT,
the likelihood of the tokens passing the end of the tree (the LM calculation) will
drop suddenly and it is harder to compare them directly to other tokens (it is not
possible to use very tight beams). Therefore Language Model Look-Ahead (LMLA) is
implemented [ONEC96]. Using LMLA, the best case LM probability is incorporated
at each node in the PPT so that the drop in token likelihood will appear gradually.
For decoders such as the SHoUT decoder that do not use PPT copying, implementing
LMLA for N-grams of higher order than unigrams, is not straightforward. In chapter 6
the novel method developed for the SHoUT decoder to perform full N-gram LMLA is
discussed.

3.3.4 Acoustic model adaptation

The clustering information obtained during segmentation and clustering is used to cre-
ate speaker dependent acoustic models. The SMAPLR adaptation method [SML00]
(see chapter 2, section 2.5.2) is chosen to adapt the means of the acoustic model
Gaussians. This method is chosen because it requires hardly any tuning and it auto-
matically determines to what extent the models can be adapted according to how much
adaptation data is available. This procedure prevents the models to be over-fitted on
the adaptation data when only small amounts of adaptation data are available while
it adapts the model parameters as much as possible.

3.4 Summary

In this chapter an overview of the SHoUT system has been given. The system consists
of three subsystems: segmentation, diarization and ASR. Each of these subsystems
has been designed to contain as few tunable parameters as possible. When tuning
is needed, a development set is required that matches the audio that is going to be
processed. If the development data are not representable for the target data, the
subsystem will be tuned poorly and perform suboptimal. Instead of tuning on a
development set, the subsystems will tune itself automatically on the audio that is
being processed, so that it becomes possible to process data with unknown audio
conditions.

The same mismatch problem exists if statistical models are used. For statistical
models, the data used to train the models need to match the conditions of the au-
dio that is going to be processed. Therefore when possible, the use of models that
are trained on a training set is restricted as much as possible. This is possible for

55

Chapter 3

segmentation and diarization, but not for ASR. For ASR the models are normalized

using CMN and VTLN in order to reduce the mismatch between training data and

the data that is going to be processed by the decoder.

The subsystems for segmentation, diarization and ASR will be discussed in-depth

in the following three chapters.

56

CHAPTER 4

SPEECH ACTIVITY DETECTION

Speech Activity Detection (SAD) is the task of detecting the fragments in an audio
recording that contain speech. Speech activity detection is useful for the ASR sub-
system because it is more practical to process small speech segments instead of an
entire recording. It is easier to keep the needed computer resources such as processor
time and memory usage within reasonable bounds when the length of each segment
is limited. A more important advantage of applying SAD is that all non-speech is
removed from the recording so that the ASR subsystem doesn’t need to process these
segments. Although audible non-speech (such as sound effects, etc) do not contain
any speech, if they are passed to a decoder it will always output a hypothesis, leading
to insertions. SAD is also very important for speaker diarization. All non-speech
presented to the diarization subsystem will contaminate the speaker models and this
will decrease the quality of the diarization subsystem.1

A common approach in speech activity detection is to attempt to classify all types
of sound that are present in the recording. If it is known what types of sound can
be expected, it is possible to create statistical models for them and the classification
is straightforward. SAD is a lot harder when it is unknown beforehand what kind of
sound effects can be expected, making it impossible to create high quality non-speech
models. In this chapter the research question: ‘How can all audible non-speech be
filtered out of a recording without having any prior information about the type of
non-speech that will be encountered?’, is answered and the SHoUT SAD subsystem
is presented that is able to handle this task.

The SHoUT SAD subsystem is inspired by the model-based SAD approach de-
scribed in [AWP07]. During the segmentation process, the models of SHoUT are
trained on the audio that is being processed. In order to obtain a bootstrap segmen-
tation that can be used to train these models, in the original algorithm described
in [AWP07], a silence-based segmentation strategy is employed (see chapter 2, sec-
tion 2.3 about segmentation methods). Using this method, no training set is needed
to train the models on, and the second research question: ‘How can the system per-

1The research presented in this chapter is, in part, published in [HWO07]

Chapter 4

form speech/non-speech segmentation without the use of statistical models based on
training data?’, is successfully addressed. When audible non-speech is expected to be
present in the audio though, a bootstrap segmentation based on silence will not be
sufficient. Therefore, a new solution is needed to solve this research problem. The
SHoUT SAD subsystem addresses the problem by applying a model-based segmenta-
tion component to create the bootstrap segmentation. After the initial segmentation
step, three models are trained on the audio under evaluation: a model trained on
silence, a model trained on audible non-speech and a model trained on speech. Each
of these models is trained on the data that is being segmented. By applying the three
models, the subsystem is able to perform high quality SAD.

In the following section, after discussing the definition of speech and non-speech,
the algorithm is described that is used by the SHoUT SAD subsystem. In section 4.3
the features are described and in section 4.4, the two confidence measures are discussed
that are needed for deciding which part of the bootstrap segmentation is going to be
used to train the new models. In section 4.5 the component that is used to create the
bootstrap segmentation is discussed. The bootstrap component is a standard model-
based segmentation component for Dutch broadcast news. Finally, in section 4.7 the
evaluation of the SHoUT SAD subsystem will be discussed.

4.1 What is considered speech?

When people talk they produce speech, even if what they say is drown out by loud
noises or by other speech. For some applications it might be wanted that a speech
activity system marks such corrupted speech as actual speech, but when SAD is used
as a preprocessing step for ASR, corrupted speech that the ASR subsystem is not able
to process correctly anyway, might as well be marked as non-speech. On the other
hand, during evaluation, it should be penaltilized if the system is not able to recognize
certain parts of the speech. In this thesis, speech is marked as actual speech if the
transcriber is able to hear what is being said. The system is expected to process all
types of speech as long as a person, the transcriber, is able to understand the content
of this speech. Therefore the SAD subsystem needs to be able to classify all speech
fragments as actual speech. Even if the fragments contain high levels of noise.

4.2 The algorithm and its steps

The algorithm described in this section aims at training models for the HMM-based
segmentation subsystem on the audio it is processing instead of on a separate training
set. The subsystem should eventually output a transcription for all speech segments.
All other audio events (such as anchor jingles, sound effects or silence) will not be
used for further processing, but in order to obtain a speech segmentation, all these
fragments need to be marked as non-speech. Therefore, the proposed subsystem trains
three models: a silence model, a model for audible non-speech and a model for speech.

In Figure 4.1 the successive algorithm steps are shown. First the audio stream
is cut up in chunks of ten minutes. As the number of Gaussians needed in each

58

Speech activity detection

GMM is dependent on the amount of data, using chunks simplifies the tuning of the
system parameters. In the final algorithm step, the chunks are concatenated. When
two neighboring segments from different chunks are assigned to the same class, the
segments are merged.

For each chunk, first a bootstrap segmentation is created. This segmentation
is used to train models for silence and audible non-speech (first light-gray box in
figure 4.1). After training of these models, a model is created for all speech in the
recording (second light-gray box). Once all three models are created, it is checked
if the audible non-speech model is actually needed. If this is not the case, the non-
speech model is discarded and two new models are trained for silence and speech (final
light-gray box). In the following subsections, the three steps will be discussed further.

Figure 4.1: The algorithm of the speech activity detection subsystem. The audio recording

is cut in chunks of 10 minute segments and the procedure within the outer box is performed

for each chunk.

59

Chapter 4

4.2.1 Bootstrapping

Each audio chunk is first segmented using a bootstrapping component which segments
the data in speech and non-speech fragments. Although the performance of this boot-
strapping component does not need to be optimal, it is important that the majority
of the data classified as speech actually is speech. For the segments classified as non-
speech, it is less of a problem when some speech segments are included, as long as
most of the silence and sound segments are classified as non-speech.

4.2.2 Training the models for non-speech

Next, a silence and a sound model are created from the part of the data classified as
non-speech. Two measures are developed to calculate the confidence that a segment is
actually silence or audible non-speech. In section 4.4 these measures will be discussed.
All non-speech segments are labeled with the two confidence scores and a small part
of the non-speech data that is marked with the highest silence confidence score is used
to train an initial silence model. A small amount of data that is labeled with high
audible non-speech confidence scores is used to train the initial ‘sound’ model.

Using these silence and sound models and the primary speech model, a new seg-
mentation is created. This segmentation is used to train silence and sound models
that fit the audio very well simply because they are trained on it. All data assigned to
the sound and silence models by the new segmentation are merged and any samples
that were originally assigned to the speech model in the first iteration are subtracted
from the set. This is done to avoid that the sound model starts pulling away all the
data from the speech model. This risk is present because although the sound model is
already trained on the data that is being processed, the speech model applied is still
the old model trained on outside data. Therefore, the sound model may fit all of the
data better (including speech segments) so that during the Viterbi alignment, speech
segments may be assigned to the sound model.

The remaining data is divided over the silence model and the sound model as
before. The silence model receives data with high silence confidence scores and the
sound model receives data with high audible non-speech confidence scores. This time
though, the confidence threshold is not set as high as the first time and consequently
more data is available to train each model and therefore more Gaussians can be used
to train each GMM. This procedure is repeated a number of times. Although the
silence and sound models are initialized with silence and sound respectively, there is
no guarantee that sound is never classified as silence. Energy is not used as a feature
(see section 4.3) and some sound effects appear to be modeled by the silence GMM
very well. Because the goal is to find all speech segments and discard everything else,
this is not considered a problem.

4.2.3 Training all models

After the silence and sound models are trained, a new speech model will be trained
using all data classified as speech. By now, non-speech will be modelled well by the
sound and silence models so that a Viterbi alignment will not assign any non-speech

60

Speech activity detection

to the speech model. This makes it possible to train the speech model on all data
assigned to it and not only on high confidence regions. Once the new speech model
is created, all models are iteratively retrained with increasing numbers of Gaussians.
At each training iteration the data is re-segmented. Note that in this phase, all data
is being used to train the models. During the earlier iterations, the data assigned to
the speech class by the bootstrap segmentation component was not used to train the
silence and sound models, but because now also the speech model is being retrained,
it is less likely that using this data will cause the sound model to pull speech data
away from the speech model.

4.2.4 Training speech and silence models

The algorithm works for audio of various domains and with a range of non-speech
sounds, but it is not well suited for data that contains speech and silence only. In
that case the sound model will be trained solely on the speech that is misclassified at
the first iteration (because the initial models may be trained on data not matching
the evaluation data, the amount of misclassified speech can be large). During the
second training step the sound model will subtract more and more speech data from
the speech model and finally instead of having a silence, sound and speech model,
the system will contain two competing speech models. Therefore as a final check,
the Bayesian Information Criterion (BIC) is used to check if the sound and speech
model are the same. As shown in chapter 2, section 2.3.4, the design parameter
in the BIC formula that needs tuning on matching data can be omitted when the
number of Gaussians in the separate speech and sound models is the same as the
number of Gaussians in the combined model. Therefore a new model is created from
the data classified as speech and from the data classified as sound, with exactly as
many Gaussians as the two separate models together. If the ∆BIC score is positive,
both models are trained on speech data and the speech and sound models need to
be replaced by a single speech model. Again, a number of alignment iterations is
conducted to obtain the best silence and speech models.

4.3 Feature extraction

For speech activity detection, Mel Frequency Cepstral Coefficients (MFCC) are fre-
quently used as input feature vectors. Also for the SHoUT SAD subsystem, MFCC
is chosen for feature extraction (twelve coefficients). It is common to add energy to
the feature vector, but for the SHoUT SAD subsystem, the energy feature is omitted
because it will cause audible non-speech to be classified as speech. As will be dis-
cussed in section 4.5, the bootstrapping segmentation component is trained on speech
and silence but not on audible non-speech. If energy is used, it will play a dominant
role in discriminating between the two classes. Because audible non-speech consist
of high energy levels (compared to the low levels of silence), audible non-speech will
most probably end up in the speech class. For the algorithm described in the previous
section it is important that the majority of non-speech, also the audible non-speech,

61

Chapter 4

is actually labeled as such and therefore the energy feature is not used.

Although it is not known what kind of audible non-speech can be expected in
the evaluation data, it is reasonable to assume that a lot of these sounds will not be
generated by a single human voice. In these cases, the zero-crossing feature might
be a good addition to the MFCC features. The zero-crossing feature is calculated
by counting the number of times that the amplitude crosses zero in one frame. It
has been shown in [ID71] that for vowels pronounced by humans, the value of this
coefficient is only varying within small boundaries while the value can be randomly
high or low for other kinds of sounds. Zero-crossing is often used because it does not
require complicated and time consuming calculations. In most work, zero-crossing is
used in combination with the energy feature.

SHoUT uses the first twelve MFCC coefficients supplemented by the zero-crossing
feature. From these thirteen features, the derivatives and the derivatives of these
derivatives are calculated and added to the feature vector, creating 39 dimensional
feature vectors. Each vector is calculated on a window of 32ms audio and this window
is shifted 10ms in order to calculate the next vector.

4.4 Confidence measures

The SAD algorithm described in section 4.2 needs two confidence measures: one for
calculating the confidence that a certain fragment is silence and one to determine if
a certain fragment is audible non-speech. For the confidence measures used, first all
segments that are longer than one second will be split in pieces of one second. The
confidence measures will then return a certain amount of one second segments that
are most likely to be either silence or audible non-speech.

It is determined if a segment is silence by measuring the energy for each frame and
calculating the mean energy of the segment. This calculation is performed for all can-
didate segments (all segments classified as non-speech by the bootstrap segmentation
component) and the resulting values are placed in a histogram. Using the histogram
it is possible to return a top amount of segments with the lowest mean energy. As de-
scribed in section 4.2, a very small amount is chosen for the first iteration and higher
amounts are chosen for later iterations.

For determining an amount of segments that is most likely audible non-speech,
first the same approach is taken as for silence segments: a top amount of segments
is picked with the highest average energy. From these segments a top amount of
segments is returned with the highest mean zero-crossing values. In other words,
this algorithm returns the segments with the highest mean energy and zero-crossing
values. Although audible non-speech segments will have high mean energy values, it
is possible that speech segments even have higher average energy values. It is assumed
that for these speech segments, the average zero-crossing values will be lower than for
the audible non-speech.

62

Speech activity detection

Figure 4.2: A top number of fragments with lowest energy is returned as being silence and

a top number of the fragments with highest energy and highest zero-crossing is returned as

being sound.

4.5 The bootstrapping component:

Dutch broadcast news SAD

The component that is used to create the initial speech/non-speech segmentation
for the SHoUT SAD subsystem is a standard model-based speech activity detection
component, developed for finding speech segments in Broadcast News (BN) recordings.
As BN shows do not contain a lot of audible non-speech, the component is not trained
with any models for music, sound effects or other audible non-speech.

The component consists of an HMM with two strings of parallel states. The
first string represents silence and the second string represents speech. The states
in each string share one GMM as their probability density function. Using a string
of states instead of single states ensures a minimum duration of each segment (see
figure 2.9). The minimum duration for silence is set to 30 states (300ms) and the
minimum duration for speech is set to 75 states.

The speech and silence GMMs are trained on a small amount of Dutch broadcast
news training data from the publicly available Spoken Dutch Corpus (CGN) [Oos00]
(see appendix A). Three and a half hours of speech and half an hour of silence from
200 male and 200 female speakers are used. The models are initialized with a single
Gaussian. The number of Gaussians is increased iteratively until a mixture of 20
Gaussians is reached for both classes. The data is forced aligned to the reference
transcription to ensure the correct placements of speech/silence boundaries. To make
sure that only speech is used to train the speech model, all phones neighboring silence
are not used.

The BN SAD component uses the feature extraction method described in sec-
tion 4.3. This means that frame energy is not used as a feature, but zero-crossing is.
Because energy is not used, the discrimination between silence and speech will have to
be made purely on MFCC features and zero-crossing. It is expected that speech will
be well modeled using these features and that any audible non-speech encountered in
the evaluation data will fit the general silence model better than the speech model
and will therefore be categorized as silence.

If most audible non-speech will be categorized as silence, it is possible to use the

63

Chapter 4

BN component as bootstrapping component for the SHoUT SAD subsystem. In the
following section, experiments will show that this is actually the case. It is even
possible to use the BN component that is trained on Dutch speech as bootstrapping
component for American English speech.

4.6 System parameters

The algorithm for the SHoUT SAD subsystem is developed with the aim to have no
parameters that need tuning on a training set. The only ‘parameters’ left in the system
are the silence and speech models trained on broadcast news data. Fortunately, as
will be shown in section 4.7 it is possible to use these models for evaluation data that
do not match the training data at all and still get good end results.

The system does make use of other parameters such as the number of training
iterations performed at each step of the algorithm or the number of Gaussians used to
train the models. It is assumed though, that these parameters do not need tuning for
specific audio conditions, and that the values of these parameters can be determined
using a single development set. Therefore, a development set is created by adding
sound effects and some musical fragments to a broadcast news recording. By trial
and error the parameters were given their values. The number of Gaussians for each
model in each phase of the algorithm are shown in table 4.6. During all following
experiments, the parameters were kept fixed at these values.

As can be seen in table 4.6, the number of Gaussians for all models are low at first
and increased after each iteration. The final number of Gaussians when the sound
model is determined not to be the same as the speech model, will be 7 for the silence
model, 16 for the speech model and 18 for the sound model. When the sound is
determined to be the same as the speech model and new silence and speech models
are being trained, the final number of Gaussians will be 5 for the silence model and
12 for the speech model.

Also the amount of data that is marked as high confidence silence or sound needs
to be set. For both the silence as sound models, initially 20 seconds of data are used
for each chunk. This 3.33% of the total chunk size is increased by another 20 seconds
in the first three iterations of training the two models. In the final two iterations
of training the silence and sound models, simply all available data that is marked
silence and sound, except for the data that is assigned to speech by the bootstrap
segmentation, are used for retraining. In order to obtain the top amount of data with
high zero-crossing values, a higher amount of data with high energy levels needs to be
selected (see figure 4.2). Therefore, five times as much data with high energy values
are selected as are selected for training the sound model. This means that initially,
100 seconds of data with high energy levels are selected and that at each iteration
this is increased with another 100 seconds.

64

Speech activity detection

Parameter Value
Initial number of Gaussians for the silence model 2
Initial number of Gaussians for the sound model 2
Number of iterations for training the two models 5
Increase of number of Gaussians after each iteration for the silence model 0
Increase of number of Gaussians after each iteration for the sound model 2
Stop increasing the number of Gaussians after iteration 3
Initial number of Gaussians for the speech model 6
Number of iterations for training the three models together 5
Increase of number of Gaussians after each iteration for the silence model 1
Increase of number of Gaussians after each iteration for the sound model 2
Increase of number of Gaussians after each iteration for the speech model 2
Number of iterations for training the silence and speech models

when the sound model is discarded 7
Initial number of Gaussians for the silence model 2
Initial number of Gaussians for the speech model 2
Increase of number of Gaussians after each iteration for the silence model 1
Increase of number of Gaussians after each iteration for the speech model 2
Stop increasing the number of Gaussians for silence after iteration 3
Stop increasing the number of Gaussians for speech after iteration 5

Table 4.1: The system parameters that were given their values during development. The

values of these parameters were kept fixed for all experiments. The parameters are listed

here in the order that they were used in the algorithm.

4.7 Evaluation

The SAD subsystem is evaluated on four different benchmarks. First it is tested
on a broadcast news recording. This experiment will provide information about the
performance of both the BN SAD component and the entire SAD subsystem. Next, to
test system performance on out-of-domain data, the system is evaluated on the RT06s
conference meeting evaluation data. Not only are the topics of these meetings different
from general broadcast news topics, also the audio conditions and the language do
not match the Dutch broadcast news training data (section 4.7.2). A speech/music
test set is used to determine if the algorithm is able to classify music as non-speech
(section 4.7.3), and finally, twelve fragments from the TRECVID07 collection are used
for evaluating the system on varying audio conditions (section 4.7.4).

In chapter 2, two metrics for evaluating segmentation systems were described.
Both metrics are used in the experiments. The music benchmark will be scored with
the metric defined in formula 2.8: the percentage of time frames that are correctly
classified. This metric is used so that it is possible to compare the results to earlier
work on this collection. The other experiments are scored using the SAD error rate
defined by formula 2.9 in section 2.3.5.

65

Chapter 4

4.7.1 Broadcast news evaluation

The broadcast news recording of 27/09/2006 (see appendix A.3) is used to test the
SAD system on the BN domain. The SAD error of the bootstrap component is 4.5%
on this test set. The error rate of the SHoUT SAD subsystem is also 4.5%. For each
chunk, the comparison of the sound and speech models results in discarding the sound
model.

4.7.2 Out-of-domain evaluation

In the first out-of-domain evaluation, the SAD component trained on Dutch broadcast
news data has been used to determine the initial segmentation. Table 4.2 contains
the SAD results on the nine RT06s conference meetings. As a baseline, the error
of the bootstrap segmentation coming from the Dutch Broadcast News component,
is shown. After the final alignment iteration, the overall error of the baseline on
this test set is 26.9% whereas on in-domain Dutch broadcast news it was only 4.5%.
This underlines that the conference meeting data is indeed out-of-domain for the
bootstrapping models. The overall SAD error of the total system is only 4.4%. This
is in line with the state-of-the-art at RT06s. This experiment proves that it is not
needed to use a highly performing segmentation component as bootstrap component
in order to achieve good results.

file ID Bootstrap % missed % false % SAD
BN SAD speech alarm error

CMU 20050912-0900 42.6 2.8 2.8 5.6
CMU 20050914-0900 41.5 2.3 3.5 5.8
EDI 20050216-1051 13.8 0.6 1.2 1.8
EDI 20050218-0900 16.4 0.8 2.1 2.9

NIST 20051024-0930 20.8 3.8 0.7 4.5
NIST 20051102-1323 17.0 0.8 1.5 2.3
TNO 20041103-1130 32.7 4.5 1.3 5.8

VT 20050623-1400 24.1 1.4 2.3 3.7
VT 20051027-1400 31.7 6.5 1.5 8.0

Overall error 26.9 2.50 1.90 4.40

Table 4.2: SAD error rates for the RT06s conference meetings

4.7.3 The IDIAP speech/music evaluation

In the second evaluation, a speech/music test set described in [AMB03] has been
used. The data consists of four audio files that contain English broadcast news shows
interleaved with various genres of music. The first file contains speech and music
fragments of fifteen seconds each. The second file contains fragments of varying lengths
but overall with the same amount of speech as music. The third file contains more
speech than music while the fourth file contains more music. The performance is

66

Speech activity detection

measured by (i) the percentage of true speech frames identified as speech, (ii) the
percentage of true music frames identified as music and (iii) the overall percentage of
speech and music frames identified correctly (see chapter 2, section 2.3.4).

The reference transcripts of this test set only consist of music and speech segments.
Any pauses in speech (silence) are not annotated. Therefore, for this evaluation, if
a silence segment is neighboring two speech segments, it is merged with these two
segments. All other silence and sound segments are labeled as music. This means
that silence between speech and music is always labeled as music although it might
be the end or beginning of a speech segment.

In Table 4.3 the results of the SAD subsystem on the four files are listed. The
SHoUT SAD subsystem does not perform as well as the best system in [AMB03] (on
average 95.2%), but considering that it is initialized with Dutch models and that no
tuning has been done on a training set similar to this data, the average score of 92.1%
can be regarded as satisfactory.

file ID speech music overall
set-1 90.2 95.7 92.9
set-2 88.0 97.0 92.5
set-3 85.1 99.9 92.5
set-4 81.0 99.5 90.3

Table 4.3: Classification results on the IDIAP speech/music test set. The scores are all
percentages of correctly classified frames.

4.7.4 Dutch TRECVID07 ASR evaluation

From the TRECVID07 collection, five minute fragments of twelve different documents
have been randomly selected (see appendix A). These fragments have been manually
annotated and the speech regions are determined by applying forced alignment on the
Dutch speech. Table 4.4 lists the results of the system on these twelve fragments. The
overall error is 11.4% of the total speech in the audio. Note that only 39 minutes of
the in total one hour long test set is actual speech. The bootstrapping BN SAD error
is 20.3%. The most part of this error, 15.8%, is due to missed speech and 4.5% is due
to false alarms.

4.8 SAD for speaker diarization

When determining the SAD performance, NIST defines a small time region with which
the hypothesis segments are allowed to mismatch the reference transcript without
being counted as missed speech or false alarms. This so called ‘color’ of 30ms is applied
so that small deviations in segment borders that are debatable do not influence the
error rate. Because of this, NIST filters small non-speech gaps of less than 30ms out of
the reference transcript. When these small gaps are not removed from the hypothesis
transcript, the gaps will count as errors. Therefore, in order to obtain the optimum

67

Chapter 4

file ID speech BN % missed % false % SAD
(sec) SAD speech alarm error

15190 274.65 5.9 5.0 1.4 6.4
3273 156.86 38.6 3.9 9.0 12.9

34837 193.59 20.8 11.1 5.3 16.4
3484 196.91 37.2 18.1 0.2 18.2

34973 262.99 7.2 1.7 0.1 1.8
35202 168.71 15.8 4.4 3.0 7.4
35447 204.54 21.5 1.6 7.8 9.4
35757 215.79 16.5 6.8 1.7 8.5
36058 179.62 34.7 15.3 4.5 19.8
36366 73.32 37.4 6.0 15.9 21.9
36626 223.59 17.5 11.5 1.4 12.9
36641 176.06 20.6 15.7 0.1 15.7

Overall 2326.62 20.3 8.3 3.2 11.4

Table 4.4: SAD error rates for the twelve fragments of the TRECVID07 ASR evaluation

set. Each fragment is five minutes long. The third column contains the error of the first

stage BN alignment.

score, for SAD evaluation, small gaps are deleted from the hypothesis files. This
means that very short pieces of silence are included in the speech segments. For ASR
this is no problem because these short silences will be handled by the silence model of
the ASR subsystem. In fact, too short speech segments will hurt recognition because
there might not be enough context information to perform proper language modeling.
During the development of the speaker diarization subsystem though, experiments
showed that, although the effect is sometimes little, these small silences do hurt the
diarization subsystem (see chapter 5, section 5.4). This subsystem assumes that all
input audio is speech from one of the speakers and no silence model is available to
remove any short pauses in speech. Therefore any silence in the audio will act as
noise during training of one of the speaker models. In order to reduce this source
of noise, the SAD segmentation that is passed to the speaker diarization subsystem
should contain small non-speech segments. Therefore, the segmentation for speaker
diarization is not filtered as is done to obtain the best SAD error rate.

4.9 Conclusions and future work

Filtering non-speech out of an acoustically heterogeneous video collection such as the
TRECVID07 collection is one of the many challenges when automatic annotating the
collection. The variety of such collections make it hard to train task specific audible
non-speech models. Instead a SAD subsystem was proposed that automatically trains
a model for audible non-speech, a so called sound model, for each recording in the
collection. The system is tested on three benchmarks with promising results.

On the TRECVID07 ASR evaluation set, 8.3% of the speech is classified as non-

68

Speech activity detection

speech. This means that the ASR subsystem will never be able to correctly recognize
the words in these regions. On the other hand, using this SAD subsystem, only 3.2%
non-speech will be processed by the ASR subsystem. If speech activity detection is
not used at all, the percentage of non-speech in the data would be 54% (21 minutes of
the total test set is non-speech). Manual inspection of the missed speech showed that
most missed speech is speech mixed with various sources of non-speech. It is hard to
perform correct ASR on this kind of speech and therefore the loss of being able to
process the missing 8.3% of the speech is considered less important than the gain of
not needing to process the 54% of non-speech, that would have led to an increase of
insertion errors.

The system does contain some system parameters (discussed in section 4.6), but
the SHoUT SAD subsystem does not contain any parameters that need tuning on
a training set. This makes the algorithm robust for varying audio conditions. It
was shown that it is not needed to use a high performing bootstrap segmentation
component in order to obtain good final results, and therefore it is not a problem that
the speech/silence models used in the bootstrap component are sometimes trained on
data mismatching the evaluation data. Having noted this, it would be interesting to
investigate other methods to obtain the initial segmentation that do not require any
models. One method that might be able to replace the model-based approach is to
initially segment on voiced speech fragments. Determining voiced speech regions can
be done without the use of models and the majority of the audible non-speech of the
resulting segmentation will actually be labeled as non-speech, making it possible to
use the proposed algorithm.

A problem related to SAD that is not yet addressed by the proposed system is
detecting and discarding foreign speech fragments. Similar to non-speech segments,
feeding foreign speech into the ASR subsystem will influence its performance neg-
atively. Unfortunately, as was shown by the experiments on the RT06s conference
meeting data, the SHoUT SAD subsystem will classify speech from foreign languages
as speech. A solution to this problem is to apply a language detection subsystem
directly after the SAD subsystem. Speech from a language for which an ASR system
is available can be passed to that system, while speech of other languages can be
discarded.

69

Chapter 4

70

CHAPTER 5

SPEAKER DIARIZATION

Speaker diarization is the task of detecting: ‘Who spoke when?’. Speaker diarization
systems segment and cluster speech on the basis of speaker features. Being able to
group all speech from one particular speaker is a useful pre-processing step for vari-
ous speech processing tasks. For example, an application that summarizes meetings
may need to keep track of who said what to whom, and a dialogue act tagger needs
utterance boundary information and can exploit speaker change information to model
interruptions. Speaker diarization is also useful as an initial step for tracking people
across recordings, making it possible, for example, to search for quotes of a specific
person in multimedia collections.1

The SHoUT ASR subsystem uses the speaker diarization information to optimize
its decoding performance. The speaker information is used for normalizing the features
for decoding and for adaptation of the acoustic models. For example, vocal tract
length normalization and unsupervised acoustic model adaptation (see chapter 2) can
be performed for all speech of each speaker. Applying these techniques to speaker
clusters is more effective than applying them to the individual speech segments. This
will be shown in chapter 6.

As discussed in chapter 3, the aim of each subsystem is to perform its task with
as few parameters and statistical models as possible, because parameters need tuning
on a development set and models require training on a training set. The less prior
knowledge such as training and development data is used, the more robust the system
will be against unknown audio conditions. If the system does not contain any tunable
parameters and models, no training set is required and this makes it possible to
directly use the system for new unseen data without first tuning its parameters and
train its models on new data. This approach was taken for the speaker diarization
system that has been described in chapter 2. This diarization system is model-based,
but its models are created on the audio that is being processed and not on a pre-defined
training set so that no training data is required [ABLM02]. In this chapter, after
summarizing the algorithm proposed by [ABLM02], the first version of the SHoUT

1The research presented in this chapter is, in part, published in [vLH07, WH08, HW07]

Chapter 5

diarization subsystem that is based on this algorithm will be described (section 5.2).
This subsystem, and the three variants of this system discussed later in this chapter,
address the research question: ‘How can a speaker clustering system be designed that
does not require any statistical models built on training data?’.

The first variant of the speaker diarization subsystem was used during the RT06s
diarization benchmark and therefore it will be further referred to as SHoUTD06. The
SHoUTD06 diarization subsystem performed well at RT06s, but not as well as the sys-
tem described in [AWP07]. In order to answer the question: ‘What is the performance
of each individual step in the diarization algorithm?’, and to improve SHoUTD06, a
thorough analysis of the system has been performed. This analysis is described in
section 5.3.

