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Figure 1: (a) Blurry image (b) Color coded motion flow (c) Our deblurring result

Abstract

Most state-of-the-art dynamic scene deblurring methods

based on accurate motion segmentation assume that mo-

tion blur is small or that the specific type of motion caus-

ing the blur is known. In this paper, we study a motion

segmentation-free dynamic scene deblurring method, which

is unlike other conventional methods. When the motion can

be approximated to linear motion that is locally (pixel-wise)

varying, we can handle various types of blur caused by cam-

era shake, including out-of-plane motion, depth variation,

radial distortion, and so on. Thus, we propose a new en-

ergy model simultaneously estimating motion flow and the

latent image based on robust total variation (TV)-L1 model.

This approach is necessary to handle abrupt changes in mo-

tion without segmentation. Furthermore, we address the

problem of the traditional coarse-to-fine deblurring frame-

work, which gives rise to artifacts when restoring small

structures with distinct motion. We thus propose a novel

kernel re-initialization method which reduces the error of

motion flow propagated from a coarser level. Moreover,

a highly effective convex optimization-based solution mit-

igating the computational difficulties of the TV-L1 model

is established. Comparative experimental results on chal-

lenging real blurry images demonstrate the efficiency of the

proposed method.

1. Introduction

Blind single-image deblurring is a method used to re-

store a sharp image from an image blurred by camera shake

or object motion under low light conditions. This approach

has become an active research topic in computer vision be-

cause of the recent demand for clear images. However, de-

blurring is difficult to solve because the problem is highly

ill-posed. To solve this problem, many researchers have

studied the joint estimation of latent image and blur kernel,

thus recasting the deblurring problem as an energy mini-

mization problem based on the general constraint:

B = KL + N, (1)

where L, B, and N denote the vector forms of the latent

image, blurred image, and noise, respectively. The matrix

K denotes the blur kernel with a row vector corresponding

to the blur kernel placed at each pixel location. There are

various kernel estimation methods depending on the types

of motion blur. The 2D translational camera shake is the

most comprehensively studied motion [3, 6, 24]. Such cam-

era motion creates a spatially invariant blur kernel, such

that the matrix operation in (1) can be expressed in a con-

volution form with the aid of linearity. Therefore, using

fast Fourier transform makes fast kernel estimation from

2D translational camera shake possible. Moreover, camera

shake, including rotational movement, generalizes the 2D

translational camera motion and it enables spatially varying

blur by camera rotation [8, 10, 23]. Although these efforts

to model real camera motion have yielded promising results
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Figure 2: (a) Partially blurred image by forward motion. (b)-(c) Segmentation and deblurring results of [13] (d) Our deblurring result.

Notably, the taillight and rear fender of the taxi are restored to a significantly better degree than those in (c).

in the restoration of blurry images through the motion of a

camera, applying these approaches to cases where the blur

does not come from the global camera motion is difficult.

By contrast, without knowing the specific type of mo-

tion blur, traditional deterministic filter-based approaches

can handle various types of blur [1, 7], but these filters are

incapable of handling large motion blur and are sensitive

to noise. Additionally, edge statistics can be also used to

estimate locally varying blur kernels [12], but, the method

is also restricted to small motion blur. Therefore, some re-

searchers have studied methods that can be used to deal with

large blur without knowing the specific type of motion blur.

Harmeling et al. [9] proposed a method based on the as-

sumption that local blur kernel is expressed as a weighted

sum of the neighboring blur kernels and Ji et al. [11] in-

terpolated initially given kernels robustly. Although these

approaches can handle smoothly varying blur kernel, these

methods cannot handle abrupt changes in the blur kernel,

which commonly occur in a dynamic scene containing mul-

tiple moving objects.

