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Abstract—Present object detection methods working on 3D
range data are so far either optimized for unstructured offroad
environments or flat urban environments. We present a fast
algorithm able to deal with tremendous amounts of 3D Lidar
measurements. It uses a graph-based approach to segment
ground and objects from 3D lidar scans using a novel unified,
generic criterion based on local convexity measures. Experiments
show good results in urban environments including smoothly
bended road surfaces.

I. INTRODUCTION

One of the key tasks intelligent vehicles have to perform is

the reliable perception of their environment, namely the detec-

tion of obstacles and free space. Especially for the latter, laser

scanners have proven efficient, as their resolution and field of

view exceeds radar and ultrasonic sensors and they provide

direct distance measurements. Most reported in literature are

sensors that conduct 2D scanning ([1], [2] and many others),

i.e. scanning is performed along a plane within a limited

viewing angle. Mounted parallel to the ground plane, each

scan acquires a 1D sequence of range and angle measurements.

This allows an easy detection of obstacles (and implicitly free-

space) by applying 1D signal processing methods. However,

objects above or below the scanning plane cannot be detected.

The limited number of measurements thereby complicates

classification and tracking of obstacles. Additionally, in hilly

environments the scanner might fail to detect obstacles or

might recognize an ascending road as obstacle.

Within the last few years, fully three-dimensional scanners

have been introduced. Rather than scanning in a plane, 3D

volumes are scanned resulting in a (potentially unordered)

cloud of 3D points. This allows detection of all kinds of

obstacles and the explicit detection of free-space as the ground

is also sampled. However, the vast amount of data poses a great

challenge on the algorithms. Furthermore, the multidimen-

sional signal necessitates multidimensional signal processing

methods.

We propose a method that is capable of handling this

data. The major contributions are: First, we introduce a novel

criterion dubbed Local Convexity that uses local geometric

features. It can be generically used to segment both ground

and objects. Second, we present a segmentation algorithm that

keeps the full 3D information delivered by the sensor unlike

many popular approaches. We show that the combination

works successfully even in non-flat urban environments.

This paper is organized as follows. In the next section

we first give an outline of relevant work, followed by the

detailed description of our approach. In section IV we provide

experimental results. Section V concludes this paper and gives

an outlook for future research in this area.

II. PREVIOUS WORK

Object detection algorithms are often classified into two

groups: Model-based and model-free. Model-based approaches

try to solve detection and classification simultaneously by

fitting models to the data, as e.g. [3], [4]. This, however, is

computationally demanding and hardly applicable in real-time.

The alternative and more flexible approach is to first sep-

arate obstacles from the ground using a generic model. To

reduce processing time, a dimensionality reduction is usually

applied. According to the type of projection, the approaches

can basically be divided into two subclasses: Projection to a

ground plane and projection to a virtual image plane resulting

in a so-called range image.

A. Ground Plane based methods

Most frequently, data is projected to an assumed or esti-

mated ground plane, often combined with an occupancy grid

map [5]. One of the advantages is that several sensors can

be fused easily (even in probabilistic ways [6]), and that

mapping is straight-forward. Many teams participating in the

DARPA Urban Challenge, including ours, successfully applied

this method (e.g. [7], [8], [9]). However, the difficulty of

distinguishing between obstacles and ground still remains. A

simple solution is to define the density of the points within

a cell as occupancy value [9]. This easily marks all cells

containing vertical structures as occupied. Object extraction

is then usually performed by clustering connected occupied

cells together, as e.g. in [10]. While these approaches work

very well for environments with a level ground plane and

vertical wall structures, they are not suitable for reliable

detection of sloped objects like vegetation, hills, or curbs as

they often appear in outdoor environments. Furthermore, a

substantial portion of the information available is lost due

to the projection. Therefore, these approaches are very well

suited to obstacle avoidance in flat areas, but give only very

coarse information on object geometry.