Using the findings of the analysis, a second diarization subsystem, referred to
as SHoUTD07, was created and the findings were also incorporated in the ICSI di-
arization system that participated RT07s. The results of this benchmark and the
post-evaluation analysis that were conducted by the author in cooperation with ICSI,
will be discussed in section 5.4.

At each merging iteration of both the SHoUTD06 and the SHoUTD07 diarization
subsystems, all speaker models are pairwise compared. Especially for long recordings
where a high number of initial speaker models is generated, this procedure is compu-
tationally very expensive. Therefore, in section 5.5 the research question: ‘How can
a speaker clustering system be designed that is able to process long recordings with
reasonably computational effort?’, will be answered. Two solutions are presented:
SHoUTDCM and SHoUTD07∗.

5.1 Agglomerative model-based speaker diarization

In chapter 2 the speaker diarization algorithm that is used as a baseline for develop-
ing the system for this research was discussed in depth. This system was originally
developed by [ABLM02] and adopted by the International Computer Science Insti-
tute (ICSI). It is model-based, but the models are created on the audio that is being
processed and not on a pre-defined training set. The system proved itself in various
benchmark evaluations for broadcast news ([AW03, WFPA04]) and rich transcription
of meetings ([AWPA06, AWP07, WH08]).

As explained in chapter 2 (section 2.4), an agglomerative algorithm is used. This
means that speech data is first divided in a large number of clusters. These clusters
are merged pairwise until the correct number of clusters is reached.

Figure 5.1 presents the five steps of the algorithm. In the first step, Speech Activity
Detection, all non-speech audio is removed from the data and only speech is used in
the remainder of the system. Second, during initialization the speech data is randomly
divided in a number of clusters and by iteratively training models for these clusters
and re-aligning the speech data, speaker models are created. In the third step, BIC is
used to determine which two models are most similar and in the fourth step, if the two
models are not regarded to be from the same speaker, the optimum number of clusters
is reached and the process finishes. Finally if the two models are indeed regarded to

72

Speaker diarization

Figure 5.1: A schematic representation of the speaker diarization algorithm. The steps for

creating the initial 16 models and merging the models each consist of a number of training

and re-alignment iterations.

be from the same speaker, the two models are merged into one single model and the
system resumes at the third step. In the following sections the performance of each
of these steps will be investigated.

The Bayesian Information Criterion (BIC) is used for both finding the two most
similar models and determining when to stop the system (see chapter 2). Using BIC,
the similarity of two models is calculated by comparing scores of the two models with
the score of a single model that is created using the data of the two separate models.
As shown in chapter 2, section 2.3.4, no extra tuning parameters are needed when the
number of Gaussians in this single model is equal to the sum of Gaussians in the two
separate models. This conforms to the approach of not using any tunable parameters
in the system.

5.2 The RT06s submission, SHoUTD06

The first speaker diarization system developed for this research is a straightforward
implementation of the agglomerative model-based algorithm. It was first tested at the
NIST Rich Transcription 2006 Spring (RT06s) evaluation benchmark2 and therefore
this version of the diarization subsystem will be referred to as SHoUTD06.

SHoUTD06 was implemented using modules available from the SHoUT ASR sub-
system. At the time of the evaluation it was not yet possible to create an HMM
topology with strings of states sharing a single GMM as drawn in figure 2.9. There-
fore in this system, each speaker model consists of a single HMM state. Instead of
enforcing a minimum duration of each segment by creating the strings of states, the
duration of each segment is influenced by setting the transition probabilities to fixed
values. The transition probability from one speaker to another is set to the small
value of 1

200
, representing an average segment length of 2 seconds.

2RT06s was participated in cooperation with TNO for the AMI project

73

Chapter 5

The system contains five other parameters which are tuned to the RT05s conference
meeting evaluation data that is part of the RT06s development data. As shown in
chapter 2, section 2.4.4, none of these five system parameters are sensitive for changes
in audio conditions [AW03]. In the remainder of this section, a short description of
SHoUTD06 will be given and the evaluation results will be discussed.

5.2.1 System description

For the first version of the SHoUT speaker diarization subsystem, SHoUTD06, the fea-
ture extraction component of the Sonic LVCSR toolkit [PH03] is used. This compo-
nent calculates 12 Perceptual Minimum Variance Distortionless Response (PMVDR)
cepstral coefficients. This feature type was developed to be more noise robust than
MFCC features (see [PH03]). For speech recognition, energy is added to the twelve
coefficients and the first and second derivatives of these features are concatenated to
the feature vectors. For this diarization system though, only the PMVDR coefficients
are used.

The next step in the algorithm is the creation of the initial clusters. Following the
baseline system described in [AWPA06], a fixed number of initial clusters is set. For
conference meetings ten clusters are used and for lecture meetings the initial number
of clusters is five. Note that the number of initial clusters is fixed for all audio files,
no matter how long the files are. The number of Gaussians for each initial model
though, is dependent on the total amount of data that is used to train the model.
This means that the initial models will contain more Gaussians for longer audio files
than for short files. Experiments on the development data showed that this approach
outperforms the variant with a fixed number of Gaussians. The optimum number of
training samples per Gaussian is 800. For the RT06s conference meetings, this means
that each initial model is trained with approximately 10–14 Gaussians. Making the
number of Gaussians dependent on the duration of the meeting (the number of training
samples) will ensure that the models are not under- or over-trained when the duration
of the audio varies. The average number of Gaussians is remarkable higher than the
five Gaussians per model reported in [AWPA06]. It suggests that more Gaussians
are needed because this system only uses 12 feature coefficients instead of the 19
coefficients in [AWPA06].

The speaker models are all trained in an iterative process. Each model is first
trained with a single Gaussian and then the model will split its Gaussian with the
highest weight until the desired number of Gaussians is reached. At each iteration,
before splitting a Gaussian, all Gaussian means and the covariance matrices will be
adjusted in a number of training runs until the overall model score does not improve
more than 1.5% relative to the previous training run. After the training of all models,
the data will be re-aligned using Viterbi and a new training run (with the existing
models) will be started (see figure 5.1). The merged speaker models are created in the
same way as the single speaker models. In order to speed up the initialization, the
model with the most Gaussians is used as initial model. Then, the model is trained on
the data of both speakers and the number of Gaussians is increased iteratively until
the correct number is reached.

74

Speaker diarization

Finding candidate models to merge and deciding when to stop merging is done
with BIC. Figure 5.2 illustrates the merging process. First two models are picked that
will be replaced by a single merged model. The remaining models are left unchanged
as the merged model is being trained. If there are no two models with positive BIC
score that can be merged, the system stops and topology (a) will be the final topology.
Otherwise, after training the merged model, all models are trained and the data is
re-aligned a number of times. This is also shown in the bottom gray box of figure 5.1.

Figure 5.2: The SHoUTD06 system uses BIC to compare models pairwise (a). The two
models that are considered most identical (biggest positive BIC score) are replaced by a
single model trained on data from both separate models (b). After this replacement, the data
is re-aligned and all models are retrained (c).

5.2.2 RT06s evaluation

The benchmarks for Rich Transcription of meetings contain two speaker diarization
tasks (see appendix A). For the Multiple Distant Microphone (MDM) task, multiple
microphones are available that are all allowed to be used while for the Single Dis-
tant Microphone (SDM) task, only one microphone picked by NIST, is allowed to
be used. For the MDM SHoUTD06 submission, only the SDM recording is used for
feature extraction and the extra information that can be obtained by using multiple
microphones, for example beam forming, is not used. The speaker diarization error
rates of the diarization system on the conference meeting audio are listed in table 5.1.

Table 5.1 contains the results with and without overlapping speech regions taken
into account for calculating the Diarization Error Rate (DER, 2.4.2). It is surprising
to see that the DER increases considerably when overlapping speech regions are con-
sidered during scoring. Part of this performance degradation is due to the fact that in
2005 and 2006 the speaker segment borders were annotated manually. Especially for
overlapping speech regions this may introduce some noise as it is hard to determine

75

Chapter 5

Test set DER (%) DER (%)
without overlap with overlap

RT05s conference room 21.6 30.2
RT06s conference room 22.7 37.2
RT06 lecture room 30.8 32.4
Processing speed (×RT) 4.63

Table 5.1: The speaker diarization results of SHoUTD06 measured with and without over-

lapping speech regions.

when exactly someone starts or stops speaking. But most part of the degradation
can be attributed to the fact that the system is simply not able to model overlapping
speech. Because of the Viterbi alignment, all speech is per definition assigned to one
single speaker. In the next section it will be analyzed how much of the total DER is
actually due to missed overlapping speech.

At the RT06s benchmark the SHoUTD06 system performed state-of-the-art and
this result shows that the system parameters are tuned sufficiently and that the soft-
ware is performing adequately. The analysis described in the next section will explain
why SHoUTD06 was beaten by the ICSI diarization system.

5.2.3 Post evaluation changes

The audio files in the test collection of the RT06s benchmark are all more or less of
the same length. Making the number of Gaussians variable helps because the files are
not precisely of the same length and the amount of speech in the audio varies for each
recording. But for more extreme variations in audio length, keeping the number of
initial models fixed will result in models trained on too little data for short recordings
and models trained on too much data for long recordings. Models trained on too little
data tend to get over-trained and this might prevent models from the same speaker
to be selected for merging. Models that are trained on high quantities of data might
be so general that all models become similar and are all merged together. In order
to prevent these two kinds of mistakes, after the benchmark the system was changed.
Instead of making the number of Gaussians variable, the number of initial models was
varied and the number of Gaussians was fixed for each initial model. The analysis
described in the following section is performed on this new version of SHoUTD06.

5.3 SHoUTD06 system analysis

In order to get insight in the behavior of the diarization system and the performance
of each of the five components, a thorough analysis has been conducted. First, the
SHoUTD06 system has been compared to the ICSI diarization system. This compar-
ison exposed a number of differences between the ICSI and the SHoUTD06 systems.
After changing the SHoUTD06 system, the performance of the two systems on the test
set were in the same range. The new version of the diarization system was used to

76

Speaker diarization

perform a set of oracle-based experiments [Bin99].
The analysis described in this section focuses on the performance of the diarization

system. Although speech activity detection is part of the diarization subsystem, for
both the comparison with the ICSI system and for the oracle experiments it is decided
to use the SAD component developed by ICSI only. Using the same SAD component
for both systems ensures that any variation in DER can be attributed to differences
in the speaker diarization part.

5.3.1 RT06s post-evaluation test set

The RT05s test set and the RT06s evaluation set turned out to be relatively small
for a proper evaluation of speaker diarization systems (10 and 9 meeting recordings
respectively). A small change in the system can be responsible for a big change of
the DER of a single recording. If only a few recordings are used as test set, it is
possible that the system becomes over-trained for the test set and that the system
improvements turn out to be less helpful during the evaluation of other data. Over-
training can be avoided by using a test set that is as large as possible.

On the other hand, the larger the test set, the longer it takes to evaluate a system
with it. Especially during development this can become a practical problem because
the longer an evaluation run takes, the fewer experiments can be conducted. It is
possible to evaluate multiple recordings in parallel on different machines in order to
reduce the waiting times, but in practice this speed-up is limited as the number of
available machines is not infinite.

For the SHoUTD06 system analysis, a test set is created that is slightly longer
than the RT06s evaluation, but that is short enough to conduct experiments with
reasonable high throughput. Table 5.2 contains a list of the twelve conference room
recordings that make up this test set. This test set will be referred to as the RT06s
post-evaluation test set.

Meeting ID Meeting ID
AMI 20041210-1052 AMI 20050204-1206
CMU 20050228-1615 CMU 20050301-1415
ICSI 20000807-1000 ICSI 20010208-1430
LDC 20011116-1400 LDC 20011116-1500
NIST 20030623-1409 NIST 20030925-1517
VT 20050304-1300 VT 20050318-1430

Table 5.2: The RT06s post-evaluation test set: the 12 conference meeting recordings used

for system analysis.

All experiments for this analysis have been performed on the Single Distant Mi-
crophone (SDM) condition, meaning that only one microphone signal is available for
each recording. The Multiple Distant Microphone (MDM) condition was not used,
because the speaker diarization system will be applied in a lot of situations where
multiple microphone signals are not available. The RT07s submission, discussed in
section 5.4, does take advantage of the multiple signals in the MDM condition.

77

Chapter 5

5.3.2 Comparison to the ICSI RT06s system

A number of differences were found during the comparison of SHoUTD06 with the
ICSI RT06s speaker diarization system. The ICSI system uses feature vectors with a
dimension of 19 while the dimension of the PMVDR vectors of SHoUTD06 is only 12.
The number of initial models and the number of Gaussians per model is fixed for the
ICSI system. For conference meetings it uses 16 initial models and 5 Gaussians per
model. The SHoUTD06 system only uses 10 initial models and the number of initial
Gaussians is variable. As explained in section 5.2.1, the system will be more robust
against variable recording lengths, when not the number of Gaussians but instead
the number of models is variable. But, because the recordings in the test set and
the evaluation sets are all of the same length, for the analysis, the number of initial
models of the new SHoUTD06 system is kept fixed at 16 as it is done in the ICSI
system. After switching the SHoUTD06 system to MFCC vectors of dimension 19 and
to 16 initial models, experiments show that the optimum number of initial Gaussians
is five.

As described in [AWP07] the HMMs of the ICSI system that represent the single
speakers, each consist of a string of states. The use of these strings enforces a minimum
duration of each speech segment as there are no transitions that skip states (see
figure 2.9). Note though, that during the Viterbi alignment the non-speech fragments
are skipped and that these non-speech fragments are later added to the transcription.
During this process single speech segments for which the minimum duration is enforced
can be cut in multiple shorter segments. The SHoUTD06 system only influences the
speech segment durations by the value of its transition probability.

The final difference between the two systems is the method used for selecting
speech data for each initial GMM. The SHoUTD06 system simply cuts the speech
data linearly in 16 pieces and uses a piece for each initial model. The ICSI system
cuts the data in twice as many pieces. The first half of the pieces is divided linearly
over the model and after this, the second half of the pieces is also assigned to the
models linearly (see figure 5.3). This way, each model is provided speech originating
from two different regions of the recording. The same could be done with three or
more batches of data. Figure 5.3 shows how the data can be divided when as many
pieces as initial models are used (N=1), when twice as many pieces are used (N=2)
or when three times as many pieces (N=3) are cut out of the speech data.

After these findings, the SHoUTD06 system was changed so that it is possible
to use a string of states for each speaker HMM and to initialize the models using
data from multiple speech regions. The diarization error rate of SHoUTD06 before
changing either of these two aspects (but after switching to the MFCC features) was
14.70% while the error rate of the ICSI system is 11.74% DER. Tuning experiments
show that for the SHoUTD06 system, the optimum number of states per HMM is
250 (a minimum duration constraint of 250ms). Enforcing the minimum duration
reduces the diarization error rate by 1% absolute to 13.70%. Although no theoretical
advantage can be thought of to initialize the models by cutting up the data in twice
the number of pieces as there are initial models (N=2 in figure 5.3), the SHoUTD06

system has been changed to make this possible resulting in a further drop of the DER

78

Speaker diarization

Figure 5.3: This figure illustrates how a speech recording is divided into pieces for training
the initial models of the speaker diarization system. In this example data for 6 initial models
are needed (blocks A to F). It is possible to select the data continuously from the recording
(N=1) and to train each model with one piece. It is also possible to create multiple smaller
pieces (N=2,3,etc) and train each model with two or more of those pieces.

to 11.69%.
It should not matter how the data is divided over the models for initialization be-

cause it is unknown beforehand how the speakers are distributed in the data. Whether
method N=1 or N=2 is used, the models are provided with unknown randomly chosen
initial data. It might be possible that the N=2 method is favorable because of some
typical feature of the speaker distribution in meetings, but this possibility has not
been investigated. Instead, the following experiments focus on the second parameter
that is important during initialization: the number of iterations for training the mod-
els. As depicted in figure 5.1 (top-right gray box), during initialization of the models,
the data is re-aligned N times and the models are trained with x training iterations.
In the ICSI system, N = 3 and x = 5. In the SHoUTD06 system, N is also set to
three, but it seems that this system needs more training iterations and therefore, x is
set to 20. The number of training iterations was originally dependent on how well the
models were improving during each iteration. Instead of a fixed number of times, the
models were trained until a training iteration did not improve the model with more
than 1.5%. Experiments show that in general not more than 20 iterations are needed
for this and therefore for comparison with the ICSI system, the setting x = 20 has
been chosen.

Number of training iterations
5 10 20 30

DER with N=1 14.30 14.32 13.70 11.76
DER with N=2 14.67 12.22 11.69 11.89
DER with N=3 14.87 14.79 11.89 11.64

Table 5.3: Diarization error rates using the three methods of data initialization with various
number of training iterations. For all initialization methods, the DER decreases with the
increase of the number of training iterations.

In table 5.3 the diarization error rate is listed for the three initialization situations
N = 1, N = 2 or N = 3 (see figure 5.3) and with a varying number of training

79

Chapter 5

iterations. The trend in this table is that the DER decreases when the number of
training iterations increases. Twenty training iterations is sufficient for N = 2 and
N = 3, but on this test set for N = 1 more iterations are needed. Even though the
test set is chosen as big as possible, it is still noted that small random changes to the
system can influence the DER significantly. Experiments with more data are needed
to prove whether the outlier of 13.70% when 20 iterations are used with N = 1, is due
to such a random change or that the initialization method with N = 1 actually does

need more training iterations and therefore is less efficient than N = 2 or N = 3. But
because no theoretical reason is available why N = 2 should be better than N = 1, the
only conclusion drawn from these experiments is that in general, the DER decreases
when the number of training iterations is increased. The risk of over-training the
models when more iterations are used is minimal because the training data is the
same data as the evaluation data. The only disadvantage of using more training
iterations is a slower system. Fortunately the system speed is still manageable using
30 training iterations and therefore the number of training iterations is increased from
20 to 30. The initialization method (N=1) is not changed.

Meeting ID % SAD % Spkr DER
error error

AMI 20041210-1052 1.60 7.10 8.71
AMI 20050204-1206 4.80 4.50 9.27

CMU 20050228-1615 10.50 4.80 15.28
CMU 20050301-1415 5.40 1.90 7.27
ICSI 20000807-1000 5.00 4.00 9.04
ICSI 20010208-1430 4.80 12.80 17.61
LDC 20011116-1400 5.10 4.40 9.45
LDC 20011116-1500 7.00 7.90 14.93
NIST 20030623-1409 1.70 2.70 4.31
NIST 20030925-1517 13.40 12.40 25.79

VT 20050304-1300 1.60 3.10 4.72
VT 20050318-1430 7.50 16.40 23.87

Overall 5.30 6.40 11.76

Table 5.4: The results of the diarization system on the test set of twelve conference meet-
ings. The Diarization Error Rate (DER) is the sum of the SAD error and the error due to
classifying speech as the wrong speaker (spkr error).

The comparison of the SHoUTD06 system with the ICSI diarization system revealed
a number of shortcomings of the SHoUTD06 system. Enforcing a minimum segment
duration by using multiple states for each speaker HMM and increasing the number
of training iterations improved the system. The DER of 11.76% is in the same range
as the error rate of the ICSI system (11.74%). The performance of the SHoUTD06

system is listed in table 5.4. In the remaining of this section, the SHoUTD06 system
will be further analyzed and for each step in the algorithm it will be determined what
its contribution to the DER is.

80

Speaker diarization

5.3.3 Oracle experiments

The remaining analysis will be based on oracle experiments. Oracle experiments are
‘cheating’ experiments where the system or part of the system can make use of what-
ever knowledge is available. Even the optimal system output, the reference transcripts,
may be used. In a sense, the system is an oracle that knows everything [Bin99].

In this section, oracle experiments are used to assess the performance of separate
system components. For each of these tests, the components that are not tested are
replaced by an experimental setup that performs optimally by using knowledge of the
reference transcription (the oracle knowledge) and the components that are tested
are left unchanged. At first all components will be replaced by the oracle setup and
the DER will be measured. Then, one at a time, the actual components are placed
back into the system. The increase in DER after replacing a component is attributed
to shortcomings of that particular component. After all components are placed back
into the system, a part of the DER of 11.76% can be attributed to each component.
This method is depicted in figure 5.4.

The same test set used in the previous experiments will be used for the oracle
experiments (table 5.2). The diarization error rate (DER) of 11.76% (see table 5.4)
is calculated using the NIST metrics and the total diarization error is the sum of two
rates: the Speech Activity Detection (SAD) error and the speaker classification error.
The SAD error is the percentage of speech and non-speech that is misclassified. The
speaker classification error is the error due to misclassifying speakers [FA07]. The
various oracle experimental setups that replace the actual components all make use
of the reference transcripts in one way or another. Before discussing the experimental
setups and the experiment results, it is first described how the reference transcripts
are used.

5.3.4 Reference transcripts

For scoring the output of diarization systems, a reference transcript is manually cre-
ated labeling the fragments that each speaker is talking [FAG08]. In the oracle ex-
periments, these reference transcripts are used in three different ways. In the first
experiments of the series, the transcripts are used as input for the diarization system.
One way of doing this is to replace the SAD output with the transcription. In this
case the IDs of all speakers in the transcripts are replaced with one ID (‘speech’) and
all overlap regions are replaced by single regions. Another method for using the refer-
ence transcripts as input, is to replace the initial clustering with a perfect clustering
obtained from the reference transcript.

The reference transcripts are also used to take merging decisions. Instead of per-
forming BIC, the oracle merge component will score a segmentation with the NIST
scoring tools3 and determine for each cluster which speaker it represents most (which
speaker is classified by that cluster the longest period of time). The purity of each
cluster is then calculated as follows: The purity of cluster A is the time that the
representing speaker was classified as A divided by the total amount of time that was

3http://www.nist.gov/speech/tools

81

Chapter 5

classified as A (see chapter 2, section 2.4.2). The oracle merge component will then
decide to merge the two clusters with the same representing speaker that have the
highest purity.

Third, the system is modified so that an intermediate hypothesis segmentation file
can be printed after each merging iteration. The reference transcript is then used for
scoring these segmentations for monitoring purposes.

5.3.5 Experimental set-up, six oracle experiments

In total, six oracle experiments have been conducted. In the first experiment, all
algorithm steps are replaced by an experimental setup that uses oracle information,
and at each following experiment one of the components is placed back into the
system. This procedure is depicted in figure 5.4. Next, the six experimental setups
are described.

Figure 5.4: The six experimental setups. The yellow boxes represent the oracle components

that replace the actual components. The oracle components perform their task using the

reference transcript. In each experiment, one component is placed back into the system.

Perfect topology

If the algorithm would do a perfect job, the HMM would contain exactly one model
per speaker and each model is trained on all the available speech of its speaker. Even if
the algorithm would not make a single mistake and this perfect topology was created,
the system is not expected to have a perfect diarization score because the system is not
able to model overlapped speech and because the models, with their limited number
of Gaussians, might not be able to classify all speech perfectly. In order to test the

82

Speaker diarization

system on these limitations, in the first experiment the reference transcription is used
instead of the SAD component. For each speaker in the reference, one model is trained
using all speech from that particular speaker. The total number of Gaussians in the
system is the same as normal (80) and they are divided over the clusters based on the
amount of speech that is available for each speaker. After the models are created, a
Viterbi pass is performed to find the final system result.

Speech activity detection

In the second experiment, the actual SAD component is placed back into the system.
The models are still trained directly on the speech from the reference transcription,
but the final alignment is performed with the actual SAD segmentation. The increase
of error rate compared to the previous experiment is the amount of the total system
error that can be blamed on the SAD component.

Merging algorithm

Next it is tested what the influence of using the actual merging algorithm is on the final
result. For this test, the reference transcript is used to create sixteen initial models.
Each model is created with speech of only one speaker, but because now sixteen
models are needed, the speech of each speaker is cut up in pieces so that multiple
models can be trained for each speaker. The data are divided so that each model is
trained on an average amount of data (a person that spoke a lot in a meeting, will
have a high number of initial models). The normal model initialization and merging
procedure are used, but the decisions about which models to merge and when to stop
are performed by the oracle setup (as described in section 5.3.4). The DER scored
on this experiment subtracted by the error of the previous experiment will reveal the
error that is introduced by the procedure of creating the final models by merging the
smaller initial models together.

Model initialization

Instead of creating the initial models with use of the reference transcript, in this
experiment the initial models are created normally by dividing the speech data ran-
domly. The merging and stop decisions are still performed by the oracle setup though.
Therefore the increase of error can be attributed to the shortcomings of the systems
model initialization method.

Merge candidate selection

The oracle merge candidate selection component is now replaced by the actual candi-
date selection component based on BIC. The increase of DER between the previous
experiment and this experiment can be attributed to the shortcomings of the BIC
selection component.

83

Chapter 5

Stop criterion

Finally, the remaining oracle setup that is able to decide when to stop merging per-
fectly, is replaced by the actual component that decides when to stop based on BIC.
The difference between the actual system DER and the previous experiment will reveal
the error gained because of incorrect stop decisions.

5.3.6 Experiment results

The six oracle experiments are performed on RT06s post-evaluation test set of twelve
conference meetings. The results of these experiments are listed in table 5.5. In the
first experiment, the entire algorithm to create the HMM topology is bypassed and the
models are created directly. At each following experiment, one step of the algorithm
is placed back into the system. Assuming that the components are mostly performing
independent of each other (see section 5.3.7), at each step, the increase in DER is a
good indication of the contribution to the total error of the component placed back.

Oracle experiment SAD (%) DER (%)
Perfect Topology 2.60 4.18
Speech Activity Detection 5.30 6.87
Merging Algorithm 5.30 7.36
Model Initialization 5.30 9.18
Merge Candidate Selection 5.30 10.40
Stop Criterion 5.30 11.76

Table 5.5: The SAD and DER errors of the six oracle experiments. The experiments are

named after the description titles in section 5.3.5

Although in the first experiment, the reference SAD is used, the SAD error is still
2.60%. This error is due to the inability of the system to model overlapped speech.
The total DER in this experiment is 4.18%. That means that although the merging
algorithm is bypassed, the modeling approach is not perfect and is responsible for
1.58% DER. In the second experiment, where the actual SAD component is used, the
SAD error increases to 5.3%. Part of this error is because of overlapped speech (2.6%)
but 2.7% is due to errors in the SAD component. The increase in DER in the third to
the sixth experiments can be attributed to the use of the merging algorithm (0.49%),
initializing the clusters (1.82%), performing BIC to combine models (1.22%) and
determining when to stop merging (1.36%). Table 5.6 summarizes the contribution
to the DER of each component.

As can be seen in table 5.6 the three factors that contribute most to the total DER
are the lack of being able to model overlapped speech, the speech activity detection
itself and the initialization of the sixteen clusters.

84

Speaker diarization

Test description DER (%) Relative
Overlapping speech 2.60 22.11
Speech Activity Detection 2.70 22.96
Modeling/alignment 1.57 13.35
Merging algorithm 0.49 4.17
Non-perfect initial clusters 1.82 15.48
Combining wrong models 1.22 10.37
Stop clustering too early/late 1.36 11.56
System DER (sum of components) 11.76 100.00

Table 5.6: The contribution of each system step to the overall DER.

5.3.7 Discussion and conclusions

In this section, the SHoUTD06 speaker diarization system that trains its GMMs only
on the data under evaluation according to a five step algorithm, was analyzed by
performing a series of oracle experiments.

During this analysis it was assumed that the performance of each component is
mostly independent of the performance of others. Unfortunately though, changing
one component is likely to have an impact on other components. Blaming a single
component for the increase of DER between two experiments, as was done in sec-
tion 5.3.6 might sometimes give a slightly distorted picture. A way to investigate the
dependencies between components is to test each component with input of varying
quality. The results of such experiments would probably provide extra information
and possibly nuance the current results.

It should be noted that the results of this analysis are partly dependent on the
evaluation data and that a high contribution to the error of a certain component does
not necessarily mean that it is possible to improve this component. Also, the results
apply to the analyzed diarization system and might be different for other systems. In
spite of these caveats though, this type of analysis provides valuable insight of the
component behavior and guidance for improving the system.

One of the components that contributed most to the total DER is the speech
activity component. This triggered the development of the SHoUT SAD subsystem
(chapter 4). Experiments in the following section will show that using this SAD
subsystem improves the speaker diarization system considerably.

5.4 The RT07s submission, SHoUTD07 and ICSI-

RT07s

The analysis described in the previous section revealed a number of shortcomings of
the speaker diarization system. These shortcomings are addressed in a new version
of the system that will be referred to as SHoUTD07. As described earlier, feature
extraction has been changed from PMVDR vectors with 12 dimensions to MFCC
vectors of 19 dimensions, minimum duration enforcement has been added and the

85

Chapter 5

number of training iterations have been tuned. After the oracle analysis, also a new
SAD subsystem was developed. This subsystem was described in-depth in chapter 4.

Also the ICSI diarization system was equipped with this new SAD component
and for the RT07s speaker diarization submission, referred to as ICSI-RT07s, research
forces were joined. New experiments were conducted, both before and after the eval-
uation, to find the optimal system performance. These experiments, discussed in this
section were conducted on the ICSI-RT07s system. This section describes the ICSI-
RT07s speaker diarization system shortly and then focuses on these experiments.

5.4.1 The ICSI-RT07s speaker diarization system

Except for differences in implementation choices, the most outstanding difference be-
tween the SHoUTD07 system and the ICSI speaker diarization system is that the
SHoUTD07 system does not profit from available multiple microphone signals. The
ICSI system profits from multiple microphone signals in two ways. First the MFCC
features are created from an enhanced signal obtained by beam-forming the multiple
signals. Second, the delays between microphone pairs calculated for the beam-forming
procedure, are used as a second feature stream. The model scores of the two feature
streams are added using a weight for each stream to obtain the final model scores.
These weights are determined using the algorithm introduced in [AWP07]. This ap-
proach makes it possible to automatically find appropriate weights for the two streams
during the diarization process and eliminates the need to tune the weights on a de-
velopment set. Further information on the ICSI diarization system can be found in
section 2.4.4 or in [AWPA06, AWP07, WH08].

In the remainder of this section, the ICSI-RT07s evaluation results and the results
of the development experiments will be discussed. All experiments conducted in the
remainder of this section are performed on the multiple distant microphone task.

5.4.2 Test set

Table 5.7 lists the names of the 21 meetings that are used for development testing for
the RT07s evaluation. Because of the ‘flakiness’ of the diarization error rate [MW06],
as many meeting recordings as possible are used for development. This helps to
‘smooth’ diarization error rates by preventing large variations in the scores of one or
two meetings from influencing the overall DER (see 5.3.1). Note that this test set is
even bigger than the set in section 5.3.1.

All of the experiments reported here are conducted using data distributed by NIST
as part of the Rich Transcription 2004, 2005, 2006 and 2007 meeting recognition
evaluations. This data consists of excerpts from multi-party meetings collected at
eight different sites. From each meeting, an excerpt (chosen by NIST) of 10 to 15
minutes is used.