To address this problem, some researches have fo-

cused on deblurring dynamic scenes and established ap-

proaches that commonly require accurate motion segmen-

tation. In [16], Levin segmented blur motions by compar-

ing likelihoods with a set of given 1D box filters. However,

limited number of 1D box filters were used. Thus, the poor

segmentation could cause undesirable artifacts. Couzinie-

Devy et al. extended the work of Levin in [4] by casting

the problem as a multi-label segmentation problem and es-

timating locally varying blur. However, the method could

not handle large blur because of the exponential increases in

the the number of candidate labels. This condition restricts

the blur kernels to small 2D Gaussian or linear. The recent

work of Kim et al. [13] proposed a method to estimate blur

kernels, latent image, and motion segments jointly. The ex-

istence of camera shake, including rotation and 2D transla-

tional motion of objects, was assumed, but the method also

fails in both segmentation and deblurring when the captured

image is blurred by unexpected blur effects, such as forward

motion, depth variation, or radial distortion. For example,

the taxi is blurred by its forward motion, and such an un-

expected motion causes a failure of both segmentation and

deblurring as shown in Figs. 2(b) and 2(c).

In sum, state-of-the-art dynamic scene deblurring meth-

ods require accurate motion segmentation for specific types

of motion blur. To mitigate this restriction, we propose a

method to deblur dynamic scenes without segmentation and

without restricting the types of motion blur, when the lo-

cally varying blur kernels can be approximated to 2D mo-

tion vectors. Although this restriction excludes non-linear

motion, numerous types of motions can be linearized in

practical situations [4, 5, 16]. We observed that this as-

sumption holds for many real blurry images and that this

approach works even when small rotational camera shake

exists, as shown in our experiments.

In the previous work of Dai et al. [5], the authors esti-

mated motion flow via the alpha channel [17] of the blurry

image. However, they used a constraint that is differ-

ent from ours and applied implicit segmentation based on

RANSAC. In addition, the result depends on the accuracy

of the given alpha channel. By contrast, we propose a

new framework that enables abrupt changes in motion with-

out segmentation based on the robust TV-L1 model. As

illustrated in Fig.1, the proposed approach estimates the

motion flow and latent image. Our method does not re-

quire any complex model to handle specific types of motion

blur [10, 23, 27] and does not depend on the accurate motion

segmentation. In addition, the proposed method is embed-

ded into the traditional coarse-to-fine framework to handle

large blur. Our finding is that small structures with distinct

motion blur give rise to serious artifacts in the coarse-to-

fine framework. Thus, we also propose a novel method to

re-initialize the motion flow and reduce the error propagated

in the coarse to fine framework.

In this paper, we introduce a new deblurring framework

that jointly estimates the spatially varying motion flow and

the latent image. We also provide a highly practical solver

optimizing TV-L1 model based on convex optimization. As

shown in Fig. 2(d), we achieve better results with the aid

of accurately estimated motion flow even when the state-

of-the-art methods fail. We demonstrate the effectiveness

and practicality of our new deblurring framework with test

results on challenging real images on which conventional

techniques fail.



2. Dynamic Scene Deblurring Model

To solve the ill-posed blind deblurring problem, various

energy models that are composed of the regularization and

data terms have been proposed to estimate the sharp image

and the blur kernel in the following form

E = Edata(L, K, B) + Ereg(L, K), (2)

where the data term Edata measures the data fidelity, and

the regularization term Ereg enforces the smoothness con-

straint to the latent image as well as to the blur kernel.

In [13], the authors argued that conventional energy model

in (2) is invalid for dynamic scene deblurring because it

principally requires motion segmentation. However, in this

paper, we propose a new energy model based on (2) for dy-

namic scene deblurring. The proposed model does not re-

quire explicit motion segmentation. Further details on the

model are described in the following sections.

2.1. L1based Robust Blur Model
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Figure 3: Blur kernel corresponding to motion flow u

In our study, we assumed that the locally varying blur

kernel can be linearized in terms of a 2D motion vector,

u = (u, v)T , which can be expressed as

h(x, y) =

{

1
∥u∥δ(vx − uy), if x ≤ ∥u∥

2 , y ≤ ∥v∥
2

0, otherwise.
, (3)

where h(x, y) denotes the blur kernel corresponding to mo-

tion flow u as illustrated in Fig. 3, and δ is the Dirac delta

function. Thus, we can cast the kernel estimation problem

as a motion estimation problem. The data term of our new

energy model is given by

Edata(L, u, B) = λ
∑

x

∑

∂∗

|(k(x, u))T ∂∗L − ∂∗B(x)|,

(4)

where x ∈ ℜ2 is the index of the discrete locations in the

image domain, and (k(x, u))T denotes the discretized vec-

tor form of h with a sum of elements equal to one. This

vector also corresponds to a row vector of the kernel ma-

trix, K, where x indicates the index of the row.