B. Range Image based methods

Alternatively, the 3D data can be projected onto a cylinder

whose axis is the rotational axis of the scanner. This projection
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Fig. 1. Illustration of our method, best viewed in color: (top-left) 3D point cloud, blueness decodes height above ground. Street is in vertical direction with
parked cars and a wall on the right and tree trunks on the left. (top-right) Neighborhood Graph. (bottom-left) Normal vectors, direction is indicated both by
color and a small line. (bottom-right) Segmentation result.

yields a range image, where pixel values correspond to the

distance measurements. Founding work has been carried out

by Hoover et al. [11], whose principal approach of local (pla-

nar) surface fitting and clustering afterwards is still followed

today, as e.g. in [12]. However, range image based methods

are mostly used in controlled, artificial environments, so their

use within intelligent vehicles is rare.

More popular is the use of (2-dimensional) graphs, a natural

generalization of images. Most popular segmentation methods

working on graphs are not surprisingly adaptions of (intensity)

image based methods. The first step is to build a weighted

graph, where the weights represent the similarity between two

connected nodes. The graph is usually obtained directly from

the scanning setup or by triangulation. Attributes used include

surface direction [13], curvature [14], [15], edges[16], local

smoothness constraints [17] and more. Region growing algo-

rithms (e.g. in [13], [18]) can be used for segmentation, which

are easy to implement and fast. However, different choices of

seed points usually result in different segments. Hence, such

algorithms are not considered as robust. Graph cuts based

algorithms play an important role, like the normalized cuts

algorithm of [19], which minimize some cost function. One

advantage is the guarantee to converge to the global minimum.

A major drawback for automotive applications clearly is their

computational cost. Aguiar et al. [20] alternatively generate

a minimum spanning tree and apply recursive cutting. This

keeps nearly linear costs while still finding a good local

minimum.

Motivated by our experiences on the ground plane based

methods from the DARPA Urban Challenge, we adapt in this

work the graph-based approach using the full 3D data. This

way, all information included in the multidimensional nature

of the signal is exploited. We show that this allows for a fast

algorithm and good results even on bended road surfaces.
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III. PROPOSED METHOD

Our method is a scan-wise segmentation of the environment

which is performed in several steps (see Fig. 1): scan acqui-

sition, neighborhood graph construction, attribute calculation,

and finally segmentation. We further introduce an additional

classification step to decide about a segment belonging to

ground or obstacle. These steps are detailed in the following.

A. Scan Acquisition

For scan acquisition we use a Velodyne HDL-64 High

Definition Lidar scanner which is mounted on top of our

experimental vehicle. It consists of a column of 64 single

lasers, covering a pitch range of approximately 26 degrees.

It rotates at a rate of 10 Hz sweeping the complete horizontal

ground plane and producing 180000 points per turn. As the

pitch angles of the lasers are fixed, each of the lower lasers

produces a ring of point measurements on a horizontal plane.

The top-left of Fig. 1 depicts an example scan.

In general, our method is not restricted to one specific type

of sensor, however, the physical setup of the Velodyne HDL-

64 allows to directly obtain a neighborhood graph from a scan,

as explained next.

B. Neighborhood Graph Construction

The goal of this step is to turn a scan into an undirected

graph G = {N, E}, with the nodes N = {(x, y, z)i} being

the measured points in 3D, and the edges E = {(Ni, Nj)}
connecting the nodes. As connections we chose an image-

like 4-neighborhood, as this can be directly obtained from the

scanner. As the scanner turns counter-clockwise, a point’s left

neighbor corresponds to the next measurement obtained by the

same laser, its right neighbor to the previous measurement. The

upper and lower edges are assigned to the measurements of

the upper and lower laser diode with the most similar yaw

angle, respectively.

The graph is further postprocessed by deleting any edge that

exceeds a certain absolute distance threshold or that exceeds

a distance threshold relative to neighboring connections. The

top-right picture of Fig. 1 shows the calculated graph corre-

sponding to the top-left picture.

In case scan acquisition merely delivers an unordered point

cloud, a graph could e.g. be obtained by triangulation or other

neighborhood search methods. This, of course, will excessively

increase processing time.