86

Speaker diarization

Meeting ID Meeting ID
ICSI 20000807-1000 ICSI 20010208-1430
LDC 20011116-1400 LDC 20011116-1500
NIST 20030623-1409 NIST 20030925-1517
AMI 20041210-1052 AMI 20050204-1206
CMU 20050228-1615 CMU 20050301-1415
VT 20050304-1300 VT 20050318-1430
CMU 20050912-0900 CMU 20050914-0900
EDI 20050216-1051 EDI 20050218-0900
NIST 20051024-0930 NIST 20051102-1323
TNO 20041103-1130 VT 20050623-1400
VT 20051027-1400

Table 5.7: The names of the 21 meetings used for development.

5.4.3 Speech activity detection

The speech activity detection system described in chapter 4 outperformed the ICSI-
RT06s SAD system on the development set. Although typically in the meeting domain
the number of non-speech sounds is negligible, in two of the twenty one meetings of
the development set, the system classified part of the audio as non-speech sounds
(paper shuffling and doors slamming). In the other meetings, (including all of the
meetings in the RT07s evaluation set) the BIC score was always positive and each
sound model was discarded.

Table 5.8 contains the results of the ICSI-RT06s SAD system and the SHoUT
segmentation subsystem on the test set. The first two rows show the results scored
only for speech activity detection. The new system has a slightly lower false alarm
rate. The last two rows of table 5.8 show the results of the ICSI-RT07s diarization
system using either the SAD segmentation of the RT06 detector or the RT07 detector.
On this data, the new detector has a lower false alarm rate. Most of the performance
gain though is a result of the reduction in speaker error (diarization). This is partly
explainable because the SAD segmentation is not smoothed before diarization (see the
next experiment). It is surmised that the remainder of the gain is due to the reduced
number of false alarms and it seems likely that this helps to make the data used to
train the GMMs ‘cleaner’, resulting in better models.

5.4.4 Smoothing SAD

Most SAD systems, including the ICSI-RT06s SAD system, are tuned by minimiz-
ing the SAD error on a development set. One of the steps that helps in minimizing
the SAD error is ‘smoothing’ the output (NIST provides scripts to do this). Dur-
ing this process, short non-speech segments (shorter than 0.3s) are removed from the
segmentation. Smoothing helps to reduce the SAD error because the reference seg-
mentation is smoothed as well, and so these short fragments of non-speech will be

87

Chapter 5

System % missed % false % SAD % Spkr % DER
speech alarm

RT06 (only SAD) 1.10 2.80 3.90 n.a. n.a.
RT07 (only SAD) 1.20 2.10 3.30 n.a. n.a.
RT06 (diarization) 4.40 2.30 6.70 4.10 10.81
RT07 (diarization) 4.50 1.50 6.00 2.50 8.51

Table 5.8: Performance of the RT06 and RT07 speech/non-speech detectors on the RT07s
Eval data. The detector used for RT07 is the SHoUT segmentation subsystem, described in
chapter 4. In the first two rows, only the SAD segmentation is scored. The last two rows
show the results of the RT07 diarization system using either the RT06 speech/non-speech
system or the RT07 speech/non-speech system.

regarded as missed speech if no smoothing is performed. On the other hand, adding
these short non-speech segments to the speech data that is processed by the speaker
diarization system will most likely increase the DER. The non-speech will be assigned
to one or more clusters and will ‘muddy’ the data pool, forcing the GMMs to be
less specific for a particular speaker. Therefore, for RT07s it was decided to use the
unsmoothed speech/non-speech segmentation as input to the diarization system and
perform smoothing after the diarization process is finished. The improvement over us-
ing the smoothed speech/non-speech segmentations on the test set is marginal. On the
conference room MDM task, using the smoothed segmentation results in a diarization
error of 9.03%, and so the improvement by using the unsmoothed speech/non-speech
input is only 0.52% absolute.

5.4.5 Blame assignment

In order to find out what part of the diarization system is contributing most to
the total DER, some more cheating experiments, similar to the oracle experiments
in section 5.3 have been conducted. Instead of using the automatically generated
speech/non-speech segmentation, the reference segmentation is used as input for the
diarization system. Table 5.9 contains the error rates of the MDM and SDM sub-
missions and the results of the oracle experiments. All results are scored with and
without overlap.

Even if the reference segmentation is used, the percentage of missed speech will not
be zero. This is because the diarization system is only able to assign a speech fragment
to one single speaker and thus, when scoring with overlap speech, all overlapping
speech will be missed. As can be seen in the second row of table 5.9 the error due
to missed overlapping speech is 3.7%. The total error due to missed speech and false
alarms is 6.0%. Subtracting the error due to overlap leaves the error contribution
of the SAD system: 2.3%. The remaining 3.8% of the total DER is caused by the
diarization step (speaker error). Note that the percentages change slightly if scored
without overlap because ignoring segments with overlap will decrease the total amount
of speech, which is part of the DER calculation. The same blame assignment can be

88

Speaker diarization

%Miss %FA %Spkr %DER
MDM -ref +ovlp 4.5 1.5 2.5 8.51

MDM +ref +ovlp 3.7 0.0 3.8 7.47
MDM -ref -ovlp 0.9 1.6 2.6 5.11
MDM +ref -ovlp 0.0 0.0 3.9 3.94
SDM -ref +ovlp 5.0 1.8 14.9 21.74

SDM +ref +ovlp 3.7 0.0 12.8 16.51
SDM -ref -ovlp 1.4 2.0 14.7 18.03
SDM +ref -ovlp 0.0 0.0 12.7 12.75

Table 5.9: DER for the MDM and SDM submissions. The rows in bold show the results of
the actual submissions. They are scored with overlap and make use of the speech/non-speech
segmentation. The systems marked with -ovlp/+ovlp are scored with/without overlap and the
systems marked with -ref/+ref make use of the automatic speech/non-speech segmentation
or of the reference speech/non-speech segmentation.

done for the SDM task. The error because of missed overlapping speech for the SDM
task is 3.7%, and the error due to the SAD component is 3.1% (3.4% if scored without
overlap). The speaker error caused by the diarization system is 14.9%. Note that the
error due to missed overlapped speech is higher than found in section 5.3, because
this set contains more overlapped speech.

5.4.6 Noise Filtering

In a series of experiments, it has been tested how much the system gains from applying
Wiener filtering. Wiener filtering is normally applied to the audio used for the SAD
component, on the audio that is used to create MFCC features, and on the audio
that is used to calculate the delay features. Table 5.10 shows the results of several
experiments where filtering is omitted for one or more of these components. It shows
that filtering helps to reduce the DER considerably. Although it seems that filtering
the audio for speech/non-speech helps the most, the SAD error on unfiltered audio
only increases marginally (from 3.3% to 3.4%).

Where do we apply Wiener filtering? %DER
Nowhere 15.80

Speech/non-speech 10.54
Speech/non-speech and MFCC 12.99
Speech/non-speech and Delays 13.70

All components 8.51

Table 5.10: DER for the MDM submission (bottom row) and for the experiments where
Wiener filtering is omitted in one or more of the components.

89

Chapter 5

5.4.7 Delay Features

The algorithm introduced in [AWP07] is used to automatically determine stream
weights for the MFCC and delay feature streams. In the RT06s submission, the
weights were fixed to 0.9 and 0.1. An experiment is conducted on the RT07s evaluation
data where the weights are also fixed (as was done for RT06s) in order to determine
if the adaptive weighting was the right choice for the evaluation data. On the MDM
conference meeting task the DER is 9.29% using the RT06s fixed weights. Thus, the
new algorithm improves the DER by 0.78% absolute.

The gap between the results in the SDM task and MDM task is considerably large.
This performance difference could be because it is not possible to use the second
(delay) feature stream for SDM. To test this hypothesis, the system is applied on the
MDM data using only the MFCC stream. The diarization error of this experiment is
14.02%. A difference of 5.51% DER absolute.

5.4.8 Discussion

In this section, experiments on the ICSI-RT07s speaker diarization system were pre-
sented. The SHoUT segmentation subsystem (chapter 4) that is able to filter out au-
dible non-speech without the need for models trained on ‘outside’ data reduced false
alarm errors by 0.7% absolute compared to the RT06s speech/non-speech system.
Post-evaluation experiments showed that by reducing the false alarms, the diarization
system also performed better (2.3% DER absolute).

Other post-evaluation experiments showed that the use of cross-channel delays as a
second feature stream (for the MDM task) improved the system considerably resulting
in a gain of 5.51% DER absolute. It was also observed that omitting noise filtering
in either one of the feature streams decreases the performance of the system by up
to 7.29% absolute. Modest improvements were obtained in system performance by
using unsmoothed speech/non-speech segmentations as input to the diarization system
(0.52% DER absolute). Another modest improvement was achieved by dynamically
tuning the stream weights as proposed by [AWP07] rather than using fixed stream
weights (0.78% DER absolute).

The gap in performance of the system between the SDM and MDM tasks is strik-
ing. The post-evaluation experiments showed that the errors due to missed overlap-
ping speech and misclassified speech/non-speech are comparable for the two tasks.
Thus, the main difference in performance is caused by the diarization system itself
(3.8% DER for MDM and 14.9% DER for SDM). It seems likely that the SDM system
can be improved considerably by introducing additional feature streams, similar to
what was used in the MDM system. Of course these additional streams would not
be based on delays since there is only a single microphone in the SDM condition, but
other acoustic features could be used (e.g. PLP or RASTA features), or even the
output of other speaker diarization systems as additional feature streams.

Finally, because of the ‘flakiness’ of the diarization error rate, all experiments
discussed in this section were performed using a much larger set of recordings (21 in
total) than used in past evaluations. Using this larger set of data helps to reduce some

90

Speaker diarization

of the flakiness, thus leading to better decisions about system design and tuning.

5.5 Speaker diarization for long recordings

A potential disadvantage of the agglomerative approach using BIC, is that at each
comparison step, a new model needs to be trained that contains as many Gaussians as
the two separate models. Training this merged model for all combinations of speakers
takes a considerable amount of processing time. For recordings that are about half
an hour long, the needed time for training these models is manageable, but for longer
recordings, needed processing time becomes a critical issue. If the audio file is very
long, a high number of initial clusters needs to be created and an even higher number
of merged models needs to be trained at each iteration step. The number of initial
models increases linearly with the length of the audio file and therefore more initial
models will not influence the real-time factor. Unfortunately, the needed number of
merged models increases with power two compared to the number of initial models,
making the overall complexity of the algorithm O(n3). This means that for long
audio files so many merged models need to be created at each iteration step that the
processor time needed to create them will become critical.

One way of speeding up the creation of these merged models is to simply write very
time efficient source code for the parts that are computationally expensive and used
frequently. For example, it is beneficial to replace the standard code for performing
logarithmic calculations with fast but accurate look-up tables [VFM07]. Unfortu-
nately, creating efficient code in general will make the system less flexible for changes.
As SHoUTD07 is developed for research purposes, readability and the possibility of
changing parts of the algorithm are considered more important than speed issues.
Therefore, the source code is not yet optimized for speed. It is possible that by writ-
ing efficient source code, the system will become able to process longer audio files.

Another and more constructive way of solving the speed issue for long audio files
is to alter the algorithm. Even when using the most efficient code, the maximum
duration of audio files that can be processed is limited because of the O(n3) complex-
ity of the current algorithm. In this section, two variants of the algorithm will be
discussed that are designed to speed up the system. The first approach replaces the
local pairwise BIC comparison for a global system-wise comparison and in the second
approach multiple models are merged per iteration.

5.5.1 The Cut&Mix system, SHoUTDCM

Considering the merging of all combinations of two models, as described in the sec-
tions 2.3.4 and 5.1, takes a considerable amount of computational effort. Another
disadvantage of SHoUTD06 and SHoUTD07 is that they are based on the assump-
tion that each pair of two models is trained with data from the same single speaker.
Unfortunately when a model contains data from multiple speakers, this data is not
spread over multiple models when the model is taken out of the topology. The system
introduced here, that will be referred to as SHoUTDCM , does not compare or merge

91

Chapter 5

the models pairwise and is computational less demanding than the original diarization
subsystem.

System description

The basic idea of the SHoUTDCM strategy is that all models are considered for re-
moval, and that the model which improves the Viterbi likelihood most after removal
is subsequently ‘cut out’, and its Gaussians are redistributed over the remaining mod-
els. Formally, at each iteration i the number of models in the HMM will be reduced
by one, by sequentially removing model j. The overall Viterbi score L will be used
to compare the original HMM topology Ti with the new topology T

j
i+1

. If the score

maxj L(T j
i+1

) is higher than the original score L(Ti), the new topology T
j

i+1
is used in

the next iteration as Ti+1. If the maximum is lower than L(Ti), the new topology is
discarded and the original HMM will be regarded as the optimum topology.

Once model j is to be removed from the topology, the number of Gaussians in
the remaining models is increased until the total number of Gaussians in the original
topology and in the new topology are equal.

In the original algorithm, at each merging iteration, the topology of the system is
kept fixed except for the two models that are being merged. Therefore when the BIC
score is positive and the two separate models are replaced with the merged model,
the topology does not only improve locally but also as a whole. In the SHoUTDCM

approach it is not possible to look at a local improvement, because the number of
Gaussians of all remaining models can change. Therefore the score of the entire
topology is used for comparison. As the case for the local BIC comparison, when the
number of Gaussians is kept constant, it is possible to compare the old topology Ti

with the new topology Ti+1 without the use of a scaling parameter.
In order to make a fair comparison between the Viterbi score of the original system

Ti and the new HMM topology Ti+1, the number of Gaussians of the new system have
to be increased until it is the same as the number of Gaussians in the original system.
The following procedure is proposed for this:

• The number of Gaussians in model j is determined (n(j)).

• For each model x the amount of data that was aligned to it in system Ti is stored
(N(x, i)).

• After removing model j, for each model x the amount of data that is aligned to
it in the new system Ti+1 is stored (N(x, i + 1)).

• For each model x, the number of Gaussians that will be added to the mix, ∆n(x),
is calculated as follows:

∆n(x) =
N(x, i + 1) − N(x, i)

N(j, i)/n(j)
(5.1)

Each model that is assigned new Gaussians will obtain them by splitting its Gaus-
sian with the highest weight after each training iteration. After all GMMs consist of

92

Speaker diarization

the correct Gaussians, all models are re-trained and the new overall Viterbi score is
calculated. This score is compared to the original score. If this score is higher than
the original, a new cutting iteration will be started. Otherwise, the original topology
will be restored and the new topology will be discarded.

As shown in figure 5.5, the actual merging decision is taken as late in the process
as possible, after all models are retrained. A positive BIC score truly means that the
entire system is improved by cutting away a model. In the SHoUTD06 system, the
choice for either stopping or merging two models is done before the rest of the system
is retrained (see figure 5.2).

Figure 5.5: In the SHoUTDCM system a single model is chosen to be removed from the
topology (a). The number of Gaussians of the remaining models is increased so that the total
number of Gaussians stays constant (b). Only after retraining all models it is determined if
the new topology should be maintained (c).

The complexity of the original SHoUTD06 algorithm is O(n3) because of the pair-
wise comparison of each model at each time frame. The complexity of this algorithm
is only O(n2) because per model only one possible new topology needs to be calculated
at each time frame. Note that although theoratically this algorithm scales better to
long recordings than SHoUTD06, it is possible that calculating each new topology
takes so much time compared to BIC that in practice the speed-up is limited.

RT06s evaluation

Not only SHoUTD06, but also the SHoUTDCM diarization subsystem was evaluated at
RT06s. The results of SHoUTDCM on the development set and on the evaluation data
are compared with those of SHoUTD06 in table 5.11. On the development set, the
data from RT05s, SHoUTDCM outperforms SHoUTD06. This is not reflected in the
results of the RT06s evaluation where SHoUTD06 performs better for the conference
room data. As expected, the processing speed of the SHoUTDCM system (real-time

93

Chapter 5

factor 2.25) is better than the speed of SHoUTD06 (4.63). These factors have been
measured on an Intel Xeon 2.8 GHz processor.

SHoUTD06 SHoUTDCM

Test set DER (%) DER (%) DER (%) DER (%)
no overlap with overlap no overlap with overlap

RT05s conference room 21.6 30.2 18.6 27.6
RT06s conference room 22.7 37.2 25.2 39.5
RT06 lecture room 30.8 32.4 30.1 31.6
Processing speed (×RT) 4.63 2.25

Table 5.11: The speaker diarization results of the SHoUTD06 and SHoUTDCM model-based

systems measured with and without overlapping speech regions.

Table 5.12 contains results of the two systems for each recording of the conference
room RT06s evaluation set. For both systems the DER, average purity (see chap-
ter 2, section 2.4.2) and the number of speakers in the hypothesis file are listed. For
five of the eight recordings the DER of the two systems are similar, but the results
differ considerably for three of the recordings. For the recordings EDI 20050216-1051
and EDI 20050218-0900, the SHoUTDCM results are poor and for VT 20051027-1400
the result of the SHoUTD06 system is disappointing. For EDI 20050216-1051, the
SHoUTDCM system cut away one of the reference speakers. This is reflected by the
low average purity (68.4%) as this speaker is noise for models of the other speakers. In
EDI 20050218-0900 the system did not over-cluster but instead did not merge enough
models. In this case the purity is reasonably high compared to the SHoUTD06 system
(77.2% compared to 80.9%) but one of the reference speakers is still divided over two
models. The SHoUTD06 system made the same kind of error for the VT 20051027-1400
meeting. Although the average purity is comparable to the purity of the SHoUTDCM

system, the final topology still contained too many models (8 compared to 6 models
for SHoUTDCM).

SHoUTD06 SHoUTDCM

Meeting ID DER Purity Spk DER Purity Spk
CMU 20050912-0900 20.71 82.9 7 24.53 82.6 6
CMU 20050914-0900 12.34 87.0 6 12.46 86.4 6
EDI 20050216-1051 20.97 82.0 5 39.24 68.4 4
EDI 20050218-0900 29.51 80.9 6 44.89 77.2 7

NIST 20051024-0930 8.90 86.9 5 10.61 84.7 4
NIST 20051102-1323 9.53 89.4 7 9.18 91.2 6
VT 20050623-1400 20.74 81.8 7 23.77 82.9 7
VT 20051027-1400 52.18 70.2 8 30.45 71.3 6

Table 5.12: Results for the SHoUTD06 and SHoUTDCM systems on the RT06s conference

room evaluation data. For both systems the DER, average purity and number of hypothesis

speakers are listed for each separate recording.

94

Speaker diarization

Discussion

Based on the presented observations, it is hard to conclude which of the two systems
is actually performing the best. None of the systems is outperforming the other
systematically for all recordings. The purpose of dividing Gaussians over multiple
models in the SHoUTDCM system was to create models with higher purity, but the
average purity in table 5.12 is not consistently higher than for the SHoUTD06 system.
Also comparing the real-time factors for the two systems is a bit risky. Although as
expected, the SHoUTDCM system is faster than the SHoUTD06, it is questionable if
this is really always due to the faster algorithm. In some cases the higher error rate
of the SHoUTDCM system was caused by stopping merging too early. The better
real-time factor of the SHoUTDCM system might be influenced by the gain in speed
of using fewer merging iterations. Real-time factors are only really comparable when
the diarization error rates are identical or at least similar.

One of the assumptions underlying SHoUTDCM , is that merging pairwise decreases
system performance when some of the models are impure. Therefore, for SHoUTDCM

all Gaussians are spread over all remaining models instead of only increasing the
number of Gaussians in the merged model. The analysis that was performed after
RT06s, described in section 5.3, revealed that this assumption does not seem to be
valid. As can be seen in table 5.6, the merging algorithm that merges models pairwise,
contributes to the total DER marginally (4.17% absolute). Of course, errors also occur
because of merging models from different speakers. The contribution to the DER
because of these kinds of errors is a bit higher (10.37% absolute). In turn though,
the SHoUTDCM system might be having problems with assigning the Gaussians to
the correct remaining models. An analysis similar to the oracle-based analysis of
SHoUTD06 is needed to determine this, but unfortunately the SHoUTDCM system is
not analyzed in-depth because of time constraints.

The SHoUTDCM subsystem seems less computationally expensive than the orig-
inal SHoUTD07 subsystem, but because of its different approach, it is impossible to
tune SHoUTDCM in a way so that it can act with either the exact same accuracy as
SHoUTD07 (and same computational effort) or with a small degradation in accuracy
but lower computational effort. The diarization subsystem that will be described in
the following section, SHoUTD07∗, is able to switch between high accuracy and low
computational requirements. This enables the system to handle short recordings with
the accuracy of SHoUTD07 while it is also able to process longer recordings.

5.5.2 The multiple merges system, SHoUTD07∗

The SHoUTD07∗ system is closely related to SHoUTD07. Only a small modification
has been implemented in order to speed up the process and to make processing of
recordings up to two hours practically possible.

The number of merge calculations can be brought back by simply allowing merging
of multiple models at a time. The two models A and B with the highest (and positive)
BIC score are merged first. Next, the two models C and D with the second highest
(and positive) score are merged. If this second merge involves one of the earlier

95

Chapter 5

merged models, for example model C is the same model as model A, also the other
combination (B,D) must have a positive BIC score. This process can be repeated a
number of times for each iteration as long as the BIC scores for all combinations of
models in a merge is positive (see figure 5.6).

Figure 5.6: Example of a situation where five models (first figure) are merged at a single
diarization iteration. First in (2), the two models with the highest BIC score are merged.
Then in (3), model C is not merged with {A,B} because the BIC score with A is negative.
Instead it is merged with model D with the second highest BIC score. Finally model E is
merged with {C,D} because both BIC scores are positive.

If too many merges are allowed at a single iteration, the DER will increase. In-
creasing the number of merges at a time will decrease the number of Viterbi alignments
and training iterations. As demonstrated in section 5.3, the system will not be able to
create pure models if not enough alignments and training iterations are performed. On
the other hand, restricting the number of merges at a single iteration to one will result
in the original SHoUTD07 system. Therefore, by varying the number of merges from
one to many, the system can be very accurate but slow or very fast but inaccurate.

For the SHoUTD07∗ subsystem, the number of merges per iteration is not fixed,
but dependent on the number of models in the topology as follows:

• If there are more than 20 models left in the topology, a maximum of four models
is merged at a single iteration.

• If there are less than 20 models, but more than 10 models left in the topology,
a maximum of two models is merged at a single iteration.

• If there are less than 10 models left in the topology, only 1 merge per iteration
is allowed.

The SHoUTD07∗ is not yet tested at a Rich Transcription benchmark, but on the
development set this procedure was used without performance loss with a reduction
of the real-time factor from 8 times to 2.7 times real-time.

Note that although the SHoUTD07∗ algorithm was measured to be faster than
the SHoUTD07 algorithm, the complexity of the two algorithms is identical, O(n3).
Therefore, for recordings longer than two hours, the SHoUTD07∗ algorithm will not
solve the shortcommings of SHoUTD07.

96

Speaker diarization

5.6 Conclusions and future work

In this chapter four versions of the SHoUT diarization subsystem were discussed. The

initial version, SHoUTD06, was improved considerably due to the comparison to the

ICSI diarization system and thanks to a thorough oracle-based analysis. The findings

of this analysis were incorporated into the second diarization subsystem, SHoUTD07.

This subsystem is able to perform state-of-the-art diarization without the use of prior

trained speaker models. The final two versions of the diarization subsystem were

implemented to make diarization of relatively long recordings feasible.

5.6.1 System analysis

The major part of the analysis performed in this chapter was based on oracle ex-

periments in which part of the subsystem was replaced by the ground-truth. Two

assumptions were done for these experiments that are debatable. First, it was as-

sumed that the test sets used were large enough to produce statistical significantly

results. The experiment results show high DER variations between individual record-

ings and therefore a high number of recordings is needed to ‘smooth’ this ‘flakiness’.

For this reason the test sets were chosen as big as possible. For the final experiments,

21 conference meeting recordings were used.

The second assumption that is debatable is that for the oracle experiments it was

pretended that the components are mostly performing independent of each other. If

the components act truly independently, it is possible to measure its performance

by providing it perfect ground-truth input as was done in the oracle experiments.

Unfortunately the performance of the components is most probably dependent on the

performance of the other components. It would be better to analyze each component

by providing input with various types of errors. Of course, such an analysis would

be even more complex than the analysis performed in this chapter. Due to time

constraints such an analysis has not been conducted.

Even though the test set was relatively small and no complex experiments were

performed to test interaction between components, the analysis provided valuable in-

formation for improving the SHoUTD06 diarization subsystem. The final analysis also

provides valuable hints for future improvements. Especially the gap in performance

of the system between the SDM and MDM tasks is striking. The systems used for

the two tasks are identical except for the second feature stream that is applied for

the MDM task. Therefore it seems likely that the SDM system can be improved con-

siderably by introducing additional feature streams, similar to what was used in the

MDM system. Of course these additional streams would not be based on delays since

there is only a single microphone in the SDM condition, but other acoustic features

could be used, or even the output of other speaker diarization systems as additional

feature streams.

The final analysis described in section 5.4 also revealed to other interesting facts.

It was shown that the SHoUT SAD subsystem described in the previous chapter

improves the diarization performance considerably. Compared to the original SAD

subsystem, the SHoUT SAD subsystem contains fewer false alarms. Especially false

97

Chapter 5

alarms decrease diarization performance as they act as noise during training of the
speaker models. Secondly it was shown for the MDM condition that noise reduction
improves diarization considerably.

5.6.2 Diarization for long recordings

The diarization subsystem is based on an agglomerative clustering approach. BIC is
used for merging the clusters in such a way so that the overall complexity of the system
remains constant and the λ factor does not need to be tuned on a development set but
instead can be omitted (see chapter 2, section 2.4). The down-side of this approach
is that comparing two models is computationally expensive and that the number of
comparisons increases order two with the length of a recording. In order to solve this
problem, the SHoUTDCM and SHoUTD07∗ diarization subsystems were developed.

Although the SHoUTDCM performed well at the RT06s benchmark, no further
research was performed on the diarization method because for further development a
thorough analysis such as performed for SHoUTD06 would have been needed. Due to
time constraints it was not possible to perform an analysis for both systems. Instead,
the SHoUTD07∗ system was developed that is closely related to the SHoUTD07 system.
With the use of a single parameter, it is possible to decrease the real-time factor of
this subsystem with a slight decrease in performance. For short recordings though,
the SHoUTD07∗ system is identical to the SHoUTD07 system.

It is interesting to aim future research for diarization of long recordings at the
SHoUTDCM approach, but also at two other approaches. First, the process could be
made faster by combining the SHoUTDCM approach and the SHoUTD07 approach. For
long recordings, the first iterations could be performed by SHoUTDCM while the final
iterations are performed by SHoUTD07. The experiments from section 5.5.1 indicate
that SHoUTDCM seems weak in determining the optimal number of clusters, but it
works fine in clustering the initial models.

The second possible approach for diarization of long recordings is related to the
approach taken for SAD in the previous chapter. Instead of processing the entire
recording at once, it could be cut up in chunks and each chunk could be processed
individually. Although for SAD it is relatively easy to re-combine the chunks, for
diarization this step is not so straightforward. It is not that easy to determine which
speaker model from one chunk matches the model of another chunk. If a method is

found that can match the correct speaker models of the various chunks, it is possible
to process recordings of infinite length. It would also make tracking of speakers over
multiple recordings straightforward.

98

CHAPTER 6

AUTOMATIC SPEECH RECOGNITION

In the previous two chapters, segmentation and clustering have been discussed. These

two subsystems are supposed to yield per speaker a cluster of speech fragments. The

clusters are input to the subsystem that will be discussed in this chapter, the automatic

speech recognition subsystem.1

As described in chapter 3 the SHoUT ASR subsystem creates a transcription in two

decoding iterations. Anticipating the first iteration, feature extraction is performed

and optionally a noise reduction filter is applied to decrease background noise. In

the first iteration, a transcription containing timing information on phone basis, is

generated that is used to apply unsupervised adaptation on the acoustic models for

each speaker before running the final decoding iteration. Figure 6.1 summarizes this

procedure.

Figure 6.1: The two decoding iterations of the SHoUT ASR subsystem. The optional noise

reduction is performed using the SRI Wiener filtering toolkit.

This chapter concists of three parts: a part about modularity, about search space

management and about robustness. Novel research was especially performed for the

part about search space management. In the first part about modular design and the

final part about robustness, important development choises will be discussed and the

evaluation of these choises will be described.

Decoding plays a central role in each of the ASR iterations. In chapter 3 the

requirements for decoding were defined and in this chapter the issues encountered

during the development of the SHoUT decoder will be discussed. One of the most

important requirements is that the decoder needs to be able to facilitate research

1The research presented in this chapter is, in part, published in [HOdJ07, HOdJ08]

Chapter 6

into the ASR issues anticipated as relevant. It should be easy to test new ideas and
techniques or to replace existing components with alternative implementations. For
this to be possible, a modular design for the decoder is chosen with a straightforward
interface between components. In section 6.1 the modular design of the decoder will
be discussed.

Very important for every decoder for large vocabulary continuous speech recog-
nition, and therefore also for the SHoUT decoder, is good management of its search
space. In scenarios where the language to be processed comes with a large vocab-
ulary, the possible number of combination of words that need to be regarded while
searching for the correct string of words, can reach near infinite. A technique called
Language Model Look-ahead (LMLA) can help the management system to better dis-
regard the least promising paths, but on the architecture that is chosen for the SHoUT
decoder, it is not straightforward to deploy full LMLA efficiently. In section 6.2 the
research question: ‘How can full language model look-ahead be applied for decoders
with static pronunciation prefix trees?’, is addressed and a method is proposed that
makes it possible to deploy full LMLA for decoders such as SHoUT.

While it was possible to focus the research for segmentation and diarization di-
rectly on robustness against unknown audio conditions, for ASR it is first needed to
solve the above mentioned problems before robustness techniques such as discussed in
chapter 2 could be implemented. Due to time constraints, it was not possible to add
all robustness techniques described in chapter 2, but a selection of known techniques
was implemented for the SHoUT decoder. In section 6.3, where the research ques-
tion: ‘Which methods can be applied to make the decoder insensitive for a potential
mismatch between training data and target audio?’ is addressed, the performance of
these techniques will be discussed.

6.1 Modular decoder design

The task of the decoder is to find the utterances that were most probably pronounced
given the acoustic input (see chapter 2, section 2.1). In section 2.1.4 the algorithms
for decoding based on Viterbi token passing were discussed in-depth. In this section,
the design of the SHoUT decoder, which makes use of Viterbi token passing, will be
discussed.

During the design phase of the SHoUT decoder, special attention was given to
modularity. As described in chapter 2, a Viterbi decoder uses three knowledge sources
for finding the most probable utterances: a language model, acoustic models and
its pronunciation dictionary. Because these models are used simultaneously during
decoding, it is tempting to design a decoder for which the code of these models is
interweaved. Although such a design might result in a decoder optimized for speed,
mixing code for these knowledge sources has two major disadvantages. First, it will
decrease the readability of the source code, which can be a source of software bugs
introduced during development and maintenance. Second, it will make it hard to
switch to alternative implementations for the models as such a switch might affect
code in every part of the decoder. A strict modular design will make it easier to

100

Automatic speech recognition

replace Gaussian mixtures of the acoustic models by neural networks or to replace
stochastic n-best language models by context-free grammars. This flexibility makes
it possible to perform research on the various methods for modeling the acoustic and
language knowledge.