The operator ∂∗ ∈ {∂x, ∂y} denotes the partial deriva-

tives in the horizontal and vertical directions [3, 13]. The

parameter λ controls the importance of the data term.

(a) (b) (c)

Figure 4: Comparison of motion flow with and without edge-

map. (a) Blurry image (b) Color coded motion flow without edge-

map (c) Color coded motion flow with edge-map

As mentioned in [13], we use only gradient maps of the

latent and blurry images in the data model to reduce ring-

ing artifacts. In addition, the proposed model must enable

abrupt changes in the blur kernel near motion boundary be-

cause the goal is deblurring a dynamic scene without seg-

mentation. Therefore, we propose an L1-based model in the

data term that allows discontinuities in the flow field.

Although the robust L1 model was proposed before to

estimate the latent image in a non-blind deblurring pro-

cess [24], this model has not been used in the estimation

of blur kernel, to the best of our knowledge, because of its

computational difficulties. Despite its difficulties, we adopt

the L1 model for estimating not only the latent image but

also the blur kernel.

2.2. TVbased Robust Regularization

The smoothness of variables must be enforced to obtain

a reliable solution when the problem is ill-posed. In our

energy model, two primal unknown variables are the latent

image L and the motion flow u, and each has different kinds

of regularization, as given by

Ereg(L, u) = Ereg(L) + Ereg(u). (5)

More details on the regularization of each variable are de-

scribed in the following sections.

2.2.1 Regularization on Latent Image

In (1), noise is added to our blurry image. Thus, we should

suppress the noise in the latent image while preserving

edges. To address this problem, many researchers studied

the prior of latent image [14, 15, 18]. The sparse gradi-

ent prior is known to describe the edge statistics of natural

images well. In the same vein, we adopt the TV model to

regularize the latent image, as in [13, 24]. The formulation

is given by,

Ereg(L) =
∑

x

|∇L|. (6)

2.2.2 Edge-aware Regularization on Motion Flow

To have similar blur kernels among neighboring pixels, we

regularize the motion flow. Similar to the proposed data

term in the preceding section, the key to regularizing the

motion flow is how well the motion boundary is preserved.



To this end, we propose an edge-map coupled TV model to

regularize conditionally, which yields

Ereg(u) = µ
∑

x

g(x)|∇u|, (7)

where the parameter µ controls the strength of regulariza-

tion, and the edge-map, g(x), measuring the similarity be-

tween neighboring pixels is defined as

g(x) = exp(−(
max(|∇B|, |∇L0|)

σI

)2). (8)

The parameter σI denotes the decay exponent and L0 is an

intermediate latent image propagated from a coarser level

in the coarse-to-fine framework. In particular, the blurred

image itself is also used to obtain the edge-map, because an

unblurred region may exist in a partially blurred image, and

it works when L0 is smoothed out.

The outstanding performance of edge-aware regulariza-

tion is demonstrated in Fig. 4. As expected, the proposed

regularizer preserves motion discontinuities much better

than the model without edge-map.

3. Optimization Framework

The proposed single-image blind deblurring model in-

troduced in the previous sections includes the data and reg-

ularization terms, and the objective function is given by

min
L,u

∑

x

|∇L|+µ g(x)|∇u|+λ
∑

∂∗

|(k(x, u))T ∂∗L−∂∗B(x)|.

(9)

Our final objective in (9) is highly complex, that is, to ob-

tain a global optimum. Thus we divide the original problem

into two easier subproblems for L and u. We then apply

alternating optimization procedure, which was introduced

in [3, 21, 26]. The overall algorithm of the proposed method

is given in Algorithm 1.

