

MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-A

Richard W. Conners, Ph.D.
Mohan M. Trivedi, Ph.D.
Charles A. Harlow, Ph.D.

Approved for pub12exezease? distribution undinttoc.

September 1982

Remote Sensing and Image Processing Laboratory Department of Electrical and Computer Engineering Louisiana State University Baton Rouge, LA 70803
*This research was supported in part by RADC Subcontract \#13-E-21-626 and AFOSR Grant AFOSR-81-0112

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE CUMPI : TING FORM
	3. RECIPIENT'S CATALOG NUMBER 3276
4. TITLE (med Subtitla) SEGMENTATION OF A HICH RESOLUTION URBAN SCENE USING TEXTURE OPERATORS	3. TYPE OF REPORT A PERIOD COVERED TECHNICAL
	6. PERFORMING ORG. REPORT NUMBER
7. AUTMOR(A) Richard W. Conners, Mohai M. Trivedi, and Charles A. Harlow	B. CONTRACT OR GRANT NUMBER(*) AFOSR-81-0112
9. PERFORMING ORGANIzATION MAME AND ADDRESS Remote Sensing \& Image Processing Laboratory Department of Electrical \& Computer Engineering Louisiana State University, Baton Rouge LA 70803	10. PROGRAM ELEMEMT, PROJECT, TASK AREA A WORK UNIT NUMBERS PE61102F; 2304/A2
11. CONTROLLING OFFICE NAME AND ADDRESS Mathematical \& Information Sciences Directorate	$\begin{aligned} & \text { 12. REPORT DATE } \\ & \text { SEP } 82 \end{aligned}$
Air Force Office of Scientific Research Bolling AFB DC 20332	$\begin{aligned} & \text { 13. NUMQER OF PAGES } \\ & 68 \end{aligned}$
14. MONITORING AGENCY NAME A ADDRESS(II difforment from Controlline Office)	15. SECURITY CLASS. (of thie report) UNCLASSIFIED
	15. DECLASSIFICATION'OOWNGRADING
16. DISTRIBUTION STATEMENT fof thit Roport) Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abetract ontored in Block 20, /f difforent from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse aide If necosamity and identily by brook-mamber)	
20. ABSTRACT (Continue on reveree aide il neceseary and ldentliy by block number) This paper describes a study aimed at segmenting a high resolution black and white image of Sunnyvale, California. In this study regions were classified as belonging to any one of nine classes, residential, commercial/industrial, mobile home, water, dry land, runway/taxiway, aircraft parking, multilane highway, and vehicle parking. The classes were selected so that they directly relate to the Defense Mapping Agency's Mapping, Charting and Geodesy tangible features. To attack the problem a statistical segmentation procedure was devised. The primitive operators used to drive the segmentation are texture measures (CONTINUED)	
DD ${ }_{1}^{\text {FOAN }}$ JA3 1473	UNCLASSIFIED

ITEM \#20, CONTINUED: derived from cooccurrence matrices. The segmentation procedure considers three kinds of regions at each level of the segmentation, uniform, boundary and unspecified. At every level thes procethure differentiates uniform regions from boundary and unspecified regions. It then assigns a class label to the higher level regions. The boundary and unspecified regions are split to form higher level regions. The methodologies involved are mathematically developed as a series of hypothesis tests. While only a one level segmentation was performed studies are described which show the capabilities if each of these hypothesis tests. In particular an 83% correct classification was obtained in testing the labeling procedure. These studies indicate that the proposed procedure should be useful for land use classifications as well as other problems.

This paper describes a study aimed at segmenting a high resolution black and white image of Sunnyvale, California. In this atudy regions were classified as belonging to any one of aine classes, residential, comercial/industrial, mobile home, water, dry land, runway/taxiway, aircraft parking, multilane highway, and vehicle parking. The classes were selected so that they directly relate to the Defense Mapping Agency's Mapping, Charting and Geodesy tangible features. To attack the problem a statistical segmentation procedure was devised. The primitive operators used to drive the segmentation are texture measures derived from cooccurrence matrices. The segmentation procedure considers three kinds of regions at each level of the segmentation, uniform, boundary and unspecified. At every level the procedure differentiates uniform regions from boundary and umpecified regions. It then assigns a class label to the uniform regions. The boundary and unspecified regions are split to form higher level regions. The methodologies involved are mathematically developed as a series of hypothesis tests. While only a one level segmentation was performed studies are described which show the capabilities of each of these hypothesis tests. In particular an 83% correct classification was obtained in testing the labeling procedure. These studies indicate that the proposed procedure should be useful for land use classifications as well as other problems.