In the remainder of this section, the design of the three types of models will be
discussed followed by the architecture for the token-passing algorithm in which the
three models have been integrated.

6.1.1 Language models

The decoder uses statistical N-gram backoff language models to determine its a-priori
probabilities (see chapter 2, section 2.1.6). A number of tools exist to create N-gram
language models out of text data collections. The most commonly used tool is the
SRILM toolkit [Sto02]. This toolkit stores its models in standard ARPA format which
will be the LM input file format for the SHoUT decoder. In the ARPA file format,
each N-gram is stored in text on a separate line followed by its probability and backoff
value. If the decoder would use this file format directly, it would need to compare
the words of its hypothesis with the words of each N-gram until the correct N-gram
is found. These kinds of text-based comparisons are computationally too intensive to
be used for large language models. Therefore, a fast look-up method is needed for
querying N-grams and their probabilities and backoff values.

Comparing numbers is a lot faster than comparing text strings. Therefore, each
word in the dictionary is assigned a unique identification number wordID, and the
words in each N-gram are replaced by these identification numbers. Even replac-
ing each word with its wordID takes up considerable computational resources when
common string comparison is used to identify each word in each N-gram. Therefore,
the words are first represented in a tree structure with a node for each character of
the word and this tree is then used to find the correct wordID’s for each N-gram.
Matching words with their wordID by searching the tree is considerably faster than
searching through the full list of words.

Even comparing sequences of numbers is time consuming. Therefore a method is
needed to efficiently find the N-grams of wordID’s. For unigrams, this task is easy:
all unigram probabilities and backoff values are stored in a list that is sorted on the
wordID of each unigram so that it is possible to obtain the probabilities of each
wordID with one single lookup.

For the higher order N-grams, it is not possible to use sorted lists that can be
queried directly. Such lists would be multi-dimensional (three dimensional for tri-
grams), very sparse and would take up too much memory. Instead, a minimum perfect

hash table is used for querying higher order N-grams [CDGM02]. A minimum perfect
hash table is a hash table where each slot in the table is filled with exactly one item.
This means that it is possible to query N-gram probabilities in one single lookup and
that no extra memory is needed except for storing the hash function and for the key
of each data structure, the N-gram wordID’s. This key is needed because during
lookup, the hash function will map queries for non-existing N-grams to random slots.
By comparing the N-gram of the query to the N-gram of the found table slot, it can be

101

Chapter 6

determined if the search is successful. The algorithm proposed in [CHM92, CDGM02]
is used to generate the hash functions.

The SHoUT decoder is able to handle language models up to 4-grams. It is possible
to extend the decoder so that it is able to handle higher order N-grams, although the
tables and the hash functions would then start to take up large amounts of memory.

6.1.2 Acoustic models

For acoustic modeling, standard three-state left-to-right hidden Markov models with
Gaussian mixture models as probability distribution functions are applied (see chap-
ter 2 and figure 2.1). This means that a training procedure is needed to set the HMM
transition probabilities, GMM Gaussian weights, Gaussian mean vectors and covari-
ance matrices. Also the number of Gaussians per mixture needs to be set and the
triphone clusters need to be defined. In the SHoUT toolkit, this complex procedure
has been implemented in a stand-alone application. The steps that the training ap-
plication takes will be discussed next. Figure 6.2 is a graphical representation of the
training procedure.

Figure 6.2: The training procedure as it is implemented in the SHoUT toolkit. Each phone

model is trained this way.

Allocating training data to each phone model

In order to train the acoustic models, training data for each model is needed. The
acoustic training data consists of the audio itself, the exact start and end time of each
phone and of the neighboring phones (left and right context). The easiest way to
obtain this information is to run a forced-alignment of each utterance in the training
set. A forced-alignment is a decoding run with only one search path: the string of
phones that make up the utterance. The timing information for each phone in the
result of the forced-alignment can be used for training the models. Of course, this
method requires that there are already acoustic models available.

Another method for creating a training set is to manually determine start and end
time of each phone. This method is very time consuming. Fortunately, by annotating
a relatively small set of utterances, initial models can be created that can be used for
forced-alignment. The new (larger) training set can then be used to train new models
and iteratively more refined models can be created.

102

Automatic speech recognition

A third approach is to map acoustic models from another language to the target
language. Similar to the previous method, the initial forced-alignment will be rough,
but by iterating the process, refined alignments can be created. This method was
used to create the Dutch acoustic models for the SHoUT decoder. Publicly available
English acoustic models were used as initial models and in each iteration the latest
alignments were used to train new models. In total, eight iterations were run to create
the final Dutch acoustic models.

Non-speech models

Once training data is allocated for each phone, the training procedure as depicted in
figure 6.2 can be started. The SHoUT decoder uses two kinds of acoustic models:
phone models with the described three state topology and non-speech models. The
non-speech models represent not only silence, but also a variety of non-speech sounds
such as lip-smack or laughter. They are not modeled with three states, but instead
the HMMs of these models only contain one single state. The non-speech model
training is not context dependent but instead all non-speech frames are mapped to
the same GMM. Therefore, for the non-speech models it is not needed to determine
the triphone clusters and only two transition probabilities need to be calculated. In all
other aspects the training procedure for non-speech models is identical to that of the
other models. Note that because the SAD subsystem is expected to remove all audible
non-speech, the SHoUT ASR subsystem will only be trained with a non-speech model
for silence.

Context dependency

Determining the triphone context clusters is done as proposed in [YOW94] and de-
scribed in chapter 2. For each state, a decision tree is created in such a way that at
each node, the training set is optimally divided in two. For each node in the tree a
single Gaussian is trained on the data of that node. Note that this means that, not
only the begin and end time of each phone occurrence should be annotated, but also
the moments that a state transition is being made, so that each feature vector can be
assigned to one of the states.

The size of each decision tree is restricted by three static parameters. First, a
minimum number of training samples should be available for each node. Second, the
improvement in score gained by splitting a node should be at least a fixed percentage
and third, the depth of the tree is limited by a fixed number. Finding the optimum
values for these three parameters by means of a grid search would have been too time
consuming. Instead a number of explorative experiments was conducted to obtain
rough settings for these parameters so that the number of clusters was balanced with
the amount of available data for each cluster. The three parameters were finally set
to a minimum of 2000 training samples per cluster, a maximum tree depth of 19
(resulting in maximal 218 clusters) and a minimum score improvement of 50%.

103

Chapter 6

Increasing the number of Gaussians

Once the triphone clusters are determined for each state, an initial model with one
Gaussian for each cluster is trained. Two EM training methods are implemented for
the training application: Baum-Welch and Viterbi. Using Baum-Welch training, all
training samples are presented to all three states, but for all states the samples are
weighted with the probability that they occur in that particular state. Note that in
contrary to the determination of the triphone clusters, for this task the alignment of
each phone occurrence is fixed but the moments of the state transitions are unknown
(hidden). Using Viterbi training, each feature vector is presented only to the state
for which it has the highest probability to occur in. With Baum-Welch training more
accurate GMMs can be trained than with Viterbi training, but Baum-Welch is more
time consuming.

In order to speed up the training procedure of increasing the number of Gaussians
in each triphone cluster, Viterbi is used instead of Baum-Welch. Each triphone cluster
is trained until the score does not improve more than a fixed percentage. As with
determining the triphone clusters, determining the optimum value for this percentage
is very time consuming. After explorative experiments it was set to 0.5%. After each
set of training runs, the Gaussian with the highest weight (the Gaussian that was
trained with the most training samples) is split in two. The two new Gaussians are
created by shifting the means of the Gaussians to opposite sites in all dimensions2 and
by increasing the variance in each dimension by 20%. After splitting the Gaussian,
each model is trained with another set of Viterbi training runs.

This procedure of increasing the number of Gaussians is repeated until a maximum
number of Gaussians is reached or until the number of training samples for either of
the Gaussians in the GMM reaches a minimum. Also this minimum is found by
explorative experiments. It is set to 20 training samples per Gaussian.

Baum-Welch training

In an attempt to improve the precision of the models, after a number of iterations of
increasing the number of Gaussians, instead of Viterbi training, Baum-Welch training
is applied. Also, once the maximum number of Gaussians per GMM is reached, an
extra number of Baum-Welch runs is performed. As the experiments in section 6.3.3
will show, these final Baum-Welch runs improve the models considerably.

6.1.3 Pronunciation prefix tree

The dictionary is transformed into a Pronunciation Prefix Tree (PPT) as described
in chapter 2, section 2.1.7. The nodes in this tree represent phones as depicted in
figure 2.3. Each node contains a phone ID number and also the left and right context
of the phone, so that the correct context dependent acoustic model can be used during

2It is also possible to only shift the mean in the dimension where the variance is the highest as this

is likely to be the dimension where it helps most to model the data with more than one Gaussian.

No experiments where conducted to check if this approach would have been better

104

Automatic speech recognition

decoding. Each node is also able to store tokens for the token-passing algorithm
(section 2.1.4).

The acoustic models are not actually copied into the PPT, but instead the PPT can
apply the model its API function to calculate token values for each incoming feature
vector. The API function is the only connection between the PPT and the acoustic
models and this makes it easy to replace the models with other implementations (see
figure 6.3).

6.1.4 Token-passing architecture

The SHoUT decoder applies the token-passing algorithm for calculating its hypothe-
ses (chapter 2, section 2.1.4). As described in section 2.1.8, in order to incorporate
language model information it is possible to either copy the PPT for each language
context or to use one static PPT and store the context in token lists. The SHoUT
decoder uses the latter method. At each leave of the PPT, the new a-priori proba-
bility is added to each token. Because tokens that do not have the same language
model history (the same N-grams) should never be merged (section 2.1.8), each token
is provided with a unique language model number. In the current implementation,
this number is actually the pointer to the corresponding record of one of the hash-
tables of the LM, but all that matters is that each N-gram has a unique number. The
decoder only interfaces with the language model through its API when a new prior
needs to be calculated. This procedure makes it possible to easily switch language
model implementation.

Figure 6.3: The modular architecture of the SHoUT decoder. The acoustic model, language

model and the pronunciation prefix tree are each implemented in their own module and

communicate through a straightforward API. For the token passing administration, token

lists are needed.

In figure 6.3, the architecture of the SHoUT decoder is shown. It shows the three
models and how they are connected by the token lists. With these four modules in
place (AM, LM, PPT and token-list administration) the decoder is able to process
audio using a small lexicon and language model. For large vocabulary speech recog-
nition though, the number of needed token-lists and the number of tokens in each list

105

Chapter 6

will increase dramatically when processing each input feature vector. Large amounts
of tokens will be a burden on both memory usage as computational effort and for large
vocabulary recognition the real-time factor of the decoder will reach near infinity if
no special measures are taken to restrict the number of tokens in the system. The
measures taken by the SHoUT decoder in order to restrict the number of tokens and
token-lists will be discussed in the next section.

6.2 Search space management

Decoding can be regarded as finding the optimal path in a large search space. When
the token-passing algorithm is applied, each token represents a possible path in this
search space. Especially with large lexicons and language models, the number of
possible paths and therefore the number of tokens needed to run an exhaustive search
can be dramatically high and the search can easily take up near infinite computational
efforts. Therefore, it is very important that the search space is somehow managed
and that the number of used tokens is restricted. The SHoUT decoder restricts the
number of used tokens by disregarding less promising paths by deleting or pruning

the corresponding tokens. This token pruning can be applied at a number of places in
the decoder and in this section, the pruning methods applied by the SHoUT decoder
will be discussed.

The risk of token pruning is that the optimal path, i.e. the token with the highest
score after all feature vectors have been processed, could be deleted from the search
space during one of the pruning runs. In order to prevent this, it is best to perform
pruning based on both acoustical knowledge as well as language model information.
Because in most decoders, the entire language model score is added to each token
at the leaves of the tree, there will be a big gap between the scores of the tokens
just before adding the LM priors and just after adding them. In combination with
too aggresive token pruning, this gap might cause too many tokens to be pruned
away. This problem can be solved by incorporating language model information at
every node of the tree instead of only at the leave nodes. Language Model Look-
Ahead (LMLA, [ONEC96]) makes it possible to incorporate approximations of the
language model probabilities into the search tree at an earlier stage, before pruning
is performed. This means that pruning is not only based on acoustical knowledge but
also on linguistic knowledge. In [ONEC96] it has been shown that LMLA will allow
for tighter pruning without loss of recognition accuracy.

For decoders that use copies of their Pronunciation Prefix Trees (PPT) to handle
n-gram history, the LMLA probability approximations can be stored directly in the
tree copies. Unfortunately, for decoders such as the SHoUT decoder that don’t apply
PPT copying but instead use a single static tree, it is not possible to store the LMLA
probability approximations directly into the tree [ONEC96]. Without taking special
measures, for these decoders the LM probabilities need to be looked-up at every
time frame. The time needed to do so will diminish the advantage of the smaller
search space. In this section a method will be provided that enables an efficient
implementation of LMLA and reduces the LM probability look-up time for decoders

106

Automatic speech recognition

that use static PPTs.
The remainder of this section is organized as follows. First, the token pruning

methods applied by the SHoUT decoder will be discussed and in section 6.2.2 an
overview of the use of LMLA in various systems is given and the method used by
the SHoUT decoder is described. The section is concluded with experiments on the
broadcast news domain (section 6.2.3) and with a discussion (section 6.2.4).

6.2.1 Token pruning

In token-based decoders, token pruning is applied to restrict the search space. Next,
the commonly used token pruning methods will be described, followed by an extra
token pruning method developed for the SHoUT decoder.

Common pruning methods

Two types of token pruning methods are commonly used in PPT-based decoders:
beam pruning and histogram pruning [STN94]. With beam pruning, tokens with a
probability value between the best found probability and the best probability minus
a constant beam are retained at each time-frame. All tokens that are not within this
beam are deleted. The SHoUT decoder uses two beam pruning methods. During
global beam pruning all tokens of the entire PPT are compared to the best scoring
token and pruned if necessary. Word-end beam pruning is done on all tokens that are
at the leaves of the PPT and for which the LM probabilities are incorporated into
their probability scores. This pruning method is used to limit the number of tokens
that is fed back into the root node of the PPT.

Histogram pruning is also implemented in the SHoUT decoder. Here, only the best
N tokens are retained when the number of tokens exceeds a maximum N which signif-
icantly restricts required memory [STN94]. This method is called histogram pruning
because for sorting the tokens on their score, often a histogram is used [STN94]. Sim-
ilar to beam pruning, histogram pruning is performed both globally (global histogram

pruning) and in the leaves of the tree (word-end histogram pruning).

Pruning in SHoUT

Global pruning and word-end pruning, both by applying beam pruning or histogram
pruning, are commonly used in PPT-based decoders. For decoders that use static trees
such as the SHoUT decoder, a third pruning method can be used that is not explicitly
mentioned in the literature. Instead of only pruning tokens that are in the word-end
nodes, pruning is performed in each single node of the PPT. This pruning method,
referred to as single-state pruning, restricts the length of each token-list. In the SHoUT
decoder these token-lists are sorted on token score, which allows those lists to be
pruned very efficiently (both for single-state beam pruning and single-state histogram
pruning). Although the length of the token-lists does not influence processor load
needed for calculating Gaussian Mixtures, it does take a lot of processing time to
merge long lists and to calculate LM probabilities for all tokens. When LMLA is
used, the lists need to be re-ordered in each compressed node (see below). Therefore

107

Chapter 6

restricting the length of the lists by using these two pruning methods is likely to
speed up the search considerably. In section 6.2.3, the pruning methods are evaluated.
Experiments will show that indeed single-state pruning reduces the processing time
considerably.

6.2.2 Language model look-ahead

Language model knowledge is added to the hypothesis score at the PPT leaf nodes.
Beam pruning is done earlier in the tree solely on the basis of acoustic evidence. Incor-
porating the LM model in an early stage into the tree will make it possible to compare
and prune hypotheses on both linguistic and acoustic evidence. LMLA [ONEC96]
achieves this by calculating for each token in the tree the LM probabilities of all
words that are reachable from that token and temporarily adding the best one to the
token’s score. When the token reaches a leaf node, the temporary LM probability is
replaced by the probability of the word represented by the leaf node. Following this
procedure, narrower beams can be applied during pruning so that fewer tokens need to
be processed and decoding is speed up considerably. On the down side, calculating all
possible LM probabilities for all tokens takes a lot of time. In the literature a number
of methods to manage these calculations is proposed. First, these solutions will be
discussed and then the solution developed for the SHoUT decoder will be described.

LMLA in other systems

The least complex way for reducing the number of LM look-ups while applying LMLA
is to use unigram probabilities for the look-ahead. By using unigrams the approx-
imation of the best final LM score will be less precise, but it becomes possible to
integrate these look-ahead scores directly in the PPT. In this case, each node stores
a single value: the difference between the best LM score from before and after en-
tering the particular node. Because only unigrams are used, these look-ahead val-
ues can be applied for all tokens, no matter their n-gram history. Unfortunately,
it was shown that unigram look-ahead is outperformed by higher order look-ahead
systems [ONEC96, CDGM02].

Another method for reducing the number of language model probability look-ups
is proposed in [ONEC96]. All nodes of the PPT with only one successor node are
skipped for calculating the LMLA values. The resulting compressed PPT will never
require more nodes than twice the number of words from the PPT, reducing the
number of needed LM lookups (see figure 6.4). The decoder in [ONEC96] uses tree
copies in order to incorporate the LM probabilities. LMLA is performed on demand
whenever a new copy is needed.

In [MNL05] at each node in the compressed PPT a list is stored with all words
that are still reachable from that node. For small word lists, the look-ahead value
is calculated exactly (each trigram probability is calculated and the best is chosen).
Large word lists, at the root of the PPT, are skipped. For all other lists, the intersec-
tion with the n-gram lists are calculated before calculating the LMLA values. This
saves a considerable amount of search time for those words that do not have a trigram

108

Automatic speech recognition

Figure 6.4: Top: a pronunciation prefix tree with the four words: ‘redundant’, ‘reduction’,

‘research’ and ‘robust’. Bottom: the same tree but now compressed for LMLA. Lookahead

is only done in the remaining nodes.

or bigram LM value.

Similar to the systems described in [CDGM02, SMFW02], the SHoUT decoder
does not make tree copies. Instead, LM histories are stored in the tokens and the
PTT is shared by all tokens. Therefore, Storing the LMLA values directly in the tree
is not possible. To circumvent this problem, in [CDGM02] and [SMFW02] an LMLA
cache is created in each node of the tree. These small caches contain LMLA values
of earlier computed LM histories. Although the caches are highly optimized, the
procedure takes more time than reading the single values directly when tree copying
is applied. The LMLA data structure proposed below makes it possible to obtain a
pre-calculated lookahead value in a static tree without searching in a cache.

LMLA in the SHoUT decoder

Figure 6.5 is a graphical representation of the data structure used to speed up language
model look-ahead in the SHoUT decoder. Each node in the static PPT that has more
than one successor or that is a leaf node (each node that is part of the compressed
tree as described in [ONEC96]) is assigned a unique LMLA index value. LMLA
probabilities are not stored directly in the nodes, but in LMLA field structures. Each
structure contains the look-ahead values for tokens with one particular language model
history in an array of probabilities P. The LMLA index of a node points to the
corresponding LMLA probability in P. The probability array P is filled using the
dynamic programming procedure described in [ONEC96]. Starting at the leaf nodes
the LM probabilities are calculated. The probabilities are propagated backwards to
the root of the tree and at each branch the maximum probability is selected and stored
in P. Using this method, each candidate LM probability is calculated exactly once.
Each LMLA field structure is stored in a global hash table.

When a new token enters the root of the PPT, the LMLA field structure with the
identical LM history as the token is looked up in the hash table. If a field structure
with the same LM history does not yet exist, a new one is created and added to the
hash table. A pointer to the LMLA field structure is stored in the token. Once the
token has been linked to a field, obtaining the LMLA probabilities is straightforward.

109

Chapter 6

Figure 6.5: The architecture of the SHoUT decoder including the module for language
model lookahead (LMLA). Also an LMLA-index is added to each node in the PPT and a
pointer to an LMLA field is added to each token list (marked in bold text).

When a token is propagated to a new node, it uses this node’s LMLA index on the
probability array of the LMLA field structure. This action only takes two look-ups:
retrieving the LMLA index and retrieving the probability. The search through the
hash table is needed only once. After that, the time needed for look-ups is negligible.

The boolean parameter used of the LMLA field structure is set to true each time
the field object is used for a look-up. All LMLA fields that are not used (used param-
eter is false) during a fixed time window are deleted in order to save memory.

6.2.3 Experiments

First, the efficiency of the pruning methods and LMLA is tested in three experiments
on the broadcast news domain. Next, two additional experiments are conducted in
order to determine if unigram LMLA is equally effective as using n-gram LMLA.
All experiments are conducted on Dutch broadcast news recordings. The first set of
experiments are performed using our broadcast news development set. The second
set of experiments is conducted on the recently made available development set of
N-Best [KvL07], the decoding benchmark for Dutch (see appendix A).

Pruning and LMLA

Three experiments have been conducted to test the pruning methods and the LMLA
efficiency. For the first experiment, only global beam pruning, global histogram prun-
ing and word-end beam pruning was used. In the second experiment, state beam
pruning and state histogram pruning were used as well. Finally, in the third experi-
ment, also LMLA was applied. In order to ensure that it is possible to compare the

110

Automatic speech recognition

experiments purely on basis of their needed processing time, the pruning configuration
of each experiment was chosen in such a way that the word error rate is the same
for all experiments (29.5%). When the WER is not equal for each experiment, it is
impossible to conclude if differences in speed are due to improvements in the system
or simply because too many paths in the search space are disregarded (resulting in a
faster system but in higher error rates).

The pruning values for the three experiments shown in table 6.1 are obtained by
first setting the global beam threshold so that the WER is 29.5% and then setting
the other thresholds as tight as possible without influencing the word error rate.

global word-end state
ID beam, hist. beam beam, hist. LMLA
exp-1 210, 125000 45 no, no no
exp-2 210, 125000 45 75, 250 no
exp-3 150, 40000 45 50, 250 yes

Table 6.1: The pruning configuration of each experiment. The first number in the global

end state columns represent the beam value. The second number is the histogram value.

For decoding the broadcast news recordings, a dictionary containing 65K words
was used. At the time of these experiments, the decoder was not yet able to handle
4-grams and therefore a trigram LM was used. All experiments were conducted on
a machine with a 3.4 GHz Intel Xeon processor. For each experiment the number of
search errors [Cha97], the WER and the real-time factor of the system have been cal-
culated. Finally, also the average and maximum number of active nodes and number
of tokens needed to decode each sentence were stored. For the third experiment also
the maximum and average number of LMLA lookup tables were stored.

Results

For all three experiments, the word error rate is 29.5% and 3.5% WER is due to search
errors, showing that the system performance is the same for each experiment. The
real-time factor (RTF) of the first experiment (only global and word-end pruning) is
27.4 while the RTF of the third experiment is 10.5. This improvement is obtained
because of the drastic reduction of active nodes and tokens due to LMLA. In table 6.2
all measured statistics of the three experiments are listed. The unused fields of the
LMLA hash table are not deleted every time-frame (10ms) but every 25 frames. This
means that the actual average active fields is less than the 51 mentioned in table
6.2. The number of tokens is measured each time-frame before histogram pruning.
Therefore it is possible to have an average number of tokens that is higher than the
histogram pruning threshold.

As can be seen from table 6.2, the second system (with state pruning) is roughly
9% faster than the first system (without state pruning) while the average number
of tokens is only reduced by 1.5%. This is explained with the optimization that is
possible when single-state pruning is applied: single-state pruning can be applied
directly during the merging of two token-lists coming from different HMM states into

111

Chapter 6

Average number of
ID RTF nodes tokens LMLA fields
exp-1 27.4 43314 126782 n.a.
exp-2 24.9 43730 124839 n.a.
exp-3 10.5 11395 20686 51

Table 6.2: The measured statistics of the three experiments. For all experiments the WER

is 29.5%.

the same state. Without single-state pruning, all tokens of both lists need to be
placed into the merged list, whereas when using single-state pruning, the merged list
is finished as soon as the maximum number of tokens is reached (because all token-lists
are sorted by score).

Unigram LMLA

As discussed before, one solution for reducing the needed number of LM look-ups is to
apply unigram LMLA instead of full n-gram look-ahead. In order to prove that this
method is not as efficient as full LMLA, two extra experiments were conducted. First
the system with full LMLA is run and after that a system that only uses unigram
LMLA is evaluated. As before, for these two experiments the pruning parameters
are determined in such a way that the WER is equal for both experiments (29.6%)
and the performance can be measured by the real-time factor. The experiments are
performed on the development set of the N-Best task. In table 6.3 the results of the
two experiments are listed. Although in the second experiment, less time was spent in
querying LM n-grams, more tokens and token-lists were needed. These extra tokens
slow down the decoder considerably.

LMLA global word-end state
method beam, hist. beam beam, hist. RTF
Trigram 150, 40000 50 65, 160 14.0
Unigram 160, 85000 50 75, 210 18.9

Table 6.3: The settings used for the unigram and trigram LMLA experiments. To obtain

a WER of 29.6%, for unigram LMLA, wider pruning settings are needed resulting in an

increase of the real-time factor of 35%.

6.2.4 Discussion

The experiments discussed in this section show that the measures taken to manage
the search space of the SHoUT decoder are effective and that it is possible to use
the decoder for large vocabulary tasks. The single-state pruning method reduced the
real-time factor of the system considerably and also the architecture for performing
LMLA efficiently in static tree-based decoders helps increasing the decoder speed per-
formance. It has also been shown that in the SHoUT decoder, this LMLA architecture
outperforms unigram look-ahead.

112

Automatic speech recognition

Although the unigram LMLA system was 35% slower than the full LMLA sys-
tem, it must be noted that the system without LMLA was even 2.4 times as slow as
the optimal system. The fact that unigram LMLA already provides a considerable
speed-up, and that it is less complex to implement than full LMLA, could be a con-
sideration to chose for unigram LMLA. Also, note that the reported real-time factor
results are closely related to the implementation of the SHoUT decoder and that it
is possible that, if implemented in another decoder, the RTF gain of the full LMLA
system compared to the unigram LMLA system is less distinct. Given this caveat, the
experiments with the SHoUT decoder are very promising and it is our believe that
full LMLA using the proposed data architecture will also improve the real time factor
of other token passing decoders.

Some decoders use pre-compiled caches for LM probability look-up of the most
occurring words. This helps because these words are used considerably more often
than the remaining words and therefore have a high probability of being looked up.
In the SHoUT decoder, no cache is being used, but instead a very efficient LM look-
up method (discussed in section 6.1.1) is implemented that reduces a regular n-gram
query to calculating the key for a minimum perfect hash table and using this key to
directly access the probability. A cache might be useful for speeding up the calculation
of the key, but the effect of this speed-up will be highly limited.

The techniques discussed in this section are needed for the decoding of audio when
deploying large vocabularies and large language models. Numerous other techniques
could be implemented to even speed up the decoder further, but given that the real-
time performance is good enough for practical usage, the development goal is reached.

6.3 Robust ASR

For decades, research has been performed on making automatic speech recognition
more robust in various kinds of ways. For example, numerous methods have been
developed for noise reduction, for robust feature extraction in noisy environments or
for creating more uniform acoustic models. These methods all aim at the creation
of systems that are insensitive to the potential mismatch between training data and
target audio. It was not feasible to implement all of these methods and subject them to
experimentation. Only a selection of these methods could be chosen, and as described
in chapter 3, the decision of which methods to pick was mainly guided by experiences
reported by research groups participating in benchmark tests.

Figure 6.1 provides on overview of the possible steps in the SHoUT decoder that
can be taken to perform robust ASR. This figure shows that before feature extraction,
Wiener filtering can be applied for noise reduction. Note that for this, the ICSI toolkit
is used. After Wiener filtering, Common MFCC feature extraction is performed. The
Direct Current (DC) offset of the amplitude signal is normalized by subtracting the
mean of the signal from each sample and a pre-emphasis filter is used that amplifies
the high frequencies of the signal. For each speaker in the recording the Vocal Tract
Length (VTL) warping factor is determined. This factor is used to scale the Mel-
scale windows. This procedure is described in section 6.3.1. Finally Cepstrum Mean

113

Chapter 6

Normalization (CMN) is performed.
After the first decoding run (not counting the run for determining warping fac-

tors), it is possible to apply unsupervised adaptation to the acoustic models before
running the second decoding iteration. As adaptation method, the Structured Max-
imum a Posteriori Linear Regression (SMAPLR) method developed by [SML00] has
been chosen because this adaptation method can be used on data sets of varying sizes
without tuning any parameters (see chapter 2). As stated before, it is regarded an ad-
vantage when no parameters need to be re-tuned when conditions change. SMAPLR
can be applied with maximum efficiency when only a low amount of adaptation data
is available (a minute or less) or when several minutes or hours of data is available.

For evaluation of the ASR subsystem a number of Dutch acoustic models are
trained. In the remainder of this section the steps taken to train these models will
be discussed and the section will be concluded with the evaluation of the various
methods.

6.3.1 Vocal tract length normalization

Any variation of vocal tract length between speakers results in less distinct optimal
values of the acoustic model parameters. If no normalization is applied to reduce this
variation, more Gaussians are needed to properly model a phone than if normalization
is applied. A very effective method for normalizing for this variation was proposed
by [CKA95] and discussed in chapter 2, section 2.5.1. The SHoUT decoder applies this
normalization method where the feature vectors are obtained after shifting the Mel-
scale windows by a certain warping factor. If the warping factor is smaller than one,
the windows will be stretched and if the factor is bigger than one, the windows will be
compressed. To normalize for the vocal tract length, large warping factors should be
applied for people with a low voice and small warping factors for people with a high
voice (note that this is because of how the normalization method is implemented. In
the literature often big warping factors are linked to high voices instead of low voices).

In order to determine the speakers warping factors, both for during training the
phone models as for during decoding, the method proposed by [WMOP96] is used
(see section 2.5.1). A Gaussian mixture model (referred to as VTLN-GMM) is trained
with data from the Spoken Dutch Corpus (CGN, see appendix A). In total, speech of
200 male speakers and 200 female speakers is used. The GMM only consists of four
Gaussians. For the 400 speakers in the training set, the warping factor is determined
by calculating the feature vectors with a warping factor varying from 0.8 to 1.2 in
step sizes of 0.04 and determining for each of these feature sets what the likelihood
on the VTLN-GMM is. For each speaker the warping factor used to create the set of
features with the highest likelihood is chosen.

After each speaker is assigned a warping factor, a new VTLN-GMM is trained using
normalized feature vectors and again the warping factors are determined by looking
at a range of factors and choosing the one with the highest score. This procedure is
repeated a number of times so that a VTL normalized speech model is created. From
this point on, the warping factor for each speaker is determined by looking at a range
of factors on this normalized model. Note that this method is very quick and that it is

114

Automatic speech recognition

no longer needed to run an initial decoding run in order to obtain the warping factors.

This is especially important for situations where it is not yet possible to obtain low

word error rates, because in these situations the initial hypothesis might contain so

many errors that it is hard to determine the correct warping factor on basis of this

hypothesis.