Moreover, our approach is embedded into the traditional

coarse-to-fine framework [6, 19] to handle large motion

blur. However, we found that it gives rise to severe artifacts

when applied to a dynamic scene, which has small struc-

tures with distinct motion blurs. Thus, we propose a novel

re-initialization method to solve this problem. Further detail

is given in the following section.

3.1. Kernel Reinitialization

The conventional coarse-to-fine approach is widely used

in various fields and also has been shown to yield successful

results in the deblurring of static scene. This method can be

used in dynamic scene deblurring, but it has limitations that

have not been observed in the restoration of a static scene.

For example, a small structure, such as a thin line, that

has distinctive motion blur, cannot be seen at the coarser

level. Therefore, the motion flow of such structure is esti-

mated from its neighbors, which exhibit different motion,

Algorithm 1 Overview of the proposed method

Input: A blurry image B

Output: Latent image L and motion flow u

1: Build an image pyramid with 10 levels and a scale factor of 0.8

2: Kernel re-initialization. (Sec. 3.1)

3: for t = 1 to 3 do

4: Continuous optimization of motion flow u with fixed L. (Sec. 3.2)

5: Continuous optimization of latent image L with fixed u. (Sec. 3.3)

6: end for

7: Propagate variables to the next pyramid level if exists.

8: Repeat steps 2-7 from coarse to fine pyramid level.

with the aid of regularization. However, this process gen-

erates reconstruction error toward the finer level when the

small structure appears suddenly in the blurry image. No-

tably, a similar problem has been reported in other vision

applications [22, 25].

Local and sparse reconstruction error may not raise se-

vere artifacts in the estimation of global camera motion,

which is more serious in a local approach, such as the

method proposed in this study.

To mitigate this problem, we propose a novel kernel re-

initialization method for both motion flow and the latent im-

age. The key idea is to detect the erroneous region and de-

blur it using a deterministic filter [20], after which accurate

motion flow is estimated. Hence, we cast the problem of

detecting the erroneous region as a labeling problem, that

is,

min
e

∑

x

e(x)(c − |(k(x, u))T L − B(x)|) +
1

ν
|e(x)|, (10)

where the vector variable e is pixel-wise binary indicator

variable, e(x) ∈ {0, 1}, and the constant c is a positive

threshold value.

The first term introduced in (10) is the likelihood term

that causes e(x) to be one when the reconstruction error,

|(k(x, u))T L − B(x)|, is higher than c. The second term is

a prior giving the sparsity on the variable e, as we assume

high reconstruction error is sparsely distributed, and the pa-

rameter ν controls the importance of the prior.

Through the continuous relaxation of e, we can obtain

the approximated solution of (10) quickly by adapting the

first-order primal dual algorithm [2], that is,



























r(x)n+1 = r(x)n+σe(x)n

max(1,r(x)n+σe(x)n)

e(x)n+1 = arg min
e

(e − (e(x)n − τr(x)n+1))2

2τ
+

ν · e(x)(c − |(k(x, u))T L − B(x)|)
e(x)n+1 = max(0, min(1, e(x)n+1)),

(11)

where n ≥ 0 indicates the iteration number, vector r de-

notes the dual variable of e and the positive update steps σ

and τ control the convergence rate [2].



(a) (b)

(c) (d) (e)

Figure 5: (a) Estimated latent image in a coarse level (b) Yellow

color denotes the detected erroneous region. (c) Cropped result in

the coarse level (d) Cropped result in the finest level without the

use of re-initialization (e) Cropped result in the finest level with

the use of re-initialization

After detection of the erroneous region, we re-initialize

the propagated motion of this region to be zero, which de-

notes the impulse blur kernel. By applying sharp image

restoration in section 3.3, we restore the small structure with

distinct blur motion. However, the newly restored small

structure remains blurry because it is estimated from the im-

pulse blur kernel. Thus, we apply a deterministic filter [20]

to deblur the structure and to facilitate the fast convergence

of motion estimation. For this process, we use the predic-

tion step introduced in [3]. The overall process is shown in

Algorithm 2.

The necessity of our re-initialization step is illustrated

in Fig. 5. Notably an unseen thin line in the coarse level

in Fig. 5(c) is successfully restored using our proposed

method, as compared in Figs. 5(d) to (e).