1. INTRODUCTION

This paper describes a study aimed at segmenting a high resolution black and white (B / W) digital image of Sunnyvale, California. This scene contained a total of 47 Defense Mapping Agency's Mapping, Charting and Geodesy (M, C G) tangible features. The objective of the study was to segment the scene into regions which correspond to as many of these $47 \mathrm{M}, \mathrm{C} \& \mathrm{G}$ features as possible. Figure 1 shows a facsimile of the image. Table 1 shows the 9 land use classes considered in this study and their correspondence to the $M, C \& G$ features. Clearly the classes chosen do not give as detailed an image segmentation as required. The rationale for the choice of these classes is given in Section 4. Methods for achieving a more detailed segmentation using the methods presented in this paper are described in Section 3.

The time constraints of the study necessitated that readily available techniques be employed. Yet it was desired to have the methods used be as general as possible. For these reasons texture analysis methods were utilized. In particular, the spatial gray level dependence method (SGLDM) was selected because two comparison studies [1,2] have shown it to be superior, real world studies have demonstrated its.capabilities $[3,4,5,6,7,8,9]$, and perceptual psychology studies $[10,11]$ have shown it to match a level of human perception.

In selecting the eegmentation procedure the desire for generality led to the consideration of split, merge, and eplit and merge types of procedures [12,13]. A split type approach was the one melected. This procedure used texture measures extracted from a region \& to determine whether or not R is composed entirely of one of K known clesses. If R contains one of these classes then it is approprictely labeled. If not,

Figure 1: A facaiaile of the high resolution black and wite image of Sunnyvale, California.

CLASS RAME

1. Residential Area
2. Mobile Home Area
3. Vehicle Parking Area
4. Aircraft Parking Area
5. Runway
6. Water
7. Dry Land
8. Multilane Highway
9. Commercial/Industrial

M,C\&G TANGIBLE FEATURE NAME
Houses (Single Family)
Apartment/Hotel*
Mobile Homes
Vehicle Parking Area
Vehicle Storage/Motor Pool
Aircraft Parking Area/Apron
Runway/Taxiway
Heliport
Salt Pan/Evaporators
Lake/Pond Reservoir
Mineral Pile
Dry Land (Bare/Barren Soil/ Non-Cultimated
Levee/Embankment/Fill
Crop (Cultivated)
Deciduous Woodland
Multilane, Divided Highway (Gross Median)
Multilane Highway Cloverleaf/Interchange

Fabrication Industry Building Scrap Yard
Industrial Building
Industrial Conveyor
Industrial Rotating Cranc
Comercial Building
Apartment/Hotel*
Barracks
Governmental Administration Bldg.
Military Admin/Operations Bldg. School Building RR Station/Depot Airport/Airbase Control Tower Hangar
Aerospace Assembly Building
Engine Test Cell
Wind Tunnel
f. Warehouse

Greenhouse
Drive-In Theater Screen

Table 1. A 11st of aine classes and the M,C G Gangible features combined together to compose each class. Note that a region containing the M,C \& Aparteent/Hotel feature (*) is placed in one of two clasess based upon the appearance of this region.
then R is split. The inferences regarding R are based on a series of hypothesis tests. As such the procedure is related to the uniformity predicate of Pavildis [12].

Experiments were performed which indicate the capabilities of the segmentation procedure. The purpose of one of the experiments was to determine whether texture measures could be used to accurately classify a region into urban land use classes. For this study the nine classes in Table 1 were used. The capability of the texture measures is evidenced by a training result of 90% overall correct classification. A vorst case segmentation of the scene was conducted with a 83% overall correct classification. Other experiments were performed to evaluate the mechanisms used in making the decision to split. One dealt with demonstrating the ability to identify regions containing one or more "unknown" or "unspecified" classes. Another dealt with identifying regions containing two or more "known" classes, i.e., "boundary" regions.

These experiments indicate the proposed segmentation procedure is feasible and could be useful in segmenting high resolution urben scenes. Further its generality is such that it would seemingly be applicable to a variety of problems.

2. TEXTURE ANALYSIS METHODOLOGIES

2.1 Texture Analysis and Land Use Classification

Many different texture analysis operators have been applied to the land use classification problem. In this section a brief review of the 1iterature will be given in order to indicate the texture analysis methods which have been employed and the results each has yielded. Generally speaking, texture operators have been used successfully on a variety of land use problems.

One of the first attempts to use texture analysis methods for land use classification was made by Lendaris and Stanley [14]. They employed the power spectral method (PSM) to analyze a high resolution B/W aerial photograph. The two classes considered were gross manmade and nothing manmade. A 98.8% correct classification was obtained in detecting natural areas.

Galloway [15] used the gray level run length method (GLRLM) to classify 54 high resolution B / W aerial photographs. The classes considered were orchard, wood, urban, suburb, lake, marsh, swamp, railroad and scrub. The percentage of correct classification obtained for each class ranged from 83\% to 100\%.