Figure 6.6 contains the warping factors of the hundred speakers of the VTLN-

GMM training set split in male and female. Three training iterations are performed.

At the third iteration a model with eight Gaussians is trained. This model is picked

to be the final VTLN-GMM.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

N
u

m
b

e
r

o
f

s
p

e
a

k
e

rs

Warping factor

Male-1
Female-1

Male-2
Female-2

Male-3
Female-3

Male-4
Female-4

Figure 6.6: The warping factor of 200 male and 200 female voices determined using the

VTLN-GMM after each of its four training iterations. The female speakers are clustered at

the left and the male speakers at the right.

As can be seen in figure 6.6, the warping factor for male speakers is generally high

and for female speakers the average warping factor is less than one. For the male

speakers a distinct peak in the graph is visible. For female speakers though, figure 6.6

contains two peaks. It is unknown why this is the case and the graph does not contain

a single peak for the female speakers as well. It is surmised that there might be two

peaks because the model is created with a relatively small amount of data. Perhaps

the graph would have a Gaussian form when a high number of speakers is used. Note

that even with the small amount of data, the dip in the graph is reduced a little after

each iteration.

115

Chapter 6

6.3.2 Acoustic model adaptation

In chapter 2 the Structured Maximum a Posteriori Linear Regression adaptation
method (SMAPLR) has been described [SML00]. This adaptation method applies
a binary tree in order to determine the clusters of triphones of which the Gaussian
mean vectors will be adapted. Each leave node of the tree represents a cluster and
the more adaptation data is available, the more nodes the tree will have. MAP adap-
tation is performed at each leave and the prior matrices that are needed during this
calculation are provided by the parent of each node. At each node, MAP adaptation is
performed and the transformation matrices are sent down the tree to function as prior
matrices. This method ensures that when only little data is available, the acoustic
model will not be over-adapted, but when large quantities of data is available, this
data will be optimally used to adapt the acoustic model.

The SMAPLR adaptation method uses a number of system parameters that need
to be tuned. This is done once on a small part of the development set. It is believed
that these parameters are not sensitive for changes in domain or audio conditions and
do not need to be re-tuned when encountering new data.

The first parameter used by SMAPLR is the C-factor. This factor weights the
prior matrices. The lower the C-factor, the more the adaptation depends on the prior
matrices. In [SML00] it is shown that the adaptation works best when the C-factor
is low at the root of the tree and higher at its leaves. The second parameter is
the amount of adaptation data that should minimally be available for each node to
perform MAP adaptation on. If this amount is too low, the system will over-adapt
the acoustic model, but when it is too high, not enough clusters will be generated
in order to optimally adapt the models. The third parameter that is not mentioned
in [SML00], but that is added for practical reasons is the maximum depth that the
tree is allowed to be. This parameter is added so that adaptation with large amounts
of data (for example for speaker adaptive training) will not take up too much system
memory.

For the SHoUT adaptation application, after explorative experiments, the mini-
mum amount of required data per node was set to 2000 feature vectors (weighted) and
the maximum tree depth was set 14 . With these settings, reasonable large trees will
be created when high amounts of data are available and only a small tree will be used
when small amounts of data are available. In order to test the best setting for the
C-factor, three sets of experiments are conducted on one single speaker. Supervised
adaptation is performed on the speech of this speaker, using varying amounts of adap-
tation data and three different settings for the C-factor. As can be seen in table 6.4
from [vV07], although differences are marginally, the best setting is 0.01 which is the
same result obtained in [SML00]. As expected, the results using a small C-factor are
poor when large quantities of adaptation data are available because the strong prior
information is constraining the transformation estimations too much. On the other
hand, when the prior is restricted (C=0.1), the models might be over-adapted when
only a few utterances are available. Two remarks need to be made when the results
of table 6.4 are compared to [SML00]. First, it is unclear what the average length of
a sentence is in [SML00] and therefore it is hard to compare the results on basis of

116

Automatic speech recognition

the number of sentences. Second, the method proposed in [SML00] to increase the
C-factor as the tree becomes deeper was applied for the experiments listed in table 6.4.
This means that for large quantities of data, at the leaves of the tree the C-factor is
1.0 for all experiments. This explains why the C-factor influences the results less than
in [SML00].

Number of C=0.001 C=0.01 C=0.1
utterances %WER %WER %WER

3 29.7 28.7 28.7
20 27.7 26.9 29.2
50 27.6 27.0 27.6
100 27.3 25.9 25.8
300 26.2 25.1 25.3

Table 6.4: Supervised adaptation results of a single speaker with varying amounts of adap-

tation data and three settings for the C-factor. The WER without adaptation was 29.2%

6.3.3 Evaluation of the robustness techniques

In this section a number of robustness techniques implemented in the SHoUT decoder
has been presented. In the remainder of this section, a number of experiments that
are conducted to test the efficiency of these techniques will be described. These
experiments are conducted on a broadcast news test set with manually annotated
speaker and segment boundaries. The total length of the test set is 84 minutes and it
contains 114 speakers (see appendix A, section A.2). Experiments on other domains
and with automatically obtained speaker clusters will be discussed in the next chapter
(section 7.1). The experiments described now are set up solely to test the decoder
and not to test interaction with the segmentation and clustering systems. First, a
baseline experiment is described in which non of the techniques is applied. Then, one
at a time, the techniques are added to the decoder. It is expected that the word error
rate will decrease for each experiment.

CMN and VTLN

First, acoustic models are trained to check the efficiency of cepstrum mean normal-
ization and vocal tract length normalization. For this, three models are created. The
first model does not make use of either CMN or VTLN. For the second model, CMN
is applied and the final model uses both CMN and VTLN. These models are trained
only up to sixteen Gaussians per mixture in order to reduce the time needed to create
the models. Both CMN and VTLN normalization are performed using clustered data
of each speaker. In table 6.5 the results of the three experiments are listed. As can
be seen, both CMN as VTLN aid in reducing the word error rate. Unfortunately,
with only sixteen Gaussians and a relatively small test set it was not possible to prove
that the combination of CMN and VTLN improves the recognition significantly. Even

117

Chapter 6

though, because the results of CMN and VTLN combined are promising it is chosen to
proceed with both normalization methods in training models with more parameters.

AM type %WER Significance (p)
Baseline 33.2
CMN 30.9 < 0.001 (compared to Baseline)
CMN and VTLN 30.5 0.327 (compared to CMN)

Table 6.5: Evaluation of ASR on the Dutch BN test set using no normalization technique
(baseline), CMN or CMN and VTLN combined.

Number of Gaussians

In the experiments listed in table 6.6 CMN and VTLN are both applied and the
number of Gaussians of the acoustic model is increased up to sixty. As can be seen in
this table, the more Gaussians are used, the better the model is performing. Adding
even more than sixty Gaussians would have limited impact though because the number
of Gaussians is also limited by the minimum needed amount of data to train each
Gaussian of each triphone cluster. As the amount of training data is limited to
approximately 100 hours of speech, most phone models reach this ceiling before the
sixty Gaussians are reached. The matched-pair significance test [PFF90] shows that
the improvements are significant with p < 0.03.

Number of Gaussians %WER Significance (p)
16 30.5
30 29.3 < 0.001 (compared to 16 Gaussians)
60 28.7 0.029 (compared to 30 Gaussians)

Table 6.6: Evaluation of ASR on the Dutch BN test set using acoustic models with in-
creasing maximum number of Gaussians per GMM.

Baum-Welch training

As described in section 6.1.2, training the acoustic models with Baum-Welch instead
of Viterbi is more time consuming but leads to more accurate models. Therefore
the models are trained with Viterbi and every few iterations a Baum-Welch run is
performed. In this experiment, the final model with maximal 60 Gaussians per GMM
is trained another fifteen iterations with the Baum-Welch procedure. The results are
listed in table 6.7. It shows that the model is refined and the WER is improved with
3.3% relative, but it could not be shown that the improvement is significant.

Segment normalization or speaker normalization

For both CMN and VTLN it is possible normalize each separate speech segment or
to normalize each individual speaker cluster. In table 6.8 the results are listed of four

118

Automatic speech recognition

Acoustic model %WER Significance (p)
CMN, VTLN, 60 Gaussians 28.7
CMN, VTLN, 60 Gaussians, extra Baum-Welch 28.4 0.097

Table 6.7: Evaluation of ASR on the Dutch BN test set using one AM without and one

AM with 15 extra Baum-Welch training iterations.

experiments in which CMN and VTLN are performed on either segments or speaker
clusters. As can be seen in table 6.8, the result is the best when both normalization
methods are performed on basis of speaker clusters. The matched pair significance
test shows that the system that applies both CMN and VTLN on a cluster basis,
is significantly better than the systems that apply VTLN on a segment basis (both
systems with p = 0.03), but for the other combinations of systems it could not be
proven that there is a significant difference.

%WER %WER
VTLN per segment VTLN per cluster

CMN per segment 28.9 28.7
CMN per cluster 28.9 28.4

Table 6.8: CMN and VTLN normalization based on speech segments or speaker clusters.

Noise reduction

The ICSI toolkit is used with default settings to reduce the noise in the audio recording
of the Dutch broadcast news test set (see appendix A, section A.2). This tool applies
a Wiener filter on the audio file and returns a noise-reduced file. This file is used as
input for another decoding experiment. The results of this experiment are listed in
table 6.9.

Noise reduction %WER Significance (p)
No noise reduction 28.4
Wiener filtering 28.5 0.303

Table 6.9: Evaluation of ASR on the Dutch BN test set with and without noise reduction.

The word error rate with noise reduction is a bit higher than without noise re-
duction (0.1% absolute). It is not proven that the difference is significant though.
The results do not show that noise reduction hurts the recognition, but apparently
for broadcast news recordings, it does not improve the system significantly either.
Therefore, for the broadcast news system it is decided not to use Wiener filtering as
most of the audio does not contain any noise.

119

Chapter 6

Unsupervised adaptation

Unsupervised acoustic adaptation is performed with SMAPLR as described in chap-
ter 2 and section 6.3.2. The acoustic model is adapted for each speaker to create
speaker dependent models. As can be seen in table 6.10, adaptation improves the
word error rate with 4.2% relative. A second iteration of adaptation does not improve
the result, but instead significantly degrades the performance.

Acoustic model %WER Significance (p)
First decoding iteration 28.4
Second decoding iteration 27.2 < 0.001 (first iteration)
Third decoding iteration 27.4 < 0.001 (second iteration)

Table 6.10: Evaluation of ASR on the Dutch BN test set using unsupervised SMAPLR

acoustic adaptation.

6.3.4 Discussion

In this section the measures taken to make the decoding process as robust as possible
were discussed. The methods used either try to improve the input signal for decoding
(CMN, Wiener filtering) or try to reduce variability in the training and evaluation
data (VTLN, SMAPLR). Conform the literature, for the broadcast news domain the
experiments show that these methods improve the result.

Numerous other normalization techniques for robust ASR are available and worth-
while investigating. For example, normalizing the decoder for speech rate has been
shown to improve recognition results in spontaneous speech [Met05]. Speaker Adap-
tive Training (SAT) for example, improves recognition after (unsupervised) adapta-
tion because all training speakers are normalized using their own adaptation matri-
ces [AMSM96]. Similar to VTLN, histogram normalization, where the Mel-windows
of each speaker are normalized, proved to be efficient for normalizing the feature vec-
tors [Mol03]. Unfortunately these techniques could not be implemented and tested
within the time frame of this research. Fortunately, the modular design of the decoder
(see section 6.1) makes it possible to experiment with new or existing techniques in a
straightforward matter, and in the future expectedly more normalization techniques
will be incorporated in the SHoUT decoder. Currently, histogram normalization and
speaker adaptive training are being implemented.

6.4 Conclusions and future work

In this chapter the SHoUT ASR subsystem was discussed. The most important design
goal for this system was that, although the decoder needs to perform state-of-the-art,
it needs to be possible to perform ASR related research using this system. With the
modular design of the decoder, described in 6.1, this goal was reached. A number
of ASR related research is already being performed using the SHoUT toolkit. For

120

Automatic speech recognition

example, both the segmentation as the diarization software have been built on top
of the decoder software described in this chapter. These applications make use of
the HMM and the token passing modules while the language model is omitted and
the structure of the lexical tree is modified. Also the software proved to be easily
extended with the extra module needed for the first research topic using the SHoUT
decoder: efficiently managing the decoder’s search space (see figure 6.5).

Section 6.2 discussed the methods applied to restrict the search space of the SHoUT
decoder. Common beam pruning, as well as pruning within single token lists (single-
state pruning) and a method to efficiently use language model look-ahead in the
SHoUT decoder or in any other decoder using a single pronunciation prefix tree were
discussed and evaluated. In this section it was shown that single state pruning and
LMLA speed up the decoder considerably without loss of recognition precision.

Finally in section 6.3 the implementation of a number of known techniques to
perform more robust ASR was described and evaluated. The experiments show that
these techniques are effectively implemented in the SHoUT decoder. Special care is
put in selecting the various methods. For VTLN, a method was used that only requires
a single GMM to determine warping factors instead of an initial hypothesis. In cases
where the word error rate can be expected to be high (bad quality audio or speech),
a bad initial hypothesis might negatively influence the correct picking of the warping
factors. For acoustic model adaptation, the SMAPLR method was chosen because this
adaptation method works optimally for both small amounts of adaptation data as for
large amounts. As no parameters need to be tuned on development data (except for
some system parameters that were tuned only once and do not need re-tuning when
audio conditions change), this adaptation method can be safely applied for unknown
audio conditions.

The SHoUT decoder has proven suitable for performing research on various ASR
topics and in future work this decoder will be used again and its functionality will be
extended. Initial progress is already being made in investigating Speaker Adaptive
Training [AMSM96] or histogram normalization [Mol03]. In addition the decoder is
being prepared to handle a second feature stream so that it is possible to use articu-
latory information as proposed in [Met05]. These methods are all good examples of
techniques that improve the decoder’s performance, but more important, that can aid
in developing a decoder that is able to recognize speech in unknown audio conditions.

121

Chapter 6

122

CHAPTER 7

SYSTEM EVALUATION

In the previous chapters the three subsystems that make up the SHoUT large vocab-
ulary continuous speech recognition system have been discussed. For each subsystem
a number of evaluations were conducted to ensure that the proposed techniques are
performing adequately. The ASR subsystem was tested on a development set and the
segmentation and diarization subsystems were tested at the NIST Rich Transcription
2007 (RT07) Meeting Recognition evaluation. In this chapter, instead of testing the
individual subsystems, the entire system will be evaluated.

In this chapter, two questions will be addressed: ‘How does the SHoUT system
perform on the standard BN task?’, and: ‘How does the system perform on a surprise-
data task with unknown audio conditions?’. In order to answer these questions, the
system is evaluated on two tasks. First, the system is evaluated in the context of
N-Best, the first Dutch ASR benchmark organized by TNO [KvL07]. This bench-
mark consists of tasks on multiple conditions and dialects. One of these tasks is the
processing of Dutch broadcast news. This task is used to evaluate if the three sub-
systems perform well together as a single system. In the second task, the system
is evaluated on the 2007 TRECVID evaluation collection (see appendix A). This
collection consist of typical surprise data: audio recordings with unkown topics and
with unknown audio conditions. It contains audio with varying topics (from poetry
to children shows or broadcast news) and with a wide range of audio quality (record-
ing conditions, background noise, etc). The results of the TRECVID evaluation will
show if the robustness against unknown audio conditions of the SAD and diarization
subsystems are helpful when the subsystems are employed in the SHoUT system.

7.1 N-Best

In 2006 a research project called N-best1 was started. N-Best aims at setting up the
infrastructure for a benchmark evaluation in large vocabulary speech recognition for
the Dutch language, and at conducting the evaluation. This evaluation, the first one

1N-Best: Northern and Southern Dutch Benchmark Evaluation of Speech recognition Technology

Chapter 7

for Dutch ASR, focuses on two tasks: broadcast news and Conversational Telephone
Speech (CTS). Within these tasks, both Northern and Southern Dutch as it is spoken
in the Netherlands and Flanders (Belgium) respectively, are evaluated.

In this section the SHoUT submission for this benchmark will be discussed. For
this evaluation the SHoUT system as it was described in the previous chapters is
applied with only a few minor adjustments. Next, before discussing the benchmark
results and performing a post-evaluation analysis, these adjustments will be discussed.

7.1.1 System description

For the BN task, segmentation and speaker diarization are performed first, followed
by the determination of the VTLN warping factor of each speaker cluster. The first
decoding iteration is performed using BN acoustic models, vocabulary and language
model. After unsupervised adaptation of the acoustic models of each speaker cluster,
the final decoding iteration is performed.

For the conversational telephone speech, diarization is not needed because each
speaker is recorded on his own channel. Some recordings in the development set
contain cross-talk, the phenomenon that a speaker is recorded on the channel of the
other speaker. Speaker diarization could have been employed to remove the cross-talk,
but the N-Best project guaranteed that there will be no cross-talk in the evaluation
data and therefore the diarization step is omitted. Instead, for each audio channel a
simple energy-based segmentation is conducted in order to obtain the speech segments.
These segments are used directly for determining the VTLN warping factor of each
speaker. After a first decoding pass the acoustic models are adapted and with the
second decoding run the final hypothesis is generated.

The data that can be used to train the statistical models is defined by the N-
Best organization. The models discussed in the previous chapter are created with
the Dutch BN part of this data set. In this section a number of experiments will be
described in which the Dutch and Flemish data is mixed in order to create better
models.

The BN and CTS systems both make use of a post-processing component at the
very end of the process. This post-processing is needed because the scoring methods
of N-Best are more strict than the methods used in the earlier experiments of this
thesis. After discussing the training of the models, the post-processing step will be
described.

The language models

The language model used for experiments in the previous chapter is based on Dutch
newspaper text, but also on subtitles of BN shows. For N-Best only the newspaper
data and transcriptions of the audio data are allowed to be used and therefore new
language models need to be created. One language model is trained on Flemish data
and the other on Dutch data. These two models are used for both the CTS and the
BN tasks.

Table 7.1 contains the results of experiments on the Dutch BN development set

124

System evaluation

(see appendix A) with the Dutch AM described in the previous chapter. The results
show that the mix of newspapers and speech transcriptions performs best on this set.
This language model is obtained by mixing the two models that are created using
newspaper text and the speech transcriptions. The same procedure is followed for
Flemish, but because of the lack of development data, no experiments are conducted
to prove if mixing newspaper and transcription data is best for Flemish as well.

Language model %WER Significance (p)
Original LM 28.4
Newspaper LM 28.6 0.549 (compared to original LM)
Newspaper/transcriptions LM 28.1 0.039 (compared to newspaper LM)

Table 7.1: Results of experiments on the Dutch BN development set with the original LM

and the two new LMs that are created using the N-Best data.

The acoustic models

The data that are available for training the acoustic models are divided into four sets:
a set for BN and CTS, both for Dutch and Flemish. The experiments described in
the previous chapter were conducted with acoustic models trained on Dutch BN. The
data are divided into the four sets because it is assumed that the four tasks are so
different that mixing the data for acoustic model training would not result in better
models. In general though, for statistical methods the rule of thumb is: ‘more data is
better’. Therefore, the question is raised if the Dutch and Flemish dialects are indeed
so different that it is not beneficial to mix data for AM training. An experiment
is conducted to find out if the performance of the system increases when all BN
data (Flemish and Dutch) is used to train the model for the Dutch-BN task. The
result of this experiment is shown in table 7.2. Apparently the Dutch and Flemish
pronunciations are too different and in this case it does not help to simply add the
Flemish data to the Dutch training set.

Acoustic model %WER Significance (p)
AM based on Dutch data 28.1
AM based on all data 28.4 0.312 (compared to Dutch AM)
Mix of the first two models 27.8 0.046 (compared to Dutch AM)

Table 7.2: Results of experiments on the Dutch BN development set with a model trained

on Dutch data, a model trained on Dutch and Flemish data and a mix of these two models.

During the training of the AM models, it was noticed that the likelihood on the
training set increased for some phones and decreased for other phones when the Flem-
ish data was added to the training set. It can be the case that for some phones it
actually does help to add the Flemish data and for other phones it is better not to do
this. In order to test this hypothesis, the overall likelihood on the Dutch-BN training
data set is determined for each phone of both the AM trained on Dutch-BN and the

125

Chapter 7

AM trained on all BN data. A third AM is then created by selecting the model with
the highest likelihood for each phone. Note that although the first AM is trained
solely on the Dutch-BN data and its likelihood is therefore tuned towards this set,
there is quite a number of phones from the AM based on all data that score higher on
the Dutch-BN data. The WER on the Dutch BN development set using this mixed
AM is shown in table 7.2. This AM outperforms the AM trained on Dutch-BN with a
significance of p = 0.046 and therefore the mix AM is used in the SHoUT submission
for N-Best. For the three other tasks, the same procedure is followed for training the
AM2. Table 7.3 contains statistics of each of the four AM files.

Task Max #Gaussians #Contexts Total #Gaussians
BN-Dutch 60 1561 82687
BN-Flanders 60 1318 79068
CTS-Dutch 60 1251 74972
CTS-Flanders 60 1066 63870

Table 7.3: Statistics of the final four sets of acoustic models used for the N-Best evaluation.

The dictionaries

The pronunciations for all dictionaries used in this thesis are determined in two steps.
First, a background dictionary with manually checked pronunciations is consulted and
for the remaining words a graph-to-phoneme system is used to generate the pronun-
ciations. This procedure is described in-depth in [Ord03].

The same procedure is used for the N-Best dictionaries. After generating the
dictionaries a number of manual checks are performed. For the Dutch dictionary
(used for the Dutch BN and CTS tasks), in total 2500 words are adjusted during this
inspection. The increase in system performance after this manual work is limited but
significant, as can be seen in table 7.4.

Dictionary %WER Significance (p)
Automatically generated 27.8
Manually checked 27.5 0.004

Table 7.4: Results of experiments on the Dutch BN development set with the automatically

generated dictionary and the manually checked dictionary.

Post-processing

The scoring method of N-Best is different in four aspects from the method used up
until now in this work. First, scoring is performed case-sensitive. Also, strict rules
are defined for the way numbers should be compounded. In the earlier experiments,

2Unfortunately, just before the submission deadline a bug was found in this procedure for CTS-VL

and therefore for this task the acoustic model trained solely on Flemish CTS data is used.

126

System evaluation

the recognition of a number was considered correct even when it was not compounded
correctly (for example: ‘honderd twee’, instead of: ‘honderdtwee’). Third, a lot of
compounded words exist in the Dutch language. Words such as: ‘waterpolobal’, are
written as multiple words in English (‘water polo ball’). In the earlier experiments
the recognition of: ‘waterpolo bal’, was re-written to the correct word, but for N-
Best these words will be considered incorrect. Finally, for the N-Best evaluation it is
allowed to label filled pauses such as ‘eh’ or ‘uhm’, as non-lexical so that these words
will be discarded during scoring. In order to face these four rules, a post-processing
component is added to the ASR subsystem that handles the case of each word, the
re-writing of numbers, compound restoration and the labeling of filled pauses.

The three words from the dictionary: ‘eh’, ‘uhm’ and ’mmh’, are marked as filled
pause. Whenever these words are recognized, it will be labeled as such. For compound
restoration, a list of possible compounds, abstracted from the Dutch newspaper cor-
pus, is used. Whenever two words are recognized of which the compound is present
in the list, the words are merged. The vocabularies are all case insensitive. For case-
restoration, the disambigue tool from the sri-lm toolkit is used [Sto02]. Case sensitive
language models are created for Flemish and Dutch, using the newspaper material.
These models are used to map the lower-case recognitions to the correct case with the
disambigue tool. The Dutch and Flemish dictionaries contain all possible numbers,
but not in concatenated form. It contains the numbers ‘honderd’ and ‘drie’ but not
‘honderddrie’. Therefore a script is written that concatenates all numbers according
to the rules of the evaluation. In section 7.1.3, each post-processing step is evaluated.

7.1.2 Evaluation results

The evaluation results are listed in table 7.5. Two aspects of the results stand out.
The results of the broadcast news tasks are lower compared to the development set
(For Dutch, 27.5 compared to 39.4% WER) and adaptation decreases the results for
the CTS tasks. In the remainder of this section, in the post-evaluation analysis, these
two aspects will be investigated.

Task 1st iteration 2nd iteration Significance
%WER %WER p

BN-Dutch 41.3 39.4 < 0.001
BN-Flanders 34.6 33.6 < 0.001
CTS-Dutch 60.4 60.7 0.136
CTS-Flanders 72.1 72.8 0.019

Table 7.5: The N-Best evaluation results for each task and the significance of the difference

between the first and second decoding iteration.

7.1.3 Post-evaluation analysis

The results of the Dutch and Flemish broadcast news tasks are disappointing com-
pared to the results of the Dutch BN development set. In part, the word error rates

127

Chapter 7

are higher because the data contain a good amount of interviews and discussions.
The development data consists mainly of prepared studio speech. In table 7.6 the
evaluation results of the Dutch BN task are shown for the four conditions with which
the evaluation data was labeled. The word error rate of the clean studio condition is
26.3%. This is comparable to the results obtained on the development set (27.5%).

Audio Number SUB DEL INS WER
condition of words % % % %
Broadcast (F0) 7177 15.1 7.6 3.6 26.3
Spontaneous (F1) 10126 22.3 15.8 2.1 40.2
Telephone (F2) 3775 17.5 43.1 1.9 62.5
Degraded (F4) 2953 24.9 11.1 3.0 39.0

Table 7.6: The N-Best evaluation results for the Dutch BN task. The results are shown
for the main four audio conditions that are present in the task. The word error rate (WER)
is divided into substitution (SUB), deletion (DEL) and insertion (INS) errors.

The difference in evaluation and development data is not the only problem. Af-
ter studying the evaluation results, it became clear that a high amount of speech
was discarded by the segmentation subsystem that falsely labeled this speech as au-
dible non-speech. Inspection of these segments revealed that the subsystem filtered
all speech out of the system that was recorded over a telephone line. The deletion
percentage of 43.1%WER in the F2 condition in table 7.6 is a clear indication of this
problem. The development set did not contain any telephone speech and therefore this
flaw in the system was not noted before. Next, a short explanation of this problem in
the segmentation subsystem will be given.

Telephone speech in broadcast news

In chapter 4 the segmentation subsystem was described. This subsystem first identifies
speech segments using a bootstrapping SAD component. Using this initial segmen-
tation, a speech model, silence model and audible non-speech model are trained. For
training the audible non-speech model, audio fragments with high energy levels that
are classified as non-speech are used. Because in some cases the audible non-speech
model is actually trained on speech fragments, the speech and non-speech models
are compared and if they are considered similar, the audible non-speech model is
discarded. The method failed because of two assumptions that are not valid in this
case.

First, the bootstrapping is performed by a model based speech/silence segmenta-
tion component. This means that segments are only classified as speech when they
fit the speech model well enough. If the audio conditions differ too much from the
conditions of the training data for the speech model, speech segments might fit the
more general silence model better, causing the segments to be classified as non-speech.
This is what happened for the telephone speech.

Second, it is assumed that if the audible non-speech is trained with speech data,
using the BIC method it is possible to detect that the speech model and audible

128

System evaluation

non-speech model both contain speech so that the error can be fixed. This is indeed
possible as long as the conditions of the speech of both models are similar enough. In
this case the telephone speech with which the audible non-speech model was trained,
did not match the speech from the speech model and the error was not fixed at all.

To avoid this problem a narrow-band/broadband detection subsystem can be ap-
plied before segmentation is performed. It is also possible to adjust the segmentation
subsystem so that it is more robust for this channel problem. In the future work
section of the next chapter, ideas for improving the segmentation subsystem will be
given.

Task BN model CTS model Significance
%WER %WER p

BN-Dutch 35.5 34.9 < 0.001
BN-Flanders 33.5 31.7 < 0.001

Table 7.7: The N-Best evaluation results for the Dutch BN task, where segments origi-
nally labeled as audible non-speech, are processed by the ASR subsystem using the telephone
acoustic models. The significance levels are measured compared to the original submission
(table 7.5).

For this specific evaluation, where it is guaranteed that the audio fragments do
not contain any audible non-speech, it is possible to interpret the results of the seg-
mentation subsystem slightly different. In this case, all audio that is used for training
the audible non-speech model is known to contain high energy levels and mismatch
the acoustical conditions of the training data. The high energy levels indicate that
the fragments are not silence and therefore must be speech. The obvious condition
that does not match the training data is speech over telephone lines and therefore the
segmentation results can be interpreted as a silence/studio-speech/telephone-speech
classification. Table 7.7 contains the results of experiments on the Dutch and Flemish
BN task where the audible non-speech segments were interpreted as being telephone
speech. These segments are passed to both the broadcast news ASR subsystem and
the CTS ASR subsystem3. The experiments show that indeed the best results are
obtained by applying the CTS acoustic models. The word error rate of the telephone
condition (F2) for the Dutch BN task is 39.6% (8.5%WER deletions) when using the
CTS models.

Post-processing

In section 7.1.1, the post-processing steps were described that are added to the system
for the N-Best evaluation. Table 7.8 contains the word error rates after each post-
processing step for the Dutch BN task (where the telephone speech is decoded with
the CTS acoustic models). If no post-processing would have been performed, the
WER would be 38.6%. Table 7.8 shows that each of the steps improves this result.

3For this experiment, only one decoding pass is used. The models are not adapted for a second

iteration.

129

Chapter 7

Although the contribution of some post-processing steps is marginal, all improvements
are significant with p < 0.001.

Post-processing step %WER
No post-processing, scored case-sensitive 38.6
Filled pauses 37.9
Filled pauses and compounds 37.6
Filled pauses, compounds and case 35.3
Filled pauses, compounds, case and numbers 34.9
All post-processing, scored case-insensitive 33.8

Table 7.8: Results of post-processing experiments on the N-Best Dutch-BN evaluation data.

All experiments are significant with p < 0.001.

If the task is scored case-insensitive, the WER is reduced with almost one percent.
Although the case of the reference transcription is not correct in all places, this means
that the case normalization step can be improved further.

7.1.4 Conclusions and discussion

The results of the N-Best evaluation show that on clean broadcast news speech, the
system performance is comparable to the results during development. The WER on
the spontaneous speech and the speech under degraded conditions is considerably
higher. This confirms the conclusion in the previous chapter that the ASR subsystem
is not yet robust enough against unknown audio conditions.

The evaluation revealed a weak spot of the segmentation subsystem. Although
the behavior of the subsystem when segmenting BN audio that contains telephone
speech is logical, it was not expected. It is possible to solve the problem by adding
a broadband/narrowband classification subsystem, but it is preferred to adjust the
segmentation subsystem so that it is possible to detect speech with various conditions
that are all represented by bootstrap speech models. With the current subsystem
it is only possible to detect the broadband speech represented by the bootstrap BN
model, but it should be possible to add other models such as the CTS model during
the bootstrapping step.

Compared to the SHoUT vocabularies, some participants of the N-Best evaluation
used vocabularies with a considerably higher number of words. A vocabulary with
500K words was even used that has an out-of-vocabulary rate on the development
set of only 0.5%. It would be interesting to test if the SHoUT performance can be
improved by increasing the number of words in the vocabularies.