Algorithm 2 Kernel re-initialization algorithm

Input: A blurry image B, intermediate latent image L and motion flow u

propagated from coarser pyramid level.

Output: Re-initialized motion flow u and edge-enhanced L

1: for n = 1 to 50 do

2: Compute e using (11)

3: end for

4: u(x)← 0, if e(x)> 0.5

5: Continuous optimization of L with re-initialized u (Sec. 3.3)

6: Enhance edge by applying prediction step in [3]

3.2. Motion Flow Estimation

For the latent image L being fixed, the proposed energy

model in (9) is simplified, but the data term ρ(x, u) is non-

convex in the argument u, which makes the optimization

intractable

ρ(x, u) =
∑

∂∗

|(k(x, u))T ∂∗L − ∂∗B(x)|. (12)

To make the optimization tractable, we linearize the data

function via the Taylor approximation to obtain

ρ(x, u) ≈ ρ(x, u0) + ∇ρ(x, u0)
T (u − u0), (13)

where u0 is an initial motion flow of u, and ∇ρ(x, u0) de-

notes the first-order derivative. Through approximation, the

proposed energy model becomes convex near u0, which re-

sults in

u = arg min
u

∑

x

µ·g(x)|∇u|+λ(ρ(x, u0)+∇ρ(x, u0)
T (u−u0)),

(14)

To solve this, we adapted the convex optimization algorithm

in [2], and the primal dual update process is given by

{

pn+1 = pn+σ(GA)un

max(1,pn+σ(GA)un)

un+1 = (un − τ(GA)T pn+1) − τ(λ
µ
)∇ρ(x, u0),

(15)

where p denotes the dual variable of u on the vector space.

The continuous linear operator A calculates the difference

between neighboring pixels, and the diagonal matrix G is

the weighting matrix denoted as G = diag(g(x)). This

update process is easy to implement and converges quickly

(n=100).

3.3. Sharp Image Estimation

For the motion flow u and corresponding kernel matrix

K being fixed, the proposed energy model becomes a well-

known non-blind deblurring model. However, as we use

the L1 model in the proposed data term, which requires

high computations. To address this problem, we adopt the

quadratic relaxation method [22] to facilitate the solution.

Thus, we introduce auxiliary variables f∗, which yields

min
L,f

∑

x

|∇L| + λ
∑

∂∗

|f∗(x)|

1

2θ

∑

∂∗

((k(x, u))T ∂∗L − ∂∗B(x) + f∗(x))2.
(16)

If the fixed parameter θ is set to a very small value, then

the minimization of (16) is close to that of its original TV-

L1 model. Using decomposition, both the function of L and

functions of f∗ become a thousand times easier to solve, and

each variable is solved by [2] in the alternating optimization

process. The update process for f∗ while L being fixed is

expressed as



























q∗(x)n+1 =
q
∗
(x)n+σf∗(x)n

max(1,q
∗
(x)n+σf∗(x)n)

f∗(x)n+1 = arg min
f

(f − (f∗(x)n − τq∗(x)n+1))2

2τ
+

1

2θλ

∑

∂∗

((k(x, u))T ∂∗L − ∂∗B(x) + f∗(x))2,

(17)

where the vector q∗ is the dual variable of f∗.

Similarly, the update process for L while f∗ being fixed



is given by



























sm+1 = sm+σLALm

max(1,sm+σLALm)

Lm+1 = arg min
L

(L − (Lm − τLAT sm+1))2

2τL

+

1

2θλ

∑

∂∗

(K∂∗L − ∂∗B + f∗)
2,

(18)

where m ≥ 0 indicates iteration number, the parameters

σL and τL denote the update steps and the vector s is the

dual variable of L. In addition, we adopt conjugate gradient

(CG) method to update primal variable, L, in (18).

The overall procedure of our sharp image estimation is

shown in Algorithm 3.