Hsu [16] applied a different texture algorithm in the analysis of 7 B/W aerial photographs. This method involved the calculation of 17 texture measures from 3×3 or 5×5 windows. The classes considered were vegetation, soil, pavement, composite field 1 and 2 , and composite. The best probability of correct classification obtained was 84.3\%. Mitchell and Carlton [17] made use of the max-min eethod to find roads,
grasslands and forests in B/W aerial photographs. Basically, the max-min method involves locating local gray level extrema along a san line of the picture. The number of extrema of strength T or greater is a measure used in making the classifications.

A study using the SGLDM was performed by Haralick et al. [4]. The data source for the study was $1: 20,000$ scale B / W aerial photographs. The classes considered were old residential, new residential, lake, swamp, marsh, urban, rail and woodlands. A total of 170 samples were considered. The study yielded an 82.3% overall correct classification.

The above studies all involved reasonably high resolution B / W photography. However, texture analysis has proved useful in much coarser resolution imagery such as the 1.1 acre ground resolution data of Landsat. The texture operators applied to these data were used in conjunction with the multispectral information to yield improved classification accuracies [4,18]. Texture operators have also proved useful on higher resolution multispectral scanner (MSS) data such as aircraft MSS [19,20,21].

The studies of particular interest are those involving high resolution B / W imagery. These etudies can be categorized as those where selected samples were classified and those where segmentation of a scene was attempted. Haralick et al. [4] and Galloway [15] both classified pure samples from a selected number of classes. Neither involved the consideration of regions composed of combinations of two or more classes. On the other hand Lendaris and Stanley [14], Hsu [16], and Mitchell and Carlion [17] all attempted eegmentation. Consequently, they had to classify regions composed of combinations of classes. However the number , and types of classes considered in these studies do not seem ouitable for urban ecene aniyeis. Also these studies had no provision for considering
more than one fixed primitive region size, i.e., no splitting or merging type procedure was attempted.

2.2 The SGLDM Algorithm

To defend the selection of the SGLDM, recall that this algorithm has proven useful on variety of real world problems ranging from the analysis of human radiographs to land use classifications $[1,2,3,4,5,6,7,8,13,18$, 19,22]. (A complete survey of texture analysis is presented in reference 23.) Next, two comparison studies have shown the SGLDM to be a superior algorithm. One of these studies [8] compared the relative merits of four algorithms, SGLDM, GLRLM, PSM and the gray level difference method (GLDM), to do terrain type classification. The SGLDM texture measures gave the best overall classification accuracy. The other comparison study [9] evaluated the amount of texture-context information contained in the intermediate natrices of these same four algorithms. Here again the cooccurrence matrices used by the SGLDM algorithm were judged to be the best. Further it is worth noting that Mitchell et al. [17] made a preliminary comparison of the sax-min method to the SGLDM. The comparison was based on the probability of correct classification obtained by applying both the max-min and the sGLDM (with the energy, entropy, correlation, local homogeneity, inertia as texture measures) to eet of texture data. The results indicated that the two methods performed about equally well. This comparison together with the fact that the ax-min method is computationally less complex than the SGLDM would ecemingly ake it a desirable alternative. However, it is believed that the max-min method is m dnontely weaker algorithm. This belief is based upon the any simple textures which ennot be discriminated by the max-min algorithm. For exmple, Figure 2 shows two vieunily distinct texture pairs neither of which cen be discrininated by the max-rin algorithm.

Figure 2. Two vieually distinct texture pairs neither of which can be discriminated using the max-min method.

Hsu's method [16], while not having been directly compared to the SGLDM, only seem appropriate for bottom-up approach tc segmentation. Such approaches require the incorporation of world knowledge into the analysis process in order to idenitfy structures such as commercial building, parking lots, homes, etc. Incorporating such information has proved to be difficult task one which is not generally well understood.

Finally, the Julesz conjecture [10,11] supports the use of cooccurrence matrices. It should be noted that recently a number of counterexamples to the Julesz conjecture have been reported $[24,25,26,27,28]$. However [29] indicates that these counterexamples can be discriminated. Hence, at present there is no known example of a visually distinct texture pair which canot be discriminated by the cooccurrence matrices.

2.3 Statistical and Structural Texture Analysis

The desire has been to use cooccurrence matrices not only to discriminate texture patterns but also to be able to use them to characterize the structure in textures. In response to this motivation a model for texture was formulated based on mathematical tiling theory [30]. Later it will be shown that this model applies to the urban land use data. The system which is being developed to measure iage structure using the cooccurrence matrices is called the SSA(statistical structural analysis system).