C. Attribute Calculation

For each of the nodes we calculate an attribute which is used

in the next step to segment the graph. The criterion presented

in section III-D is a criterion which is based on local surface

geometry. As range sensors sample surfaces only pointwise,

the surface geometry has to be interpolated from the range

data. In this work, we approximate the local surface around a

point by a plane or rather its normal vector. A robust method

would be to use several neighboring points and utilize least

squares estimation, however, this is not applicable in real-time.

Alternatively, as in [13], we calculate the cross product of the

displacement vectors between the left and lower, lower and

right, right and upper and finally upper and left vectors (in case

the links still exist in the graph). We geometrically average the

obtained vectors to obtain the estimated local surface normal.

In order to reduce noise, a moving average filter is applied

to the field of surface normals. Results are illustrated in the

bottom-left picture of Fig. 1.

D. Segmentation

Based upon the observation that many object parts have

convex outlines and that a vertical structure usually represents

one single object, we introduce a combined segmentation

criterion in the following. Two points (i.e. nodes) belong to

the same object, if and only if there exists a path in the

graph connnecting the two nodes, with every edge of that path

fulfilling this criterion.

The criterion is dependent on two neighboring surfaces si

and sj , characterized by their point locations ~pi/j , respective

to an arbitrary but fixed coordinate system, and their normals

~ni/j , with ||~ni|| = ||~nj || = 1. Normal vectors are assumed to

point outwards.

Fig. 2. Local convexity holds if the center point of a surface is below the
other surface and vice versa.

A core concept for object segmentation proposed in this

contribution is the following definition of Local Convexity.

As illustrated in Fig. 2, two neighboring surfaces si and sj

are termed locally convex to each other, if the center point ~pi

lies below the surface sj and vice versa. In order to increase

robustness, we also consider two surfaces si and sj as locally

convex, if their normal vectors approximately have the same

direction. So in contrast to the common convexity definition

as a curve property, Local Convexity refers to a local, pairwise

relation.

This is a criterion that is very fast to evaluate by using the

dot product. The following equation expresses whether two
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Fig. 3. Segmentation results on non-flat areas, best viewed in color. (first row) Concave street in a tunnel. (second row) Convex gateway to an underground
garage. (left column) 3D point cloud. Blue decodes height above ground, red decodes depth below ground. (right column) Segments, displayed in different
colors.

surfaces si and sj are locally convex to each other:

lc(si, sj) =























true [(~ni · ~dij ≤ ||~dij || · cos(π
2
− ǫ1))

∧ (~nj · ~dji ≤ ||~dji|| · cos(π
2
− ǫ1)))]

∨ [~ni · ~nj ≥ 1 − ||~dij || · cos(π
2
− ǫ2)]

false else

with ~dij = (~pj − ~pi) being the displacement vector from ~pi

to ~pj and hence ~dji = −~dij . The parameter ǫ1 can be chosen

to set the level of concavity (zero = none) as it defines the

angle in which the other point may lie above the surface plane.

ǫ2 ≥ 0 defines the distance-adaptive similarity angle and can

be chosen to account for noisy data, as mentioned above.
Finally, we combine Local Convexity with a vertical struc-

ture criterion to obtain the segmentation criterion

grow(si, sj) = lc(si, sj) ∨ [(|z~ni
| < ǫ3) ∧ (|z~nj

| < ǫ3)].

Here, 0 ≤ ǫ3 ≤ 1 is a third constant that can be chosen to

connect two vertical surfaces. By setting it to 1 only one global

segment would be obtained, as the absolute value of a normal

vector’s z coordinate is always smaller or equal to 1.
Thus, two surfaces are combined into a segment, if they are

either locally convex, or both normal vectors are approximately

vertical. One important property follows from this definition:

If grow(si, sj) holds, then grow(sj , si) holds as well, i.e. the

criterion is symmetric. This allows the segmentation to be

efficiently solved by a region growing algorithm as follows:
Given the attributed graph, the following region growing

algorithm is executed until no more surfaces are left:

1) Select a seed node randomly

2) Grow the segment until no more nodes are added

3) Delete the segment from the graph

Even though seed surfaces are selected randomly, the re-

sult of the algorithm is deterministic. The growing criterion

will merge two connected nodes into the same segment no

matter from which direction the connection in the graph is

approached.