7.2 Surprise data: TRECVID

TRECVID is an annual benchmark for information retrieval of video collections. For
2007, the TRECVID collection consisted of video from a real-life archive of news-
related genres such as news magazine, educational, and cultural programming. As

130

System evaluation

in previous years, ASR transcripts of the data were provided as an optional informa-
tion source for indexing. Apart from some English BN rushes (raw footage), the 2007
TRECVID collection, referred to as the TRECVID07 collection, consisted of 400 hours
of Dutch news magazine, science news, news reports, documentaries, educational pro-
grams and archival video. The files were provided by the Netherlands Institute for
Sound and Vision4.

As can be expected for a diverse content set such as the TRECVID07 data, the
audio and speech conditions vary enormously, ranging from read speech in a studio
environment to spontaneous speech under degraded acoustic conditions. Furthermore,
a large variety of topics are addresses and the material dates from a broad time period.
Historical items as well as contemporary video fall within the range. (The former with
poorly preserved audio; latter with varying audio characteristics, some even without
’intended’ sound, just noise). The SHoUT system is evaluated on a set of TRECVID07

recordings.
The N-Best evaluation showed that the SHoUT ASR subsystem is not especially

robust for handling speech recorded in degraded conditions. Therefore, it is not
expected that the accuracy on this data set will be high. The goal of this evaluation
is to show that the SHoUT system is able to handle audio recordings that contain
various types of audible non-speech fragments. It was shown in chapter 4 that the
segmentation subsystem is able to reduce the SAD error for these kind of recordings,
but it is not yet proven that the segmentation is suitable for use by the ASR subsystem.
It is possible to create segmentations with short speech segments that have reasonably
high SAD and diarization scores, but that are cutting-up words, making it impossible
to recognize them correctly. The evaluation will show if the segmentations are suitable
for decoding.

7.2.1 System description

For the evaluation on the TRECVID07 data set, no complementary metadata is used
and therefore it is not possible to apply supervised adaptation of the acoustic models
for this task. The language model used at the first decoding pass is a trigram model
similar to the NBest BN-Dutch model, except that it is trained with additional BN
related texts (mainly auto-cues) that were not allowed to be used at the N-Best
evaluation. For acoustic modeling the N-Best BN-Dutch models are used. In [HOdJ07]
the language model as well as the employment of so called video-specific language
models are discussed in-depth. The video-specific language models mentioned in this
paper are not used for the experiments discussed in this section.

7.2.2 Evaluation results

For evaluation, a set of 12 fragments of 5 minutes each were randomly selected from
the TRECVID07 data and annotated manually. In chapter 4, the speech/non-speech
results or this evaluation were already discussed. It was shown that the segmentation
subsystem is able to remove various types of non-speech audio from the input stream.

4Netherlands Institute for Sound and Vision: http://www.beeldengeluid.nl/

131

Chapter 7

In table 7.9 the segmentation and ASR results of the TRECVID07 ASR evaluation
are listed.

Segmentation and %SAD %WER %WER %SUB %DEL %INS
clustering error 1st 2nd 2nd 2nd 2nd

Manual n.a. 63.3 62.3 39.0 19.9 3.4
Automatic 11.4 69.9 69.1 42.4 21.5 5.2

Table 7.9: The results of the two decoding iterations of the SHoUT system applied on
the TRECVID07 ASR evaluation data. For the second iteration, the substitution (SUB),
deletion (DEL) and insertion (INS) errors are specified.

As can be seen in table 7.9, the word error rate of the SHoUT system on this
evaluation set is high even if all non-speech is manually filtered out of the audio. On
the other hand, unsupervised adaptation improves the result even at this WER level.
Obviously the system performance decreases when the non-speech is not manually
filtered out of the audio, but considering the high amount of audible non-speech, the
degradation is limited. The absolute increase of the WER is 6.6%. Table 7.9 shows
that this increase is not only caused by missed speech (deletions), but also because of
an increased insertion rate. The SAD error of 11.4% consists of 8.3% missed speech
and 3.2% false alarms (see chapter 4). These false alarms are responsible for the
increase in insertion errors during decoding. Note that these percentages would be
higher if the original BN segmentation system would have been used. The SAD error
of this segmentation component is 20.3% of which 15.8% is due to missed speech and
4.5% is due to false alarms.

7.3 Conclusions

In this section it was investigated what the performance of the SHoUT system is on a
task for which enough data is available to train models on, and what the performance
is on a data set for which no training data is available. For this, two evaluations
have been conducted. The first evaluation, the N-Best benchmark, consisted of four
tasks: broadcast news and telephone speech for both Dutch and Flemish. For the
analysis of this evaluation the focus was put on the Dutch broadcast news task. The
second evaluation was the TRECVID task where the system was evaluated on audio
of various sources.

The overall word error rate of the system on the Dutch BN task in the N-Best
benchmark was higher than the error rate on the development set, but the performance
on the part of the audio with studio BN conditions (F0) was similar to the performance
on the development set. This result shows that the models of the system are properly
trained and not over-fitted on the development data.

The BN tasks of the N-Best benchmark revealed a flaw in the segmentation subsys-
tem. The subsystem is not able to classify telephone speech as speech in the absence of
audible non-speech. The problem can be solved by adding a broadband/narrowband
subsystem or by adjusting the initial step of the segmentation subsystem so that the
bootstrapping segmentation does not only classify speech and silence represented by

132

System evaluation

the main speech and silence models, but also takes into account speech represented
by other speech models such as a CTS speech model.

The N-Best benchmark also showed that the system does not perform very well on
audio with degraded conditions. This was expected as only a few measures were taken
to make the decoder robust for mismatching training/evaluation conditions (CMN,
VTLN and adaptation).

The TRECVID evaluation showed that the output of the segmentation and di-
arization subsystems is usable for the ASR subsystem even when large amounts of
audible non-speech is present in the recording. The SAD error and diarization error
percentages are both based on the percentage of time that an error is made. It is pos-
sible to create segmentations with short speech segments that have reasonably high
SAD and diarization scores, but that cut-up words, making it impossible to recognize
them correctly. The TRECVID evaluation showed that the loss in precision when
performing ASR on the automatically obtained segments is limited.

133

Chapter 7

134

CHAPTER 8

CONCLUSIONS

In the first chapter of this thesis a number of research goals and development re-

quirements were formulated related to the design and implementation of the large

vocabulary continuous speech recognition toolkit SHoUT. The SHoUT system was

developed to require as few parameters and models tuned on training data as possi-

ble, so that the system is insensitive to any potential mismatch between training data

and target audio. In the previous chapters the research questions were answered and

the SHoUT system was evaluated. In this chapter, first the answers to the research

questions will be summarized. Next, the development achievements will be evaluated.

In the final section of this chapter recommendations for future research directions will

be given.

8.1 Research goals and future directions

The SHoUT system described in this thesis consists of three subsystems: segmenta-

tion, diarization and ASR. In this section, for each of these subsystems the research

questions that were defined in chapter 1 and the answers to these questions will be

summarized. Also recommendations for future research, limited to the three subsys-

tems, will be given. More general research directions will be discussed in section 8.3.

8.1.1 Segmentation

Many of the audio recordings that determined the focus of this research, do not only

contain speech but also various kinds of non-speech sound. These audible non-speech

fragments such as background noise, music or sound effects need to be separated from

the speech segments. This observation led to the research question: ‘How can all

audible non-speech be filtered out of a recording without having any prior information

about the type of non-speech that will be encountered?’. In chapter 4 the segmenta-

tion subsystem was introduced that addresses this question. It is able to filter out

all non-speech without the need of training statistical models on the various types

Chapter 8

of audible non-speech. For creating a bootstrapping segmentation, the subsystem
only needs a statistical model for speech and for silence. In the various experiments
described in chapter 4 it was shown that the segmentation subsystem is indeed able
to properly segment out-of-domain speech (speech in another language than that of
the bootstrapping model, section 4.7.2), filter music out of the recording (the IDIAP
music evaluation, section 4.7.3) and successfully segment audio full of sound effects
and background music (the TRECVID07 collection, section 4.7.4).

Except for a small number of design parameters, the SHoUT segmentation subsys-
tem does not involve any parameters that need tuning on a training set. This makes
the algorithm robust for changing audio conditions. It was shown that it is not needed
to use a high performing bootstrap segmentation component in order to obtain good
final results, and therefore it is not a problem that the speech/silence models used in
the bootstrap component are sometimes trained on data that mismatch the evalua-
tion data. But because of these models, the second research problem: ‘How can the
system perform speech/non-speech segmentation without the use of statistical models
created using training data?’, is only solved in part. Yes, it is possible to create a
segmentation system that does not deploy statistical models for audible non-speech,
but future work is needed to prove that the bootstrapping component can easily be
replaced by another component that does also not need to deploy models for speech
and silence. A possible component that could be used instead of the bootstrapping
component that requires speech and silence models, is a component that first finds
all voiced fragments in the audio and then uses these fragments to train the initial
speech model. Performing a number of training iterations while removing small gaps
in the segmentation might be enough to also incorporate unvoiced speech into the
model. This method is a promising approach especially because determining voiced
speech regions can be done without the use of models and the majority of the audible
non-speech of the resulting segmentation will actually be labeled as non-speech, but
more research is needed to determine if this initial speech model is good enough to
function properly in the successive steps of the segmentation subsystem.

In the evaluation chapter, chapter 7, the N-Best evaluation revealed that speech
recorded over a telephone line is not classified as speech by the segmentation subsystem
when the recording does not contain any audible non-speech. This is because of two
reasons. First, because of the absence of any real audible non-speech, the system
will select telephone speech segments to train the ‘sound’ model. Second, because
the characteristics of the telephone channel and the broadband studio channel are
too different, in the final step of comparing the sound model and the speech model,
the sound model is not discarded. This problem can be solved by generalizing the
segmentation subsystem. The current approach is to segment the recording into two
known classes (speech and silence) and one unknown class (audible non-speech). The
models for the known classes are re-trained so that they fit the recording the best. For
the new method, the number of known classes is increased. For each class, a bootstrap
model is needed that is used in the initial segmentation step. Then, similar to the
current approach, all audio that does not fit the known classes very well is used to
train the ‘sound’ model. In the remaining steps, the models for the known classes are
re-trained and a final Viterbi run is performed. To solve the telephone line problem,

136

Conclusions

one of the new models will be the acoustic model for telephone speech.

A problem related to SAD that is not yet addressed by the proposed system

is detecting and discarding foreign speech fragments. Feeding foreign speech into

the ASR subsystem will obviously influence its performance negatively as the ASR

subsystem can only recognize speech of the target language. Unfortunately, as was

shown by the experiments on the RT06s conference meeting data, the SHoUT SAD

subsystem will classify speech from foreign languages as speech. A solution to this

problem is to apply a language detection subsystem directly after the SAD subsystem.

Speech from a language for which an ASR system is available can be passed to that

system, while speech of other languages can be discarded. Although this solution

seems logical and straightforward, another solution is also interesting to investigate:

The creation of language-specific speech models. For each language a SAD speech

model is trained and each of these models is applied during the bootstrapping step

of the generalized segmentation subsystem. Similar to splitting telephone speech and

broadband speech it might be possible to categorize multiple languages.

8.1.2 Speaker diarization

The first research question concerning speaker diarization, defined in chapter 1, is:

‘How can a speaker clustering system be created that does not require any statistical

models created using training data?’. This question was addressed during the develop-

ment of the speaker diarization subsystem. The diarization subsystem does not need

any training data for the creation of statistical models. Instead it randomly cuts up

the recording and trains models on the recording that is being processed itself. By

performing a number of Viterbi re-alignments while training the models, each speaker

gradually captures his or hers own model.

The second question related to speaker diarization: ‘How can the proposed speaker

clustering system be adjusted so that it is able to process long recordings with reasonably

computational effort?’, is also answered in this thesis. Although it must be noted that

the two solutions,SHoUTDCM and SHoUTD07∗, both speed-up the process but also

decrease the performance. In order to understand why the SHoUTDCM system did

not perform as well as the original diarization subsystem, future research is needed. A

thorough analysis such as performed for SHoUTD06 can reveal the aspects that need

improvement. Due to time constraints it was not possible to perform an analysis for

both systems. Instead, the SHoUTD07∗ system was developed that is closely related to

the SHoUTD07 system. With the use of a single parameter, it is possible to decrease

the real-time factor of this subsystem with a slight decrease in performance. For short

recordings though, the SHoUTD07∗ system is identical to the SHoUTD07 system.

It is interesting to plan future research for diarization of long recordings at the

SHoUTDCM approach, but also at two other approaches. First, the process could be

made faster by combining the SHoUTDCM approach and the SHoUTD07 approach. For

long recordings, the first iterations could be performed by SHoUTDCM while the final

iterations are performed by SHoUTD07. The experiments from section 5.5.1 indicate

that SHoUTDCM seems weak in deciding the optimal number of clusters, but it works

fine in clustering the initial models.

137

Chapter 8

The second possible approach to diarization of long recordings is related to the
approach taken for SAD. Instead of processing the entire recording at once, it could
be cut up in chunks and each chunk could be processed individually. Although for
SAD it is relatively easy to re-combine the chunks, for diarization this step is not
so straightforward. It is not that easy to determine which speaker model from one
chunk matches the model of another chunk. If a method is found that can match
the correct speaker models of the various chunks, it is possible to process recordings
of infinite length. It would also make tracking of speakers over multiple recordings
straightforward.

8.1.3 Automatic speech recognition

From a software engineering point of view, the ASR subsystem is the most complex
of all three subsystems. This is the reason that in the chapter about ASR, chapter 6,
a number of development issues has been presented. Especially the implementation
of a modular system received special attention in the first section of chapter 6 and
also the implementation and evaluation of a number of techniques for robust ASR
was discussed and the question: ‘Which methods can be applied to make the decoder

insensitive for a potential mismatch between training data and target audio?’, was
addressed. The three methods: cepstrum mean normalization, vocal tract length
normalization and structured maximum a posteriori linear regression, all proved to
reduce the word error rate significantly.

In dealing with the development requirements, a very specific research question
was encountered: ‘How can full language model look-ahead be applied for decoders with

static pronunciation prefix trees?’ Language Model Look-Ahead (LMLA) is a very
helpful technique in managing the computer resources needed by the ASR system.
Unfortunately, it is not straightforward how to use this technique with the system
architecture that was chosen in order to fulfill the development requirements. In
chapter 6 this problem was addressed and a method to efficiently use language model
look-ahead in the SHoUT decoder or in any other decoder using a single pronunciation
prefix tree was discussed and evaluated. It was shown that LMLA speeds up the
decoder considerably without loss of recognition precision. It was also shown that in
the SHoUT decoder, the full LMLA architecture outperforms unigram look-ahead.

The unigram LMLA system was slower than the full LMLA system (1.35 times)
and as expected the computational cost of the system without any LMLA was the
highest (2.4 times as slow as the optimal system). The fact that unigram LMLA
already provides a considerable speed-up, and that it is less complex to implement
than full LMLA, could be a consideration to chose for unigram LMLA. Also, note
that the reported real-time factor results are closely related to the implementation of
the SHoUT decoder and that it is possible that, if implemented in another decoder,
the RTF gain of the full LMLA system compared to the unigram LMLA system is
less distinct. Given this caveat, the experiments with the SHoUT decoder are very
promising and it is believed that full LMLA using the proposed data architecture will
also improve the real time factor of other token passing decoders.

Some decoders use pre-compiled caches for LM probability look-up of the most

138

Conclusions

occurring words. This helps because these words are used considerably more often
than the remaining words and therefore have a high probability of being looked up. In
the SHoUT decoder, no cache is being used, but instead a very efficient LM look-up
method is implemented that reduces a regular n-gram query to calculating the key for
a minimum perfect hash table and using this key to directly access the probability. A
cache might be useful for speeding up the calculation of the key, but the effect of this
speed-up will be highly limited.

8.1.4 The sum of the three subsystems:

the full SHoUT system

As described in chapter 7, the three subsystems were combined and the full system
was tested on two benchmarks. The first benchmark, N-Best, consisted of four tasks:
broadcast news and telephone speech for both Dutch and Flemish. For the analysis
of this evaluation the focus was put on the Dutch broadcast news task. The second
evaluation was the TRECVID task where the system was evaluated on audio of various
sources.

The ASR performance of the system on the Dutch BN task in the N-Best bench-
mark was not as good as on the development set, but the performance on the part
of the audio with studio BN conditions (F0) was similar to the performance on the
development audio. This result shows that the models of the system are properly
trained and not over-fitted on the development data. Also, it proves that for BN au-
dio conditions, the three subsystems are able to work together properly. For degraded
audio conditions, the benchmark showed that the system does not perform very well.
This was expected as only a few measures were taken to make the decoder robust for
mismatching training/evaluation conditions (CMN, VTLN and adaptation).

The TRECVID evaluation showed that the output of the segmentation and di-
arization subsystems is usable for the ASR subsystem even when high amounts of
audible non-speech is present in the recording. The SAD error and diarization error
percentages are both based on the percentage of time that an error is made. It is pos-
sible to create segmentations with short speech segments that have reasonably high
SAD and diarization scores, but that cut-up words, making it impossible to recognize
them correctly. The TRECVID evaluation showed that the loss in precision when
performing ASR on the automatically obtained segments is limited.

8.2 Development goals

In chapter 1, a number of development goals were defined. The source code created
for this research needs to be transparent so that it is easy to understand what each
line of code does. The language specific information needs to be stored in binary
files and not in source code. The software should be set-up modular so that a task
can be performed stand-alone. It should be easy to replace functional parts of the
software (such as algorithm steps) with alternative implementations. And finally,
general purpose source code (for example source code for handling Gaussians) needs

139

Chapter 8

to be re-usable for each module.

These goals were kept in mind during development of the SHoUT toolkit and it
is the believe of the author that they are all reached, but for non of the goals this
is actually tested. A group of software engineers is needed to evaluate the quality
of the software and determine if the source code is actual transparent, modular and
re-usable. Instead of hiring a group of software engineers, the toolkit is simply made
available on the internet under an open source license. Every software engineer can
now determine for herself what the quality of the source code and the manual is.

Although it is not proven that each of the development goals are reached, the
ease with which some of the algorithms that are described in this thesis could be
implemented, indicates that the source code is indeed transparent, set up modular and
easily re-usable. For example, both the segmentation as the diarization software have
been built on top of the decoder software described in chapter 6. These applications
make use of the HMM and the token passing modules while the language model is
omitted and the structure of the lexical tree is modified. Also the software proved to be
easily extended with the extra module needed for the ASR research topic: efficiently
managing the decoder’s search space. Finally, it was no problem to temporarily replace
steps of the diarization subsystem with Oracle components during the analysis of this
subsystem.

8.3 Extending the horizon for SHoUT

A number of ideas for future work on the three subsystems has been presented in
section 8.1. The segmentation subsystem can be generalized so that it is possible to
classify more known classes (such as telephone speech or language). For the diarization
subsystem future research is needed to improve the SHoUTDCM system and to create
a method that can link the speaker clusters from multiple recordings to each other,
so that the process can be done in parallel or speakers can be tracked across multiple
recordings. For the ASR subsystem, additional methods could be integrated to reduce
the mismatch between training data and evaluation data. Also the ASR decoder needs
to be optimized so that its speed is comparable to other state-of-the-art decoders.

These future work proposals all extend the research described in this thesis in a
way so that the overall system is improved gradually for large vocabulary continuous
speech recognition. These improvements are needed, but with the current state of the
framework, it is also possible to apply SHoUT for other tasks than LVCSR. In this
section research directions in the field of automatic speech recognition and spoken
document retrieval are investigated.

8.3.1 Automatic speech recognition

The software framework described in this thesis is created as a research platform for
SDR, but SHoUT can also be deployed for other research and application development.
With a few adjustments, the SHoUT toolkit is suitable to be used in various Human
Computer Interaction (HCI) research projects. Some very interesting examples of

140

Conclusions

HCI projects can be found close to home, at the Human Media Interaction (HMI)
group at the University of Twente. For example in [Bui08], research on decision
support systems for optimizing dialog management strategies is described. These
dialog management systems use speech interfaces as one of their input sources1. In
order to apply SHoUT to these kind of projects, some adjustments are needed. For
example, the current version of the decoder is not able to handle finite state grammars,
the standard for a lot of dialog systems, but it is not difficult to replace the language
model component with an implementation for finite state grammars. By doing this,
it is not only possible to assist research in the field of HCI, but also to investigate
the interaction of ASR with dialog management systems. This development would be
interesting for future work in complex dialog management systems.

None of the algorithms described in this thesis are developed to handle online

audio streams. Online systems are able to perform a task on an audio stream directly,
without the need of first recording an entire session. The building blocks for developing
such online methods are available in the SHoUT toolkit and it would be interesting
to investigate if the three subsystems can be adjusted so that they are able to process
data online. This would, for example, make it possible to apply the subsystems for
direct monitoring of meetings or for the online generation of subtitles. The building
blocks for implementing such applications are available and with some engineering
efforts, SHoUT can be used for various automatic speech processing projects outside
the spoken document retrieval domain.

8.3.2 Spoken document retrieval

The purpose of the ASR system described in this work is to solve the representation
mismatch between speech in audio recordings and written words of the query in SDR
systems. In the context of SDR, some interesting research topics can be studied.

Retrieval issues

Although the word error rate is a good metric for measuring the performance of
ASR systems, for use in SDR systems it should not be the only metric used. For
example, out-of-vocabulary words increase the WER only marginally as long as the
vocabulary is large enough, but from an SDR perspective, the system performance
degrades significantly when out-of-vocabulary words need to be searchable.

Recent studies apply hybrid ASR systems to solve the out-of-vocabulary prob-
lem that LVCSR systems suffer from. Sub-word based recognizers are combined
with LVCSR systems so that even words that are not in the vocabulary can be
searched [MMRS08, ESS08, SFB08].

Focusing on the SDR performance instead of solely on the ASR performance also
payed of in [YTS08]. The SDR performance was increased considerably by processing
word lattices instead of the single best ASR output.

Performing this kind of research on SDR issues, improving SDR performance
and addressing the out-of-vocabulary problem, is possible with some minor exten-

1Other input sources include facial expression and gesture information.

141

Chapter 8

sions of the SHoUT toolkit and steps in this research direction are being taken, e.g.
in [vdWH08].

Applications

The current framework is able to provide time aligned speech transcripts within an
SDR application and it can also provide speaker label information and classify speech,
silence and audible non-speech. With some extensions of the SHoUT toolkit it is
possible to create more types of metadata and create new SDR applications.

As mentioned earlier, the diarization subsystem can be used for speaker tracking
across multiple recordings if a good method can be found for linking the clusters of the
recordings to each other. Once this is possible, various kinds of available information
can be linked to each speaker cluster. In addition to the speech transcripts, it can be
useful to automatically determine a speakers’ gender or age(group), but with the use
of ASR transcripts or external sources such as the internet, it might even be possible
to extract the name of the speaker. For example, a movie star might never be called by
his own name in the movie itself, but his name might be mentioned in a TV interview
or at least in the TV guide that describes the interview. This kind of information
linking is in part already possible. Within the MultimediaN project (see appendix B)
for example, broadcast news topics were linked to relevant newspaper articles. With
the extension of the speaker diarization subsystem, it will become possible to apply
information linking also at speaker level.

In the current version of the SHoUT SAD subsystem, all audible non-speech is
filtered out of the recordings. It is imaginable that these non-speech fragments are
not thrown away, but clustered automatically in a similar fashion as is done in speaker
diarization. If the right features are chosen, it will become possible to automatically
cluster all kinds of sounds and if sound clusters of multiple recordings can be linked
together, large sound byte databases can be created. After manually or perhaps
automatically labeling the clusters, it becomes feasible to perform data mining and,
for example, determine the type of a movie from its sound effects or calculate how
often a meeting is disturbed by nearby construction work. It might even be possible
to link the speaker tracking system to this sound classification system and determine
in what kind of movies a specific movie star generally acts.

By linking together various multimedia sources with the use of automatically ex-
tracted metadata such as text transcripts, speaker information and sound classifica-
tions, numerous interesting new spoken document retrieval applications can be cre-
ated. It is not unthinkable that this new technology would change the story in the
first section of chapter 1 as follows.

Unforgettable memories

...I’m just finished explaining what a pointer is when my car navigation system tells
me that I have reached my destination. The technology saved my day. And we’re just
getting started.

After dinner we tell the computer that we want to watch the one-hour version of
our Holiday, uncensored and without extra tourist facts. The version that I showed

142

Conclusions

my parents was fun, but tonight I don’t want to watch a documentary about bridges

and prisons. The system understands this perfectly and it creates a nice road movie

for us. Even the title song is great. It’s from the CD that we’ve been playing all

summer. Eating our fruit cocktail we watch Chuck setting half of Dave’s land on fire.

Suddenly the movie is interrupted by a video message that Chuck and David left for

us. The computer added some pictures from the web showing Dave’s new house. After

the movie we shoot our own message for their Holiday album and we watch some facts

that the computer calculated for us. We skip the part about calories, hours of sun

exposure and beer consumption, but the list of comparable Holiday destinations gets

my full attention. Especially because the system cross-linked them with interesting

conferences. Australia, here I come!

143

Conclusions

144

Appendices

APPENDIX A

DATA COLLECTIONS

A number of collections was used for training, development and evaluation of the
SHoUT system and its subsystems. In the following sections, these collections will be
described.

A.1 Spoken Dutch Corpus

The Spoken Dutch Corpus (‘Corpus Gesproken Nederlands’, CGN) is a collection of
Dutch and Flemish speech recordings annotated mostly on a word basis and for part
of the corpus, phone-based transcriptions are available. The corpus is divided into 15
components. Each component contains recordings of a specific type such as broadcast
news shows, telephone recordings or ceremonious sermons [Oos00].

For this research, CGN was used for the training of acoustic models. The broadcast
news models were trained with the recordings of interviews, live commentaries, news
reports, broadcast news shows and broadcast commentaries (components f,i,j,k and
l). For Dutch the total length of the recordings is 99.4 hour. For Flemish it is 52.9
hour. The telephone models were trained on telephone speech from the components
c and d. For Dutch the total amount of data was 92.0 hour and for Flemish it was
64.0. Note that the recording time is inclusive silence regions.

A.2 N-Best

In 2006 the research project: ‘Northern and Southern Dutch Benchmark Evaluation of
Speech recognition Technology’ (N-Best) was started. N-Best aims at setting up the
infrastructure for a benchmark evaluation in large vocabulary speech recognition for
the Dutch language, and at conducting the evaluation. This evaluation, the first one
for Dutch ASR, focuses on two tasks: broadcast news and Conversational Telephone
Speech (CTS). Within these tasks, both Northern and Southern Dutch as it is spoken
in the Netherlands and Flanders (Belgium) respectively, are evaluated.

Data collections

The N-Best evaluation data consists of 134 minutes of broadcast news recordings
for Dutch and 129 minutes of broadcast news recordings for Flemish. The telephone
speech task consists of 174 minutes of Dutch speech (counting both channels) and
153 minutes of Flemish speech. The N-Best benchmark was used to evaluate the full
SHoUT system.

The development data for N-Best was mainly data from CGN, but the N-Best
project also contributed a number of Dutch broadcast news recordings (in total 30
minutes long). These recordings were used as part of the development set for the ASR
subsystem.

A.3 Twente news corpus

The Twente News Corpus (TwNC) is a corpus of Dutch newspapers that was used
for training language models. The corpus also contains a number of broadcast news
recordings transcribed on a word basis. These recordings, together with the broadcast
news recordings annotated by the N-Best project, were used as development set for
the ASR subsystem. In total, the development set consists of 84 minutes of speech
from in total 114 speakers.

For the development of the speech activity detection subsystem, one of the record-
ings of this test set was forced aligned using the ASR subsystem, so that the segments
containing speech were known precisely. Manually annotated speech/non-speech tran-
scriptions often contain silence at the edges of each speech segment. These small
regions of silence are falsely classified as speech and can influence the SAD error rate
considerably. This recording, the recording of 27/09/2006 was used to evaluate the
SAD subsystem and it is 24 minutes long.

A.4 TRECVID07 data set

TRECVID is an annual benchmark for information retrieval of video collections. For
2007, the TRECVID collection consisted of video from a real-life archive of news-
related genres such as news magazine, educational, and cultural programming pro-
vided by the Netherlands Institute for Sound and Vision. As in previous years, ASR
transcripts of the data were provided as an optional information source for indexing.
Apart from some English BN rushes (raw footage), the 2007 TRECVID collection,
referred to as TRECVID07consisted of 400 hours of Dutch news magazine, science
news, news reports, documentaries, educational programs and archival video. The
files were provided by the Netherlands Institute for Sound and Vision1.

As can be expected for a diverse content set such as the TRECVID07 collection,
the audio and speech conditions vary enormously, ranging from read speech in a studio
environment to spontaneous speech under degraded acoustic conditions. Furthermore,
a large variety of topics are addresses and the material dates from a broad time period.
Historical items as well as contemporary video fall within the range. (The former with

1Netherlands Institute for Sound and Vision: http://www.beeldengeluid.nl/

148

Data collections

poorly preserved audio; latter with varying audio characteristics, some even without
’intended’ sound, just noise).

From the 400 hours of recordings, 12 fragments of 5 minutes each were randomly
selected and annotated manually. This set of fragments, referred to as the TRECVID07

ASR evaluation data set was used to evaluate SAD subsystem in chapter 4 and the
full SHoUT system in chapter 7.

A.5 Rich Transcription benchmark for meetings

The National Institute for Standards and Technology (NIST) annually organizes a
benchmark for rich transcription of recordings in the meeting domain. Each year,
participants of the benchmark contribute meeting recordings to form the conference
room meeting test set. Each conference room meeting is recorded with multiple far-
field microphones and with a close-talking microphone for each person in the meeting.
All meetings are in English. Note that next to the conference room test set, there
is also a test set of lectures, but that for this research only the conference room
recordings are used.

For speaker diarization, two tasks are defined: the Multiple Distant Microphone
(MDM) task and the Single Distant Microphone (SDM) task. For the MDM task, all
available far-field microphone recordings are allowed to be used, while for the SDM
task, only one far-field microphone that is picked by NIST is allowed to be used.

For this research, the conference room test sets of 2005, the Rich Transcription 2005
Spring (RT05s) test set, was used for development of the SHoUTD06 and SHoUTDCM

speaker diarization subsystems. These subsystems were evaluated on the 2006 data set
(RT06s). The SHoUTD07 was evaluated on the set from 2007 (RT07s) and developed
on 21 meetings from various years (see table 5.7 from chapter 5).

A.6 The IDIAP speech/music evaluation set

The IDIAP speech/music evaluation set is a set of four audio recordings that contain
English broadcast news shows interleaved with various genres of music [AMB03]. The
first file contains speech and music fragments of fifteen seconds each. The second file
contains fragments of varying lengths but overall with the same amount of speech as
music. The third file contains more speech than music while the fourth file contains
more music.

For this research, the IDIAP speech/music evaluation set is used for the evaluation
of the speech activity detection subsystem.