Algorithm 3 Sharp Image Estimation
Input: A blurry image B and motion flow u

Output: Sharp image L

1: for n = 1 to 3 do

2: Update f∗ using (17)

3: for m = 1 to 30 do

4: Update L using (18)

5: end for

6: end for

3.4. Implementation

In implementation, we use fixed parameters for most ex-

periments except for parameter λ. Because each blurry im-

age has a different amount of noise and a different blur

kernel size, the parameter λ adjusting the smoothness of

motion flow and latent image can be changed. We set the

parameters as µ = 1, σI = 15
255 , c = 0.05, ν = 0.02,

σ = 1

2
√

(2)
, τ = 1

2
√

(2)
, σL = 10, τL = 0.0125, and

θ = 0.1
λ

. The value of λ ranges from 10 to 50.

In the coarse-to-fine framework, we build an image pyra-

mids with 10 levels and a scale factor of 0.8, and use bi-

cubic interpolation for both motion flow and the latent im-

age in propagation. Initially, all dual variables are set as

zeros. In addition, the blurry image itself is used for initial

latent image L, and we use small random values for initial

motion flow u. However, as our blur kernel is symmetric

(i.e. k(x, u) = k(x,−u)), we constrain the motion flow,

(u, v), to be on a set, B = {(u, v) ∈ ℜ2|u ≥ 0} − {(u, v) ∈
ℜ2|u = 0, v < 0}.

Our current Matlab implementation requires approxi-

mately 25 minutes to deblur a VGA image. The running

time can be greatly reduced using optimized C or CUDA on

a modern GPGPU.

4. Experimental Results

In this section, we show the outstanding performance

and efficiency of the proposed work.

In Fig. 6, deblurring results and estimated motion flow

are illustrated for real challenging dynamic scenes. In qual-

itative analysis, the edges in deblurred images are restored

keenly without segmentation and without restricting the

type of motion blur. The color codes of estimated motion

flows in textured regions are as accurate as we expected

except homogeneous regions that do not raise severe arti-

facts. Notably, the motion flow in the the bottom row is cor-

responding to the depth map of the latent image, and this

could be another application of our work that is estimating

depth map from a blurry single-image.

In Fig. 7, deblurring results for camera shakes which

includes rotational camera movements are illustrated. Be-

cause the proposed method is based on the approximation

of locally linear blur kernel, the results may not accurate

than the results from methods estimating the global cam-

era motion in less-textured regions. However, the restored

strong edges from both synthetic image in the top row and

the real image in the bottom row demonstrate that our ap-

proximation is valid for small rotational camera shake to

some degree.

In addition, we compared our results with the state-of-

the art deblurring methods in various challenging situations.

First, in Fig. 8(a), the blurry image is degraded by severe

radial distortion and it causes serious problems in conven-

tional methods but ours works well. Second, in Fig. 8(b),

because the cause of blur is specific forward motion which

can not be handled in conventional methods, ours outper-

forms and restores the edges of characters and arrow more

sharply. Third, in Fig. 8(c), [26] fails in deblurring as depth

discontinuity exist in the blurry image. Although it is pos-

sible to deblur with segmentation based method, but [13]

also fails, because the background is too narrow to be seg-

mented. Thus, both conventional methods provide unsatis-

factory results. Finally, in Fig. 8(d), as the synthetic image,

which has depth discontinuity, is blurred by rotational cam-

era shake, and thus, both the conventional methods fail but

our method shows successful result.

5. Discussion and Limitations

In this study, we have presented an efficient dynamic

scene deblurring method that does not require accurate

motion segmentation with the aid of robust TV-L1 based

model. In addition, the proposed method can handle various

types of blur kernels when the kernels can be approximated

to linear motions. We also provided an efficient and prac-

tical solution optimizing TV-L1 model, and demonstrated

that the proposed method outperforms the state-of-the-art

methods in various challenging situations.

On the other hand, the remaining problem is that, in case

of knowing the specific types of motion blurs, conventional

deblurring methods estimating the global camera motion

work well and the results in less-textured region are bet-

ter than ours. Therefore our future work will combine such

a global and our local approach in a unified framework.



(a) (b) (d)(c)
Figure 6: (a) Real blurry dynamic scenes (b) Deblurring results (c) Comparisons of cropped results (d) Estimated motion flows
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