The segmentation result of our running example is shown

on the bottom-right of Fig. 1.

E. Classification

For a first mapping application we further developed a

simple classifier to decide about a segment being ground or

obstacle. For each segment a histogram over all the normal

vector’s z value is generated and classified as ground if the

topmost bin contains most votes.

IV. EXPERIMENTS

We have evaluated the proposed algorithm for numerous

scans acquired by the HDL-64 sensor mounted on a Volkswa-

gen Passat experimental vehicle in inner city traffic scenes.

As no ground truth information is available, a qualitative

performance evaluation is conducted. The parameters were

fixed to ǫ1 = 0.1 ≈ 6◦, ǫ2 = 0, 03 ≈ 2
◦

/m, and ǫ3 = 0.5
throughout all experiments.

Two example results of the segmentation algorithm can be

seen in Fig. 3. Shown are two scenes including both uneven

road surfaces (one slightly concave, the other convex). Our
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Fig. 4. Segmentation and classification results, best viewed in color. (first row) Broad road with pedestrians, a motorcyclist, a truck, cars and tree trunks.
(second row) Another intersection with pedestrians and cars. (third row) Intersection with pedestrians, cyclists, and cars. (forth row) Entry to an underground
passage with motorcyclist. Cars parking and driving on upper level. (left column) Segments, displayed in different colors. (right column) Classification results,
green indicating ground, red indicating obstacle.
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algorithm is able to successfully merge the road segment. The

walls in the upper picture are split into two segments due

to shadows breaking the connectivity. In the lower picture

even the vegetation on the side of the horizontal street is

merged into one (yellow) segment. However, vegetation is in

general very difficult to deal with, as range measurements are

extremely noisy thereon. This can be seen on the right, where

many one-point-segments were formed.

Further results including the classification outcomes are

depicted in Fig. 4. As visible in the left column, usually all

traffic participants are clearly segmented from the ground (best

illustrated by the first three rows). However, we sometimes

encounter the typical problems that most segmentation algo-

rithms have: both over- and undersegmentation can occur, with

oversegmentation being the most common but also the less

critical. Running on a sequence, however, merged segments

are usually split in some frames, leaving it to a – so far

missing – tracking algorithm to merge segments by detecting

uniformly moving ones. The fourth row was again taken

from uneven terrain, with the green segment being a street

descending into a tunnel, the red segment a street on the upper

ground. Nevertheless, the segmentation result is very good.

The column on the right illustrates the classification results.

We ran the computations on a Pentium M with 2.1GHz

using unoptimized code. The average processing times per

frame are 0.352 seconds for normal calculation, 0.25 seconds

for segmentation and 0.021s for classification. With a scanning

frequency of 10Hz, this is obviously not real-time. However,

we are very confident that real-time performance is possible

by optimizing and parallelizing code and running it on most

recent hardware.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel segmentation algorithm that is ca-

pable of segmenting objects from the ground even in non-

flat environments. While data projection methods inherently

loose information along the dimension of projection, the

proposed method considers the physical setup of the scanner

to turn the data into a 2D graph, not discarding important

information but allowing for efficient processing. The concept

of Local Convexity represents the core of the algorithm. It

has been introduced as a novel geometric criterion allowing

for a generic segmentation method that is at the same time

capable of segmenting non-flat ground and common obstacles.

We demonstrated that the proposed algorithm achieves good

results on data acquired in urban environments.

Future work will consist of augmenting the discriminating

properties of our method by a classification framework such

as [10]. Further steps include the application of temporal

tracking. It would be interesting to develop a tracking method

that makes use of appearance-learning in full 3D, extending

the 2D method of Gate et al. [2].
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