149

Data collections

150

APPENDIX B

PROJECTS AND DEMONSTRATORS

The work reported in this thesis was supported and deployed by a number of research
projects. An overview of these projects and descriptions of demonstrators developed
for these projects will be given in the following sections.

B.1 MultimediaN

In the MultimediaN project, Dutch scientific groups work together with industrial
and other non-profit institutions on multimedia research topics. A broad spectrum
of topics is addressed from low level feature extraction in pictures, video or audio to
complex search technology. The research in MultimediaN is organized in a number
of projects and the work reported in this thesis is part of the N5 project: Semantic
Multimedia Access. MultimediaN is supported by the Dutch government under the
BSIK program.

Together with other N5 team members, a demonstrator has been created in which
the SHoUT toolkit is used. The demo, called StreetTivo, consists of a network of
personal hard disk video recorders with which it is possible to index multimedia
collections in a peer to peer manner. By combining the computational power of the
machines of all StreetTivo users, it is possible to quickly perform automatic speech
recognition of various television shows.

In cooperation with the Willem Frederik Hermans Institute (WFHi) and the Digi-
tale Bibliotheek voor de Nederlandse Letteren (DBNL), another application has been
created for search in radio and television interviews with the famous Dutch novelist
Willem Frederik Hermans. This search engine is accessible online through the web
portal: /www.willemfrederikhermans.nl.

More information about MultimediaN and the StreetTivo demonstrator can be
found on the MultimediaN site: www.multimedian.nl.

Projects and demonstrators

B.2 AMI and AMIDA

In the Augmented Multi-party Interaction (AMI) project and in its successor the
Augmented Multi-party Interaction with Distant Access (AMIDA) project, applied
research is performed for increasing the productivity of meetings. In AMI research
was focused on the development of meeting browsers, tools that allow users to search
information in recorded meetings. In AMIDA, this work is continued and the research
is extended to two new areas. The first new research direction is content linking, au-
tomatically finding information that is relevant for an ongoing meeting. The second
direction is developing new technology for people who are using a telephone or other
technology to connect to a meeting that otherwise they could not attend. The AMI
and AMIDA projects are funded by a grant (project number IST-2002-506811) from
the European Community Framework 6 Programme in Information Society Technol-
ogy (IST).

The work on speaker diarization reported on in this thesis was in part supported
by the AMI and AMIDA projects. Thanks to the training program of AMIDA I have
been able to visit the International Computer Science Institute (ICSI), in Berkeley
for half a year and to attend the NIST benchmark for Rich Transcription of meetings
in 2006 and in 2007 (RT06s and RT07s).

For more information on the AMI project: /www.amiproject.org.

B.3 CHoral

The CHoral project aims at the development of spoken document retrieval technology
for the disclosure of oral history collections. The project focuses on the development
of a methodological framework for handling and use of multimedia oral history content
for historical research. The CHoral project is supported by the Dutch national research
program for Continuous Access to Cultural Heritage (CATCH).

In cooperation with the Netherlands Institute for War Documentation (NIOD) a
demonstrator has been created for search in interviews with survivors of the second
world war concentration camp Buchenwald. The SHoUT system was used to generate
speech transcriptions of these interviews. The demonstrator is accessible at: www.

buchenwald.nl (in Dutch).

B.4 N-Best

The Northern and Southern Dutch Benchmark Evaluation of Speech recognition Tech-
nology (N-Best) project aims at setting up the infrastructure for a benchmark evalua-
tion in large vocabulary speech recognition for the Dutch language, and at conducting
such an evaluation. In 2006 the Dutch research programme STEVIN granted funding
to the project and in 2008 the first benchmark for Dutch large vocabulary continu-
ous speech recognition has been held. The SHoUT system was used for the primary
submission of the team from the University of Twente. In chapter 7 this submitted
system has been discussed.

152

Projects and demonstrators

B.5 TRECVID

The TREC Video Retrieval Evaluation (TRECVID) is an annual video retrieval
benchmark sponsored by the National Institute of Standards and Technology (NIST)
with additional support from other U.S. government agencies. The goal of this con-
ference series is to encourage research in information retrieval by providing a large
test collection, uniform scoring procedures, and a forum for organizations interested
in comparing their results. For the benchmarks of 2007 and 2008, the Netherlands
Institute for Sound and Vision has provided 400 hours of video from a real-life archive
of news-related genres such as news magazine, educational, and cultural programming
(see appendix A). The SHoUT system was used to generate speech transcriptions of
these videos.

B.6 MESH

Multimedia Semantic Syndication for Enhanced News Services (MESH) will apply
multimedia analysis and reasoning tools, network agents and content management
techniques to extract, compare and combine meaning from multiple multimedia sources
and produce advanced personalized multimedia summaries, deeply linked among them
and to the original sources to provide end users with an easy-to-use multimedia mesh
concept, with enhanced navigation aids. A step further will empower users with the
means to reuse available content by offering media enrichment and semantic mixing
of both personal and network content, as well as automatic creation from seman-
tic descriptions. Encompassing all the system, dynamic usage management will be
included to facilitate agreement between content chain players (content providers, ser-
vice providers and users). In a sentence, the project will create multimedia content
brokers acting on behalf of users to acquire, process, create and present multimedia
information personalized (to user) and adapted (to usage environment). These func-
tions will be fully exhibited in the application area of news, by creation of a platform
that will unify news organizations through the online retrieval, editing, authoring and
publishing of news items.

The MESH project uses the SHoUT system for segmentation, diarization and
automatic speech recognition of the broadcast news recordings.

B.7 MediaCampaign

Knowledge about which competitor company has invested how much money in a spe-
cific media campaign is very important for the highest management level of companies.
Such information is gathered through global advertisement expenditure measurement,
which is performed by media monitoring companies. This type of business intelligence
is a very complex task, which is currently performed manually and therefore is very
expensive.

In the MediaCampaign project, research is performed on automatically gathering
knowledge about media campaigns. MediaCampaign’s scope is on discovering, inter-
relating and navigating cross-media campaign knowledge and to automate a large

153

Projects and demonstrators

degree of the detection and tracking of media campaigns on television, Internet and

in the press. For the pilot system developed within the project, the focus is on a

concrete example for a media campaign: advertisement campaigns. For this pilot, the

SHoUT toolkit is deployed to perform automatic speech recognition.

154

BIBLIOGRAPHY

[ABD+02] A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky,
P. Jain, S. Kajarekar, N. Morgan, and S. Sivadas. Qualcomm-icsi-ogi features
for asr. In proceedings of ICSLP, 2002.

[ABLM02] Jitendra Ajmera, H. Bourlard, I. Lapidot, and I. McCowan. Unknown-
multiple speaker clustering using HMM. In proceedings of the Interna-
tional Conference on Spoken Language Processing (ICSLP), Denver, Col-
orado, USA, 2002.

[AMB03] Jitendra Ajmera, Iain McCowan, and Hervé; Bourlard. Speech/music seg-
mentation using entropy and dynamism features in a HMM classification
framework. Speech Communication, 40(3):351–363, 2003.

[AMSM96] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul. A compact
model for speaker-adaptive training. In proceedings of the Fourth Interna-
tional Conference on Spoken Language, 1996. ICSLP’96, volume 2, pages
1137–1140, 1996.

[Ang06] Xavier Anguera. Robust Speaker Diarization for Meetings. PhD thesis, Uni-
versitat Politecnica De Catalunya, 2006.

[AW03] Jitendra Ajmera and Chuck Wooters. A robust speaker clustering algorithm.
US Virgin Islands, USA, December 2003.

[AWP07] Xavier Anguera, Chuck Wooters, and J. Pardo. Robust speaker diariza-
tion for meetings: ICSI RT06s evaluation system. In Machine Learning for
Multimodal Interaction (MLMI), volume 4299 of Lecture Notes in Computer
Science, Berlin, October 2007. Springer Verlag.

[AWPA06] Xavier Anguera, Chuck Wooters, Barbara Peskin, and Mateu Aguiló. Robust
speaker segmentation for meetings: The ICSI-SRI spring 2005 diarization
system. In Machine Learning for Multimodal Interaction (MLMI), Lecture
Notes in Computer Science, pages 402–414, Berlin, February 2006. Springer
Verlag.

BIBLIOGRAPHY

[BAHU+99] P. Beyerlein, X. Aubert, R. Haeb-Umbach, M. Harris, Dietrich Klakow,
A. Wendemuth, Sirko Molau, Michael Pitz, and A. Sixtus. The
Philips/RWTH system for transcription of broadcast news. In Proceedings

of the 1999 DARPA Broadcast News Workshop, 1999.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-

tice, Second Edition. Addison Wesley, 2003.

[Bin99] Robert V. Binder. Testing object-oriented systems: models, patterns, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[Bui08] Trung H. Bui. Toward Affective Dialogue Management using Partially Ob-

servable Markov Decision Processes. PhD thesis, University of Twente, 2008.

[Cas04] Steve Cassidy. The macquarie speaker diarisation system for RT04S. pro-
ceedings of the NIST RT04s Evaluation Workshop, Montreal, Canada, May
2004.

[CCE+99] Gary Cook, James Christie, Dan Ellis, Eric Fosler-Lussier, Yoshi Gotoh,
Brian Kingsbury, Nelson Morgan, Steve Renals, Tony Robinson, and Gethin
Williams. An overview of the SPRACH system for the transcription of broad-
cast news. In Proceedings of the 1999 DARPA Broadcast News Workshop,
1999.

[CDGM02] A. Cardenal, J. Dieguez, and C. Garcia-Mateo. Fast lm look-ahead for large
vocabulary continuous speech recognition using perfect hashing. In proceed-

ings ICASSP 2002, pages 705–708, Orlando, USA, 2002.

[CEG+99] S. S. Chen, E. M. Eide, M. J. F. Gales, R. A. Gopinath, D. Kanevsky, and
P. Olsen. Recent improvements to IBM’s speech recognition system for au-
tomatic transcription of broadcast news. In ICASSP ’99: Proceedings of the

Acoustics, Speech, and Signal Processing, 1999. on 1999 IEEE International

Conference, Washington, DC, USA, 1999.

[CG98] Shaobing S. Chen and P. Gopalakrishnan. Speaker, environment and chan-
nel change detection and clustering via the bayesian information criterion. In
Proceedings DARPA Broadcast News Transcription and Understanding Work-

shop, Virginia, USA, 1998.

[CGD+07] Paul Clough, Michael Grubinger, Thomas Deselaers, Allan Hanbury, and
Henning Mller. Overview of the imageclef 2006 photographic retrieval and
object annotation tasks. In Evaluation of Multilingual and Multi-modal In-

formation Retrieval – Seventh Workshop of the Cross-Language Evaluation

Forum, CLEF 2006, LNCS, Alicante, Spain, September 2007.

[Cha97] Lin Chase. Blame assignment for errors made by large vocabulary speech
recognizers. In proceedings Eurospeech ’97, pages 1563–1566, Rhodes, Greece,
1997.

156

BIBLIOGRAPHY

[CHE+06] Murray Campbell, Alexander Haubold, Shahram Ebadollahi, Milind R.
Naphade, Apostol Natsev, Joachim Seidl, John R. Smith, Jelena Tei, and Lex-
ing Xie. Ibm research trecvid-2006 video retrieval system. In NIST TRECVID
Workshop, Gaithersburg, MD, November 2006.

[CHJ+06] Shih-Fu Chang, Winston Hsu, Wei Jiang, Lyndon Kennedy, Dong Xu, Akira
Yanagawa, and Eric Zavesky. Columbia University TRECVID-2006 Video
Search and High-Level Feature Extraction. In NIST TRECVID Workshop,
Gaithersburg, MD, November 2006.

[CHM92] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. An optimal algo-
rithm for generating minimal perfect hash functions. Information Processing
Letters, 43(5):257–264, 1992.

[Chu03] K. W. Church. Speech and language processing: Where have we been and
where are we going? In proceedings of Interspeech, Genève, Switzerland,
September 2003.

[CKA95] Jordan Cohen, Terri Kamm, and Andreas G. Andreou. Vocal tract normaliza-
tion in speech recognition: Compensating for systematic speaker variability.
Journal of the Acoustical Society of America, 97(5):3246–3247, 1995.

[CNZ+06] T.-S. Chua, S.-Y. Neo, Y. Zheng, H.-K. Goh, Y. Xiao, M. Zhao, S. Tang,
S. Gao, X. Zhu, L. Chaisorn, and Q. Sun. Trecvid 2006 by nus-i2r. In NIST
TRECVID Workshop, Gaithersburg, MD, November 2006.

[DDCW00] Kris Demuynck, Jacques Duchateau, Dirk Van Compernolle, and Patrick
Wambacq. An efficient search space representation for large vocabulary con-
tinuous speech recognition. Speech Communications, 30(1):37–53, 2000.

[DJLW06] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval:
Ideas, influences, and trends of the new age. Technical report, The Pennsyl-
vania State University, 2006.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39:1–38, 1977.

[DM80] S. Davis and P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. Acoustics,
Speech, and Signal Processing, IEEE Transactions on, 28(4):357–366, Aug
1980.

[ESS08] Stefan Eickeler, Jochen Schon, and Daniel Schneider. Towards large scale vo-
cabulary independent spoken term detection: Advances in the fraunhofer iais
audiomining system. In proceedings of the ACM SIGIR Workshop ‘Searching
Spontaneous Conversational Speech, Singapore, 2008.

[FA07] J. Fiscus and J. Ajot. The Rich Transcription 2007 Speech-To-Text (STT)
and Speaker Attributed STT (SASTT) Results. In Presentation at NIST’s
Rich Transcription 2007 Meeting Recognition Workshop, 2007.

157

BIBLIOGRAPHY

[FAG08] Jonathan G. Fiscus, Jerome Ajot, and John S. Garofolo. The rich tran-
scription 2007 meeting recognition evaluation. In Multimodal Technologies
for Perception of Humans, Lecture Notes in Computer Science, Berlin, 2008.
Springer Verlag.

[FFKW99] M. Finke, J. Fritsch, D. Koll, and A. Waibel. Modeling and efficient decoding
of large vocabulary conversational speech. In proceedings of Eurospeech’99,
pages 467–470, Budapest, Hungary, 1999.

[Fis97] Jonathan G. Fiscus. A post-processing system to yield reduced word error
rates: Recogniser output voting error reduction (rover). In proceedings 1997
IEEE Workshop on Automatic Speech Recognition and Understanding, pages
347–352, Santa Barbara, CA, 1997.

[FS07] Corinne Fredouille and Grégory Senay. Technical improvements of the E-
HMM based speaker diarization system for meeting records. In Machine
Learning for Multimodal Interaction (MLMI), Lecture Notes in Computer
Science, Berlin, January 2007. Springer Verlag.

[GAV00] J. Garofolo, G. Auzanne, and E. Voorhees. The trec spoken document re-
trieval track: A success story. In proceedings of the Recherche d’Informations
Assiste par Ordinateur: ContentBased Multimedia Information Access Con-
ference, 2000.

[GC89] L. Gillick and S.J. Cox. Some statistical issues in the comparison of speech
recognition algorithms. Acoustics, Speech, and Signal Processing, 1989.
ICASSP-89., 1989 International Conference on, pages 532–535 vol.1, May
1989.

[GLAJ99] Jean-Luc Gauvain, Lori Lamel, Gilles Adda, and Michèle Jardino. The LIMSI
1998 hub-4e transcription system. In Proc. of the DARPA Broadcast News
Workshop, pages 99–104, Feb 1999.

[HBD+07] Thomas Hain, Lukas Burget, John Dines, Giulia Garau, Martin Karafiat,
Mike Lincoln, Jithendra Vepa, and Vincent Wan. The AMI system for the
transcription of speech in meetings. In Proc. IEEE Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, USA, 2007.

[HCC+06] A.G. Hauptmann, M.-Y. Chen, M. Christel1, D. Das, W.-H. Lin, R. Yan,
J. Yang, G. Backfried, and X. Wu. Multi-lingual broadcast news retrieval. In
NIST TRECVID Workshop, Gaithersburg, MD, November 2006.

[HCS99] Juan M. Huerta, Stanley Chen, and Richard M. Stern. The 1998 carnegie
mellon university sphinx-3 spanish broadcast news transcription system. In
Proceedings of the 1999 DARPA Broadcast News Workshop, 1999.

[Her90] Hynek Hermansky. Perceptual linear predictive (plp) analysis of speech.
Acoustical Society of America, 87(4):1738–1752, 1990.

[HJT+98] T. Hain, S.E. Johnson, A. Tuerk, P.C. Woodland, and .S.J. Young. Seg-
ment generation and clustering in the HTK broadcast news transcription
system. In Proceedings DARPA Broadcast News Transcription and Under-
standing Workshop, pages 133–137, Virginia, USA, 1998.

158

BIBLIOGRAPHY

[HMV+07] Jing Huang, Etienne Marcheret, Karthik Visweswariah, Vit Libal, and Gerasi-
mos Potamianos. The IBM rich transcription 2007 speech-to-text systems for
lecture meetings. In Proceedings of the NIST Rich Transcription 2007 Spring
Meeting Recognition Evaluation, RT07s, Baltimore, USA, May 2007.

[HOdJ05] Marijn Huijbregts, Roeland Ordelman, and Franciska de Jong. A spoken doc-
ument retrieval application in the oral history domain. In Proceedings of 10th
international conference Speech and Computer, Patras, Greece (SPECOM
2005), pages 699–702. University of Patras, Wire Communications Labora-
tory Moscow State Linguistics University, 2005. ISBN=5-7452-0110-x.

[HOdJ07] Marijn Huijbregts, Roeland Ordelman, and Franciska de Jong. Annotation
of heterogeneous multimedia content using automatic speech recognition. In
Proceedings of the second international conference on Semantics And digital
Media Technologies (SAMT), Lecture Notes in Computer Science, Berlin,
December 2007. Springer Verlag.

[HOdJ08] Marijn Huijbregts, Roeland Ordelman, and Franciska de Jong. Fast N-Gram
language model look-ahead for decoders with static pronunciation prefix trees.
In proceedings of Interspeech, Brisbane, Australia, September 2008.

[HOvH01] Marijn Huijbregts, Roeland Ordelman, and Arjan van Hessen. Prosody based
boundary detection. Technical report, University of Twente, Parlevink Group,
2001.

[HW07] Marijn Huijbregts and Chuck Wooters. The blame game: Performance anal-
ysis of speaker diarization system components. In proceedings of Interspeech,
Antwerp, Belgium, August 2007.

[HWO07] Marijn Huijbregts, Chuck Wooters, and Roeland Ordelman. Filtering the
unknown: Speech activity detection in heterogeneous video collections. In
proceedings of Interspeech, Antwerp, Belgium, August 2007.

[ID71] M. Ito and R. Donaldson. Zero-crossing measurements for analysis and recog-
nition of speech sounds. Audio and Electroacoustics, IEEE Transactions on,
19(3):235–242, Sep 1971.

[IFM+06] Dan Istrate, Corinne Fredouille, Sylvain Meignier, Laurent Besacier, and
Jean François Bonastre. NIST RT05S evaluation: Pre-processing techniques
and speaker diarization on multiple microphone meetings. In Machine Learn-
ing for Multimodal Interaction (MLMI), Lecture Notes in Computer Science,
Berlin, February 2006. Springer Verlag.

[Jel97] Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, Massachusetts, London, England, 1997.

[JH95] Jean-Claude Junqua and Jean-Paul Haton. Robustness in Automatic Speech
Recognition: Fundamentals and Applications. Kluwer Academic Publishers,
Norwell, MA, USA, 1995.

[JLSW04] Qin Jin, Kornel Laskowski, Tanja Schultz, and Alex Waibel. Speaker segmen-
tation and clustering in meetings. proceedings of the NIST RT04s Evaluation
Workshop, Montreal, Canada, May 2004.

159

BIBLIOGRAPHY

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice-Hall, New Jersey, 2000.

[JY94] D. A. James and S. J. Young. A fast lattice-based approach to vocabulary in-
dependent wordspotting. In Proc. ICASSP ’94, pages I–377–I–380, Adelaide,
Austrailia, 1994.

[KEH+03] D. Kim, G. Evermann, T. Hain, D. Mrva, S. Tranter, L. Wang, and P. Wood-
land. Recent advances in broadcast news transcription. In Proc. Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 105–110.,
St. Thomas, U.S. Virgin Islands, 2003.

[KOIS06] W. Kraaij, P. Over, T. Ianeva, and A.F Smeaton. TRECVID 2006 - an
introduction. In proceedings of TRECVID 2006. NIST, USA, 2006.

[KSWW00] T. Kemp, M. Schmidt, M. Westphal, and A. Waibel. Strategies for automatic
segmentation of audio data. In proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pages 1423–1426, Istanbul,
Turkey, 2000.

[KvL07] Judith Kessens and David van Leeuwen. N-best: The northern- and southern-
dutch benchmark evaluation of speech recognition technology. In Interspeech,
Antwerp, Belgium, August 2007.

[LBG+07] L. Lamel, E. Bilinksi, J.L. Gauvain, G. Adda, C. Barras, and X. Zhu. The
LIMSI rt07 lecture transcription system. In Proceedings of the NIST Rich
Transcription 2007 Spring Meeting Recognition Evaluation, RT07s, Balti-
more, USA, May 2007.

[Li08] Haizhou Li. Query-by-example spoken document retrieval. In proceedings of
the ACM SIGIR Workshop ‘Searching Spontaneous Conversational Speech,
Singapore, 2008.

[LLJ90] C.-H. Lee, C.-H. Lin, and B.-H. Juang. A study on speaker adaptation of con-
tinuous density hmm parameters. Acoustics, Speech, and Signal Processing,
1990. ICASSP-90., 1990 International Conference on, pages 145–148 vol.1,
3-6 Apr 1990.

[LW95] C. Leggetter and C. Woodland. Flexible speaker adaptation using maximum
likelihood linear regression. In proceedings of Eurospeech, pages 1155–1158,
1995.

[LW06] Jia Li and James Z. Wang. Real-time computerized annotation of pictures.
In proceedings ACM Multimedia, pages 911–920, New York, NY, USA, 2006.

[Met05] Florian Metze. Articulatory Features for Conversational Speech Recognition.
PhD thesis, University of Fridericiana, Karlsruhe, Germany, December 2005.

[MFP+04] Florian Metze, Christian Fügen, Yue Pan, Tanja Schultz, and Hua Yu. The
ISL RT-04S meeting transcription system. proceedings of the NIST RT04s
Evaluation Workshop, Montreal, Canada, May 2004.

160

BIBLIOGRAPHY

[MGMMC04] H. Mueller, A. Geissbuhler, S. Marchand-Maillet, and P. Clough. Benchmark-
ing image retrieval applications. In proceedings of the Seventh International

Conference on Visual Information Systems, San Francisco, USA, September
2004.

[MMRS08] Jonathan Mamou, Yosi Mass, Bhuvana Ramabhadran, and Benjamin Szna-
jder. Combination of multiple speech transcription methods for vocabulary
independent search. In proceedings of the ACM SIGIR Workshop ‘Searching

Spontaneous Conversational Speech, Singapore, 2008.

[MNL05] Dominique Massonie, Pascal Nocera, and Georges Linares. Scalable language
model look-ahead for lvcsr. In proceedings Interspeech 2005, pages 569–572,
Lisbon, Portugal, 2005.

[Mol03] Sirko Molau. Normalization in the Acoustic Feature Space for Im-

proved Speech Recognition. PhD thesis, Rheinisch-Westfälischen Technischen
Hochschule Aachen, Germany, February 2003.

[MS03] S. Matsoukas and R. Schwartz. Improved speaker adaptation using speaker
dependent feature projections. In proceedings of IEEE workshop on Automatic

Speech Recognition and Understanding, pages 273–278, St. Thomas, Virgin
Islands, U.S., 2003.

[MW06] Nikki Mirghafori and Chuck Wooters. Nuts and flakes: A study of data
characteristics in speaker diarization. Toulouse, France, May 2006.

[NAA+04] L. Nguyen, S. Abdou, M. Afify, J. Makhoul, S. Matsoukas, R. Schwartz,
B. Xiang, L. Lamel, J.L. Gauvain, G. Adda, H. Schwenk, and F. Lefevre.
The 2004 BBN/LIMSI 10xRT english broadcast news transcription system.
In Proc. DARPA RT04, Palisades NY, November 2004.

[NIS06] NIST. Rich Transcription 2006 Spring Meeting Recognition evaluation plan
V2. In Rich Transcription 2006 Meeting Recognition Workshop, 2006.

[NIS07] NIST. Spring 2007 (RT-07) Rich Transcription Meeting Recognition Evalua-
tion Plan. In Rich Transcription 2007 Meeting Recognition Workshop, 2007.

[Oar04] D.W. Oard. Transforming access to the spoken word. In proceedings of the In-

ternational Symposium on Large-Scale Knowledge Resources. Tokyo Institute
of Technology, March 2004.

[ONEC96] S. Ortmanns, H. Ney, A. Eiden, and N. Coenen. Look-ahead techniques for
improved beam search. In proceedings of the CRIM-FORWISS Workshop,
pages 10–22, Montreal, 1996.

[Oos00] N. Oostdijk. The Spoken Dutch Corpus. Overview and first evaluation. In
M. Gravilidou, G. Carayannis, S. Markantonatou, S. Piperidis, and G. Stain-
haouer, editors, Second International Conference on Language Resources and

Evaluation, volume II, pages 887–894, 2000.

[Ord03] Roeland Ordelman. Dutch Speech Recognition in Multimedia Information

Retrieval. PhD thesis, University of Twente, The Netherlands, October 2003.

161

BIBLIOGRAPHY

[Pal03] David S. Pallett. A look at NIST’s benchmark ASR tests: Past, present,
and future. In Proceedings of 2003 IEEE Workshop on Automatic Speech
Recognition and Understanding, 2003.

[PFF90] D.S. Pallet, W.M. Fisher, and Jonathan G. Fiscus. Tools for the analysis of
benchmark speech recognition tests. Acoustics, Speech, and Signal Processing,
1990. ICASSP-90., 1990 International Conference on, pages 97–100 vol.1,
Apr 1990.

[PH03] B. Pellom and K. Hacioglu. Recent Improvements in the CU Sonic ASR
system for Noisy Speech: The SPINE Task. In Proc. ICASSP, 2003.

[RCL91] R. C. Rose, E. I. Chang, and R. P. Lippmann. Techniques for information
retrieval from voice messages. In proceedings of the Acoustics, Speech, and
Signal Processing (ICASSP), pages 317–320, Washington, DC, USA, 1991.
IEEE Computer Society.

[RSB+07] Elias Rentzeperis, Andreas Stergiou, Christos Boukis, Aristodemos Pnev-
matikakis, and Lazaros C. Polymenakos. The 2006 athens information tech-
nology speech activity detection and speaker diarization systems. In Machine
Learning for Multimodal Interaction (MLMI), Lecture Notes in Computer
Science, Berlin, January 2007. Springer Verlag.

[SAB+07] Andreas Stolcke, Xavier Anguera, Kofi Boakye, Özgür Çetin, Adam Janin,
Mathew Magimai-Doss, Chuck Wooters, and Jing Zheng. The SRI-ICSI
spring 2007 meeting and lecture recognition system. In Proceedings of
the NIST Rich Transcription 2007 Spring Meeting Recognition Evaluation,
RT07s, Baltimore, USA, May 2007.

[SCD+04] Richard Schwartz, Thomas Colthurst, Nicolae Duta, Herb Gish, Rukmini
Iyer, Chia-Lin Kao, Daben Liu, Owen Kimball, J. Ma, John Makhoul, Spyros
Matsoukas, Long Nguyen, Mohamed Noamany, Rohit Prasad, Bing Xiang,
Dongxin Xu, Jean-Luc Gauvain, Lori Lamel, Holger Schwenk, Gilles Adda,
and Langzhou Chen. Speech recognition in multiple languages and domains:
The 2003 BBN/LIMSI EARS system. In Proceedings of ICASSP, Montreal,
May 2004.

[Sch78] G. Schwartz. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464, 1978.

[SCK+85] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, and J. Makhoul.
Context-dependent modeling for acoustic-phonetic recognition of continuous
speech. In proceedings of ICASSP ’85, pages 1205–1208, 1985.

[SFB08] Igor Szöke, Michal Fapšo, and Lukáš Burget. Hybrid word-subword decod-
ing for spoken term detection. In proceedings of the ACM SIGIR Workshop
‘Searching Spontaneous Conversational Speech, Singapore, 2008.

[SL98] K. Shinoda and Chin-Hui Lee. Unsupervised adaptation using structural
bayes approach. In proceedings of the IEEE international conference on acous-
tics, speech and signal processing, pages 793–796 vol.2, 12-15 May 1998.

162

BIBLIOGRAPHY

[SMFW02] Hagen Soltau, Florian Metze, Christian Fugen, and Alex Waibel. Efficient lan-
guage model lookahead through polymorphic linguistic context assignment.
2002.

[SML00] O. Siohan, T. Myrvol, and C. Lee. Structural maximum a posteriori linear
regression for fast hmm adaptation. In proceedings of ISCA ITRW Automatic
Speech Recognition: Challenges for the Millenium, pages 120–127, 2000.

[SMQS98] A. Smeaton, M. Morony, G. Quinn, and R. Scaife. Taisceala i: Information
retrieval from an archive of spoken radio news. In In proceedings of the Second
European Digital Libraries Conference, 1998.

[SSB+05] Igor Szöke, Petr Schwarz, Lukáš Burget, Michal Fapšo, Martin Karafiát, Jan
C̆ernocký, and Pavel Matějka. Comparison of keyword spotting approaches
for informal continuous speech. In proceedings Interspeech 2005, pages 633–
636, 2005.

[STN94] V. Steinbiss, B.-H. Tran, and H. Ney. Improvements in beam search. In pro-
ceedings of International Conference on Spoken Language Processing, pages
1355–1358, Yokohama, Japan, 1994.

[Sto02] Andreas Stolcke. SRILM – an extensible language modeling toolkit. In In-
ternational conference on spoken language processing, 2002.

[vdWH08] Laurens van der Werff and Willemijn Heeren. Subword-based indexing for
a minimal false positive rate, research proposal. In proceedings of the ACM
SIGIR Workshop ‘Searching Spontaneous Conversational Speech, Singapore,
2008.

[VFM07] O. Vinyals, G. Friedland, and N. Mirghafori. Revisiting a basic function
on current cpus: A fast logarithm implementation with adjustable accuracy.
Technical report, International Computer Science Institute, 2007.

[vL06] David van Leeuwen. The TNO speaker diarization system for NIST RT05s
meeting data. In Machine Learning for Multimodal Interaction (MLMI),
Lecture Notes in Computer Science, pages 440–449, Berlin, February 2006.
Springer Verlag.

[vLH07] David van Leeuwen and Marijn Huijbregts. The AMI speaker diarization
system for NIST RT06s meeting data. In Machine Learning for Multimodal
Interaction (MLMI), volume 4299 of Lecture Notes in Computer Science,
pages 371–384, Berlin, October 2007. Springer Verlag.

[vLK07] David van Leeuwen and Matej Koneĉný. Progress in the AMIDA speaker
diarization system for meeting data. In Multimodal Technologies for Percep-
tion of Humans, Lecture Notes in Computer Science, Berlin, 2007. Springer
Verlag.

[VSW+04] Anand Venkataraman, Andreas Stolcke, Wen Wang, Dimitra Vergyri,
Venkata Ramana Rao Gadde, and Jing Zheng. SRI’s 2004 broadcast news
speech to text system. In Proceedings of EARS Rich Transcription 2004
workshop, Palisades, 2004.

163

[vV07] Pieter van Veelen. Clustered acoustic modelling. Master’s thesis, University
of Twente, 2007.

[WFPA04] Chuck Wooters, James Fung, Barbara Peskin, and Xavier Anguera. Towards
robust speaker segmentation: The ICSI-SRI fall 2004 diarization system. In
Fall 2004 Rich Transcription Workshop (RT04), Palisades, NY, November
2004.

[WH08] Chuck Wooters and Marijn Huijbregts. The ICSI RT07s speaker diarization
system. In Multimodal Technologies for Perception of Humans, Lecture Notes
in Computer Science, Berlin, 2008. Springer Verlag.

[WLY+99] Xintian Wu, Chaojun Liu, Yonghong Yan, Doughwa Kim, Seth Cameron,
and Randy Parr. The 1998 OGI-Fonix broadcast news transcription system.
In Proceedings of the 1999 DARPA Broadcast News Workshop, 1999.

[WMOP96] S. Wegmann, D. McAllaster, J. Orloff, and B. Peskin. Speaker normalization
on conversational telephone speech. Acoustics, Speech, and Signal Process-
ing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International
Conference on, 1:339–341, 7-10 May 1996.

[WN49] Wiener and Norbert. Extrapolation, Interpolation, and Smoothing of Station-
ary Time Series. Wiley, 1949.

[WSK07] Matthias Wölfel, Sebastian Stüker, and Florian Kraft. The ISL RT-07 speech-
to-text system. In Proceedings of the NIST Rich Transcription 2007 Spring
Meeting Recognition Evaluation, RT07s, Baltimore, USA, May 2007.

[YEH+95] Steve J. Young, Gunnar Evermann, Thomas Hain, Dan Kershaw, Gareth
Moore, Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil
Woodland. The HTK Book. 1995.

[YOW94] Steve J. Young, J. Odell, and P. Woodland. Tree-based state tying for high ac-
curacy acoustic modelling. In proceedings of the ARPA Workshop on Human
Language Technology, pages 307–312, 1994.

[YRT89] Steve J. Young, N.H. Russell, and J.H.S Thornton. Token passing: A simple
conceptual model for connected speech recognition systems. Technical report,
Cambridge University Engineering Dept, 1989.

[YTS08] Roger Peng Yu, Kit Thambiratnam, and Frank Seide. Word-lattice based
spoken-document indexing with standard text indexers. In proceedings of
the ACM SIGIR Workshop ‘Searching Spontaneous Conversational Speech,
Singapore, 2008.

[ZBLG07] Xuan Zhu, Claude Barras, Lori Lamel, and Jean-Luc Gauvain. Speaker di-
arization: From broadcast news to lectures. In Machine Learning for Multi-
modal Interaction (MLMI), Lecture Notes in Computer Science, Berlin, Jan-
uary 2007. Springer Verlag.

[ZWG99] P. Zhan, S. Wegmann, and L. Gillick. Dragon systems’ 1998 broadcast news
transcription system for mandarin. In Proceedings of the 1999 DARPA Broad-
cast News Workshop, 1999.

164

SUMMARY

In this thesis, research on large vocabulary continuous speech recognition for unknown
audio conditions is presented. For automatic speech recognition systems based on sta-
tistical methods, it is important that the conditions of the audio used for training the
statistical models match the conditions of the audio to be processed. Any mismatch
will decrease the accuracy of the recognition. If it is unpredictable what kind of data
can be expected, or in other words if the conditions of the audio to be processed are
unknown, it is impossible to tune the models. If the material consists of ‘surprise
data’ the output of the system is likely to be poor. In this thesis methods are pre-
sented for which no external training data is required for training models. These novel
methods have been implemented in a large vocabulary continuous speech recognition
system called SHoUT. This system consists of three subsystems: speech/non-speech
classification, speaker diarization and automatic speech recognition.

The speech/non-speech classification subsystem separates speech from silence and
unknown audible non-speech events. The type of non-speech present in audio record-
ings can vary from paper shuffling in recordings of meetings to sound effects in tele-
vision shows. Because it is unknown what type of non-speech needs to be detected,
it is not possible to train high quality statistical models for each type of non-speech
sound. The speech/non-speech classification subsystem, also called the speech ac-
tivity detection subsystem, does not attempt to classify all audible non-speech in a
single run. Instead, first a bootstrap speech/silence classification is obtained using a
standard speech activity component. Next, the models for speech, silence and audible
non-speech are trained on the target audio using the bootstrap classification. This
approach makes it possible to classify speech and non-speech with high accuracy,
without the need to know what kinds of sound are present in the audio recording.

Once all non-speech is filtered out of the audio, it is the task of the speaker diariza-
tion subsystem to determine how many speakers occur in the recording and exactly
when they are speaking. The speaker diarization subsystem applies agglomerative
clustering to create clusters of speech fragments for each speaker in the recording.
First, statistical speaker models are created on random chunks of the recording and
by iteratively realigning the data, retraining the models and merging models that

represent the same speaker, accurate speaker models are obtained for speaker cluster-
ing. This method does not require any statistical models developed on a training set,
which makes the diarization subsystem insensitive for variation in audio conditions.
Unfortunately, because the algorithm is of complexity O(n3), this clustering method
is slow for long recordings. Two variations of the subsystem are presented that reduce
the needed computational effort, so that the subsystem is applicable for long audio
recordings as well.

The automatic speech recognition subsystem developed for this research, is based
on Viterbi decoding on a fixed pronunciation prefix tree. Using the fixed tree, a
flexible modular decoder could be developed, but it was not straightforward to apply
full language model look-ahead efficiently. In this thesis a novel method is discussed
that makes it possible to apply language model look-ahead effectively on the fixed
tree. Also, to obtain higher speech recognition accuracy on audio with unknown
acoustical conditions, a selection from the numerous known methods that exist for
robust automatic speech recognition is applied and evaluated in this thesis.

The three individual subsystems as well as the entire system have been successfully
evaluated on three international benchmarks. The diarization subsystem has been
evaluated at the NIST RT06s benchmark and the speech activity detection subsystem
has been tested at RT07s. The entire system was evaluated at N-Best, the first
automatic speech recognition benchmark for Dutch.

166

SAMENVATTING

In dit proefschrift wordt onderzoek gepresenteerd over continue automatische spraak-
herkenning met groot vocabulair. Voor automatische spraakherkenningssystemen die
zijn gebaseerd op statistische methoden is het belangrijk dat de condities van de audio
die worden gebruikt voor het trainen van de statistische modellen overeenkomen met
de condities van de audio die verwerkt moeten worden. Elk verschil zal bijdragen tot
een minder accurate herkenning. Als vooraf niet te voorspellen is wat voor soort data
verwerkt moeten worden, of in andere woorden als de condities van de audio onbekend
zijn, dan is het onmogelijk om de statistische modellen optimaal af te stemmen. Als
het materiaal bestaat uit ‘verrassingsdata’ dan is de uitvoer van het systeem hoogst
waarschijnlijk erg slecht. In dit proefschrift worden nieuwe methoden gepresenteerd
waarvoor geen externe trainingsdata nodig zijn om modellen te trainen. Deze me-
thoden zijn gëımplementeerd in het spraakherkenningssysteem SHoUT. Dit systeem
bestaat uit drie subsystemen: spraak/geen-spraak classificatie, spreker-clustering en
automatische spraakherkenning.

Het spraak/geen-spraak classificatie-subsysteem scheidt spraak van stilte en andere
onbekende geluiden. Het soort geluiden dat voorkomt in audio-opnames kan variëren
van papiergeritsel in opnames van vergaderingen tot geluidseffecten in televisiepro-
gramma’s. Omdat het onbekend is wat voor soort geluid gedetecteerd moet worden,
is het niet mogelijk om hiervoor hoge kwaliteit statistische modellen te trainen. Het
spraak/geen-spraak classificatie subsysteem, probeert niet in één keer alle geluiden
te classificeren. In plaats daarvan wordt eerst een bootstrap spraak/stilte classi-
ficatie uitgevoerd met een standaard component. Door gebruik te maken van deze
bootstrap-segmentatie kunnen modellen voor spraak, stilte en geluid getraind worden.
Deze aanpak maakt het mogelijk om met hoge nauwkeurigheid spraak/geen-spraak te
classificeren zonder de noodzaak om te weten wat voor soort geluiden aanwezig zijn
in de opname.

Nadat de spraak van alle geluiden is gescheiden, is het de taak van het spreker-
clustering subsysteem, ook wel ‘diarization’ subsysteem genoemd, om te bepalen
hoeveel sprekers voorkomen in de opname en wanneer deze sprekers precies praten.
Het ‘diarization’ subsysteem gebruikt een iteratieve methode om clusters van spraak

te genereren voor elke spreker in de opname. Eerst wordt een relatief groot aan-
tal statistische sprekermodellen gemaakt op willekeurige fragmenten van de opname.
Door daarna iteratief de data opnieuw op te lijnen, de modellen opnieuw te trainen
en de modellen die dezelfde spreker representeren samen te voegen, worden steeds
nauwkeurigere sprekermodellen gemaakt. Deze methode maakt geen gebruik van
statistische modellen die getraind zijn op een trainingsset en hierdoor is het diariza-
tion subsysteem ongevoelig voor variaties in audiocondities. Helaas is de complexiteit
van het algorithme O(n3) waardoor de clusteringsmethode niet erg geschikt is voor
het verwerken van lange opnames. Twee variaties van het subsysteem worden gepre-
senteerd die minder computationele eisen stellen, zodat het subsysteem ook ingezet
kan worden voor lange audiobestanden.

Het automatische spraakherkennings-subsysteem dat is ontwikkeld voor dit on-
derzoek, is gebaseerd op Viterbi decodering op een statische uitspraakboom (fixed
pronunciation prefix tree). Door het gebruik van statische uitspraakbomen is het mo-
gelijk om een flexibel en modulair opgebouwde decoder te ontwikkelen, maar door
de statische uitspraakbomen is het niet eenvoudig om volledige taalmodel integratie
(full language model look-ahead) toe te passen. In dit proefschrift wordt een nieuwe
methode besproken dat het mogelijk maakt om volledige taalmodel integratie toch
effectief toe te passen in de decoder. Ook wordt in dit proefschrift een selectie uit de
ontelbare methoden voor robuste spraakherkenning toegepast en geëvalueerd.

De drie individuele subsystemen en het totale systeem zijn met succes geëvalueerd
op drie internationale benchmarks. Het diarization subsysteem is getest op de NIST
RT06s benchmark en het spraak/geen-spraak classificatie subsysteem is getest op
RT07s. Het totale systeem is geëvalueerd op N-Best, de eerste automatische spraak-
herkenningsbenchmark voor het Nederlands.

168

SIKS SERIES

Since 1998, all dissertations written by Ph.D. students who have conducted their

research under auspices of a senior research fellow of the SIKS research school are

published in the SIKS Dissertation Series. This thesis is the 190th in the series.

2008-26 Marijn Huijbregts (UT), Segmentation, Di-

arization and Speech Transcription: Surprise Data Un-

raveled

2008-25 Geert Jonker (UU), Efficient and Equitable

Exchange in Air Traffic Management Plan Repair using

Spender-signed Currency

2008-24 Zharko Aleksovski (VU), Using background

knowledge in ontology matching

2008-23 Stefan Visscher (UU), Bayesian network mod-

els for the management of ventilator-associated pneumo-

nia

2008-22 Henk Koning (UU), Communication of IT-

Architecture

2008-21 Krisztian Balog (UVA), People Search in the

Enterprise

2008-20 Rex Arendsen (UVA), Geen bericht, goed

bericht. Een onderzoek naar de effecten van de intro-

ductie van elektronisch berichtenverkeer met de overheid

op de administratieve lasten van bedrijven.

2008-19 Henning Rode (UT), From Document to En-

tity Retrieval: Improving Precision and Performance of

Focused Text Search

2008-18 Guido de Croon (UM), Adaptive Active Vision

2008-17 Martin Op ’t Land (TUD), Applying Architec-

ture and Ontology to the Splitting and Allying of Enter-

prises

2008-16 Henriëtte van Vugt (VU), Embodied agents

from a user’s perspective

2008-15 Martijn van Otterlo (UT), The Logic of Adap-

tive Behavior: Knowledge Representation and Algorithms

for the Markov Decision Process Framework in First-

Order Domains.

2008-14 Arthur van Bunningen (UT), Context-Aware

Querying; Better Answers with Less Effort

2008-13 Caterina Carraciolo (UVA), Topic Driven Ac-

cess to Scientific Handbooks

2008-12 József Farkas (RUN), A Semiotically Oriented

Cognitive Model of Knowledge Representation

2008-11 Vera Kartseva (VU), Designing Controls for

Network Organizations: A Value-Based Approach

2008-10 Wauter Bosma (UT), Discourse oriented sum-

marization

2008-09 Christof van Nimwegen (UU), The paradox of

the guided user: assistance can be counter-effective

2008-08 Janneke Bolt (UU), Bayesian Networks: As-

pects of Approximate Inference

2008-07 Peter van Rosmalen (OU), Supporting the tu-

tor in the design and support of adaptive e-learning

2008-06 Arjen Hommersom (RUN), On the Application

of Formal Methods to Clinical Guidelines, an Artificial

Intelligence Perspective

2008-05 Bela Mutschler (UT), Modeling and simulating

causal dependencies on process-aware information sys-

tems from a cost perspective

2008-04 Ander de Keijzer (UT), Management of Un-

certain Data – towards unattended integration

2008-03 Vera Hollink (UVA), Optimizing hierarchical

menus: a usage-based approach

2008-02 Alexei Sharpanskykh (VU), On Computer-

Aided Methods for Modeling and Analysis of Organiza-

tions

2008-01 Katalin Boer-Sorbán (EUR), Agent-Based

Simulation of Financial Markets: A modular, continuous-

time approach

2007-25 Joost Schalken (VU), Empirical Investigations

in Software Process Improvement

2007-24 Georgina Ramı́rez Camps (CWI), Structural

Features in XML Retrieval

2007-23 Peter Barna (TUE), Specification of Applica-

tion Logic in Web Information Systems

2007-22 Zlatko Zlatev (UT), Goal-oriented design of

value and process models from patterns

2007-21 Karianne Vermaas (UU), Fast diffusion and

broadening use: A research on residential adoption and

usage of broadband internet in the Netherlands between

2001 and 2005

2007-20 Slinger Jansen (UU), Customer Configuration

Updating in a Software Supply Network

2007-19 David Levy (UM), Intimate relationships with

artificial partners

2007-18 Bart Orriëns (UvT), On the development an
management of adaptive business collaborations
2007-17 Theodore Charitos (UU), Reasoning with Dy-
namic Networks in Practice
2007-16 Davide Grossi (UU), Designing Invisible
Handcuffs. Formal investigations in Institutions and Or-
ganizations for Multi-agent Systems
2007-15 Joyca Lacroix (UM), NIM: a Situated Compu-
tational Memory Model
2007-14 Niek Bergboer (UM), Context-Based Image
Analysis
2007-13 Rutger Rienks (UT), Meetings in Smart Envi-
ronments; Implications of Progressing Technology
2007-12 Marcel van Gerven (RUN), Bayesian Networks
for Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty
2007-11 Natalia Stash (TUE), Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adaptive Hy-
permedia System
2007-10 Huib Aldewereld (UU), Autonomy vs. Confor-
mity: an Institutional Perspective on Norms and Proto-
cols
2007-09 David Mobach (VU), Agent-Based Mediated
Service Negotiation
2007-08 Mark Hoogendoorn (VU), Modeling of Change
in Multi-Agent Organizations
2007-07 Nataša Jovanović (UT), To Whom It May
Concern – Addressee Identification in Face-to-Face Meet-
ings
2007-06 Gilad Mishne (UVA), Applied Text Analytics
for Blogs
2007-05 Bart Schermer (UL), Software Agents, Surveil-
lance, and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance
2007-04 Jurriaan van Diggelen (UU), Achieving Se-
mantic Interoperability in Multi-agent Systems: a
dialogue-based approach
2007-03 Peter Mika (VU), Social Networks and the Se-
mantic Web
2007-02 Wouter Teepe (RUG), Reconciling Informa-
tion Exchange and Confidentiality: A Formal Approach
2007-01 Kees Leune (UvT), Access Control and
Service-Oriented Architectures
2006-28 Börkur Sigurbjörnsson (UVA), Focused Infor-
mation Access using XML Element Retrieval
2006-27 Stefano Bocconi (CWI), Vox Populi: generat-
ing video documentaries from semantically annotated me-
dia repositories
2006-26 Vojkan Mihajlović (UT), Score Region Alge-
bra: A Flexible Framework for Structured Information
Retrieval
2006-25 Madalina Drugan (UU), Conditional log-
likelihood MDL and Evolutionary MCMC
2006-24 Laura Hollink (VU), Semantic Annotation for
Retrieval of Visual Resources
2006-23 Ion Juvina (UU), Development of Cognitive
Model for Navigating on the Web
2006-22 Paul de Vrieze (RUN), Fundaments of Adap-
tive Personalisation
2006-21 Bas van Gils (RUN), Aptness on the Web
2006-20 Marina Velikova (UvT), Monotone models for
prediction in data mining
2006-19 Birna van Riemsdijk (UU), Cognitive Agent
Programming: A Semantic Approach
2006-18 Valentin Zhizhkun (UVA), Graph transforma-
tion for Natural Language Processing
2006-17 Stacey Nagata (UU), User Assistance for Mul-
titasking with Interruptions on a Mobile Device

2006-16 Carsten Riggelsen (UU), Approximation Meth-
ods for Efficient Learning of Bayesian Networks

2006-15 Rainer Malik (UU), CONAN: Text Mining in
the Biomedical Domain

2006-14 Johan Hoorn (VU), Software Requirements:
Update, Upgrade, Redesign – towards a Theory of Re-
quirements Change

2006-13 Henk-Jan Lebbink (UU), Dialogue and Deci-
sion Games for Information Exchanging Agents

2006-12 Bert Bongers (VU), Interactivation – Towards
an e-cology of people, our technological environment, and
the arts

2006-11 Joeri van Ruth (UT), Flattening Queries over
Nested Data Types

2006-10 Ronny Siebes (VU), Semantic Routing in
Peer-to-Peer Systems

2006-09 Mohamed Wahdan (UM), Automatic Formu-
lation of the Auditor’s Opinion

2006-08 Eelco Herder (UT), Forward, Back and Home
Again – Analyzing User Behavior on the Web

2006-07 Marko Smiljanic (UT), XML schema match-
ing – balancing efficiency and effectiveness by means of
clustering

2006-06 Ziv Baida (VU), Software-aided Service
Bundling – Intelligent Methods & Tools for Graphical Ser-
vice Modeling

2006-05 Cees Pierik (UU), Validation Techniques for
Object-Oriented Proof Outlines

2006-04 Marta Sabou (VU), Building Web Service On-
tologies

2006-03 Noor Christoph (UVA), The role of metacog-
nitive skills in learning to solve problems

2006-02 Cristina Chisalita (VU), Contextual issues in
the design and use of information technology in organiza-
tions

2006-01 Samuil Angelov (TUE), Foundations of B2B
Electronic Contracting

2005-21 Wijnand Derks (UT), Improving Concurrency
and Recovery in Database Systems by Exploiting Applica-
tion Semantics

2005-20 Cristina Coteanu (UL), Cyber Consumer Law,
State of the Art and Perspectives

2005-19 Michel van Dartel (UM), Situated Representa-
tion

2005-18 Danielle Sent (UU), Test-selection strategies
for probabilistic networks

2005-17 Boris Shishkov (TUD), Software Specification
Based on Re-usable Business Components

2005-16 Joris Graaumans (UU), Usability of XML
Query Languages

2005-15 Tibor Bosse (VU), Analysis of the Dynamics
of Cognitive Processes

2005-14 Borys Omelayenko (VU), Web-Service config-
uration on the Semantic Web; Exploring how semantics
meets pragmatics

2005-13 Fred Hamburg (UL), Een Computermodel voor
het Ondersteunen van Euthanasiebeslissingen

2005-12 Csaba Boer (EUR), Distributed Simulation in
Industry

2005-11 Elth Ogston (VU), Agent Based Matchmaking
and Clustering – A Decentralized Approach to Search

2005-10 Anders Bouwer (UVA), Explaining Behaviour:
Using Qualitative Simulation in Interactive Learning En-
vironments

2005-09 Jeen Broekstra (VU), Storage, Querying and
Inferencing for Semantic Web Languages

170

2005-08 Richard Vdovjak (TUE), A Model-driven Ap-

proach for Building Distributed Ontology-based Web Ap-

plications

2005-07 Flavius Frasincar (TUE), Hypermedia Presen-

tation Generation for Semantic Web Information Sys-

tems

2005-06 Pieter Spronck (UM), Adaptive Game AI

2005-05 Gabriel Infante-Lopez (UVA), Two-Level

Probabilistic Grammars for Natural Language Parsing

2005-04 Nirvana Meratnia (UT), Towards Database

Support for Moving Object data

2005-03 Franc Grootjen (RUN), A Pragmatic Approach

to the Conceptualisation of Language

2005-02 Erik van der Werf (UM)), AI techniques for

the game of Go

2005-01 Floor Verdenius (UVA), Methodological As-

pects of Designing Induction-Based Applications

2004-20 Madelon Evers (Nyenrode), Learning from De-

sign: facilitating multidisciplinary design teams

2004-19 Thijs Westerveld (UT), Using generative prob-

abilistic models for multimedia retrieval

2004-18 Vania Bessa Machado (UvA), Supporting the

Construction of Qualitative Knowledge Models

2004-17 Mark Winands (UM), Informed Search in

Complex Games

2004-16 Federico Divina (VU), Hybrid Genetic Rela-

tional Search for Inductive Learning

2004-15 Arno Knobbe (UU), Multi-Relational Data

Mining

2004-14 Paul Harrenstein (UU), Logic in Conflict. Log-

ical Explorations in Strategic Equilibrium

2004-13 Wojciech Jamroga (UT), Using Multiple Mod-

els of Reality: On Agents who Know how to Play

2004-12 The Duy Bui (UT), Creating emotions and fa-

cial expressions for embodied agents

2004-11 Michel Klein (VU), Change Management for

Distributed Ontologies

2004-10 Suzanne Kabel (UVA), Knowledge-rich index-

ing of learning-objects

2004-09 Martin Caminada (VU), For the Sake of the

Argument; explorations into argument-based reasoning

2004-08 Joop Verbeek (UM), Politie en de Nieuwe

Internationale Informatiemarkt, Grensregionale politile

gegevensuitwisseling en digitale expertise

2004-07 Elise Boltjes (UM), Voorbeeldig onderwijs;

voorbeeldgestuurd onderwijs, een opstap naar abstract

denken, vooral voor meisjes

2004-06 Bart-Jan Hommes (TUD), The Evaluation of

Business Process Modeling Techniques

2004-05 Viara Popova (EUR), Knowledge discovery

and monotonicity

2004-04 Chris van Aart (UVA), Organizational Princi-

ples for Multi-Agent Architectures

2004-03 Perry Groot (VU), A Theoretical and Empiri-

cal Analysis of Approximation in Symbolic Problem Solv-

ing

2004-02 Lai Xu (UvT), Monitoring Multi-party Con-

tracts for E-business

2004-01 Virginia Dignum (UU), A Model for Organiza-

tional Interaction: Based on Agents, Founded in Logic

2003-18 Levente Kocsis (UM), Learning Search Deci-

sions

2003-17 David Jansen (UT), Extensions of Statecharts

with Probability, Time, and Stochastic Timing

2003-16 Menzo Windhouwer (CWI), Feature Grammar

Systems – Incremental Maintenance of Indexes to Digital

Media Warehouses

2003-15 Mathijs de Weerdt (TUD), Plan Merging in

Multi-Agent Systems

2003-14 Stijn Hoppenbrouwers (KUN), Freezing

Language: Conceptualisation Processes across ICT-

Supported Organisations

2003-13 Jeroen Donkers (UM), Nosce Hostem – Search-

ing with Opponent Models

2003-12 Roeland Ordelman (UT), Dutch speech recog-

nition in multimedia information retrieval

2003-11 Simon Keizer (UT), Reasoning under Uncer-

tainty in Natural Language Dialogue using Bayesian Net-

works

2003-10 Andreas Lincke (UvT), Electronic Business

Negotiation: Some experimental studies on the interac-

tion between medium, innovation context and culture

2003-09 Rens Kortmann (UM), The resolution of visu-

ally guided behaviour

2003-08 Yongping Ran (UM), Repair Based Scheduling

2003-07 Machiel Jansen (UvA), Formal Explorations of

Knowledge Intensive Tasks

2003-06 Boris van Schooten (UT), Development and

specification of virtual environments

2003-05 Jos Lehmann (UVA), Causation in Artificial

Intelligence and Law – A modelling approach

2003-04 Milan Petković (UT), Content-Based Video

Retrieval Supported by Database Technology

2003-03 Martijn Schuemie (TUD), Human-Computer

Interaction and Presence in Virtual Reality Exposure

Therapy

2003-02 Jan Broersen (VU), Modal Action Logics for

Reasoning About Reactive Systems

2003-01 Heiner Stuckenschmidt (VU), Ontology-Based

Information Sharing in Weakly Structured Environments

2002-17 Stefan Manegold (UVA), Understanding, Mod-

eling, and Improving Main-Memory Database Perfor-

mance

2002-16 Pieter van Langen (VU), The Anatomy of De-

sign: Foundations, Models and Applications

2002-15 Rik Eshuis (UT), Semantics and Verification

of UML Activity Diagrams for Workflow Modelling

2002-14 Wieke de Vries (UU), Agent Interaction: Ab-

stract Approaches to Modelling, Programming and Veri-

fying Multi-Agent Systems

2002-13 Hongjing Wu (TUE), A Reference Architecture

for Adaptive Hypermedia Applications

2002-12 Albrecht Schmidt (Uva), Processing XML in

Database Systems

2002-11 Wouter C.A. Wijngaards (VU), Agent Based

Modelling of Dynamics: Biological and Organisational

Applications

2002-10 Brian Sheppard (UM), Towards Perfect Play

of Scrabble

2002-09 Willem-Jan van den Heuvel (KUB), Integrat-

ing Modern Business Applications with Objectified Legacy

Systems

2002-08 Jaap Gordijn (VU), Value Based Requirements

Engineering: Exploring Innovative E-Commerce Ideas

2002-07 Peter Boncz (CWI), Monet: A Next-

Generation DBMS Kernel For Query-Intensive Applica-

tions

2002-06 Laurens Mommers (UL), Applied legal episte-

mology; Building a knowledge-based ontology of the legal

domain

2002-05 Radu Serban (VU), The Private Cyberspace

Modeling Electronic Environments inhabited by Privacy-

concerned Agents

2002-04 Juan Roberto Castelo Valdueza (UU), The

Discrete Acyclic Digraph Markov Model in Data Mining

171

2002-03 Henk Ernst Blok (UT), Database Optimization
Aspects for Information Retrieval
2002-02 Roelof van Zwol (UT), Modelling and search-
ing web-based document collections
2002-01 Nico Lassing (VU), Architecture-Level Modifi-
ability Analysis
2001-11 Tom M. van Engers (VUA), Knowledge Man-
agement: The Role of Mental Models in Business Systems
Design
2001-10 Maarten Sierhuis (UvA), Modeling and Simu-
lating Work Practice BRAHMS: a multiagent modeling
and simulation language for work practice analysis and
design
2001-09 Pieter Jan ’t Hoen (RUL), Towards Distributed
Development of Large Object-Oriented Models, Views of
Packages as Classes
2001-08 Pascal van Eck (VU), A Compositional Se-
mantic Structure for Multi-Agent Systems Dynamics.
2001-07 Bastiaan Schonhage (VU), Diva: Architectural
Perspectives on Information Visualization
2001-06 Martijn van Welie (VU), Task-based User In-
terface Design
2001-05 Jacco van Ossenbruggen (VU), Processing
Structured Hypermedia: A Matter of Style
2001-04 Evgueni Smirnov (UM), Conjunctive and Dis-
junctive Version Spaces with Instance-Based Boundary
Sets
2001-03 Maarten van Someren (UvA), Learning as
problem solving
2001-02 Koen Hindriks (UU), Agent Programming
Languages: Programming with Mental Models
2001-01 Silja Renooij (UU), Qualitative Approaches to
Quantifying Probabilistic Networks
2000-11 Jonas Karlsson (CWI), Scalable Distributed
Data Structures for Database Management
2000-10 Niels Nes (CWI), Image Database Manage-
ment System Design Considerations, Algorithms and Ar-
chitecture
2000-09 Florian Waas (CWI), Principles of Probabilis-
tic Query Optimization
2000-08 Veerle Coupé (EUR), Sensitivity Analyis of
Decision-Theoretic Networks
2000-07 Niels Peek (UU), Decision-theoretic Planning
of Clinical Patient Management

2000-06 Rogier van Eijk (UU), Programming Lan-
guages for Agent Communication

2000-05 Ruud van der Pol (UM), Knowledge-based
Query Formulation in Information Retrieval.

2000-04 Geert de Haan (VU), ETAG, A Formal Model
of Competence Knowledge for User Interface Design

2000-03 Carolien M.T. Metselaar (UVA), Sociaal-
organisatorische gevolgen van kennistechnologie; een pro-
cesbenadering en actorperspectief.

2000-02 Koen Holtman (TUE), Prototyping of CMS
Storage Management

2000-01 Frank Niessink (VU), Perspectives on Improv-
ing Software Maintenance

1999-08 Jacques H.J. Lenting (UM), Informed Gam-
bling: Conception and Analysis of a Multi-Agent Mecha-
nism for Discrete Reallocation.

1999-07 David Spelt (UT), Verification support for ob-
ject database design

1999-06 Niek J.E. Wijngaards (VU), Re-design of com-
positional systems

1999-05 Aldo de Moor (KUB), Empowering Communi-
ties: A Method for the Legitimate User-Driven Specifica-
tion of Network Information Systems

1999-04 Jacques Penders (UM), The practical Art of
Moving Physical Objects

1999-03 Don Beal (UM), The Nature of Minimax
Search

1999-02 Rob Potharst (EUR), Classification using de-
cision trees and neural nets

1999-01 Mark Sloof (VU), Physiology of Quality
Change Modelling; Automated modelling of Quality
Change of Agricultural Products

1998-05 E.W.Oskamp (RUL), Computerondersteuning
bij Straftoemeting

1998-04 Dennis Breuker (UM), Memory versus Search
in Games

1998-03 Ans Steuten (TUD), A Contribution to the
Linguistic Analysis of Business Conversations within the
Language/Action Perspective

1998-02 Floris Wiesman (UM), Information Retrieval
by Graphically Browsing Meta-Information

1998-01 Johan van den Akker (CWI), DEGAS – An
Active, Temporal Database of Autonomous Objects

172