Definition 1: A tile T is a closed topological disk.
Definition 2: A function $\sigma: \mathrm{E}^{2} \rightarrow \mathrm{E}^{2}$ is called an isometry or conghuence transformation if it maps the Euclidean plane onto itself and if the function preserves distance. That is, if x and Y are points in E^{2} then $\|\underline{x}-y\|=\|\sigma(\underline{x})-\sigma(y)\|$.

A cooccurrence matrix $S(\delta, T)=[s(1, j, \delta, T)]$ is entrix of estimated second-order probabilities where each element $s(1, j, \delta, T)$ is the estimated probability of going from gray level 1 to fray level j given the displacement vector $6(\Delta x, \Delta y)$ and T, the region size and shape used to estimate the
probabilities. In this context T is a tile such that $s(1, f, 6, T)$ is estimated from the restriction of the picture function $g(\underline{x})$ to $\sigma(T)$ where o is a transiation isometry. Computationally $S(\delta, T)$ is determined using the equation

$$
g(i, j, \delta, T)=\frac{0\{\underline{x} \mid x, x+\delta \in o(T), g(x)=1, g(x+\delta)=j\}}{N}
$$

where $N=O\{\underline{x} \mid \underline{x}, \underline{x}+\delta \in T\}$ where O denotes the order of the set, 1.e., the number of elements.

In what follows it is frequently convenient to consider $\delta=(\Delta x, \Delta y)$ not in a cartesian form but rather in a polar form $\delta=(d, \theta)$ where $d=\max [\Delta x, \Delta y]$ and $\theta=\operatorname{arc} \tan (\Delta y / \Delta x)$. In polar form d is called the intersample spacing distance and θ is called the angular orientation.

In this study six measures are computed from each matrix $S(\delta, T)$.
These are:

1. Inertia

$$
I(\delta, T)=\sum_{i=0}^{L-1} \sum_{j=0}^{L-1}(1-j)^{2} s(1, j, \delta, T)
$$

2. Cluster Shade

$$
A(\delta, T)=\sum_{i=0}^{-1} \sum_{j=0}^{I-1}\left(1+j-\mu_{i}-\mu_{j}\right)^{3} s(1, j, \delta, T)
$$

3. Cluster Prominence

$$
B(\delta, T)=\sum_{i=0}^{i-1} \sum_{j=0}^{j-1}\left(1+j-\mu_{i}-\mu_{j}\right)^{4} s(1, j, \delta, T)
$$

4. Local Homogeneity

$$
L(6, T)=\sum_{i=0}^{\sum-1} \sum_{j=0}^{1-1} \frac{1}{1+(1-j)^{2}} \quad(1, j, \delta, T)
$$

5. Energy

$$
E(\delta, T)=\sum_{i=0}^{1-1} \sum_{j=0}^{L-1}[s(1, j, \delta, T)]^{2}
$$

6. Entropy

$$
H(\delta, T)=-\sum_{i=0}^{L-1} \sum_{j=0}^{I-1}(1, j, \delta, T ; 10 g \quad(s(i, j, \delta, T)
$$

where

$$
\begin{aligned}
& u_{i}=\sum_{i=0}^{L-1} 1 \sum_{j=0}^{L-1} s(i, j, \delta, T) \\
& u_{j}=\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} j s(i, j, \delta, T)
\end{aligned}
$$

and where L is the number of gray levels in the processed image.

2.4 Comments on the Texture Measures

There are two places where a loss of important texture-context information can occur. The first is in going from a digital image to the cooccurrence matrices. Results reported in $[2,29]$ together with the fact that there is no known visually distinct texture pair which cannot be discriminated by the cooccurrence matrices suggest that little texture information loss occurs here. The other place a possible loss can occur is in the transition from the matrices to the set of texture measures. It was reported in [2] that the usual set of texture measures used with the cooccurrence matrices namely, the energy, entropy, correlation, local homogeneity and inertia measures, do not contain all the important texturecontext information. For example, Figure 3 thows a texture pair which can - easily be discriminated using information in the cooccurrence gatrices but which cannot be discriminated based on the values of the usual five texture measures computed from these matrices.

Figure 3. A visually distinct texture pair which can easily be discriminated based on information contained in the cooccurrence matrices but which cannot be discriminated based on the values of the energy, entropy, correlation, local homogeneity and inertia measures computed from these matrices.

Recent studies $[30,31]$ have addressed this problem and have resulted in the definition of two new measures and an explanation of the utility of the inertia measure. The two new measures, the cluster bhade and cluster prominence, are believed to gauge the perceptual concepts of uniformity and proximity [10,32]. Further it was shown that the inertia measure can be used to gauge the qualities of texture periodicity [33,34] and the texture gradient [35]. Since the inertia, cluster shade and cluster prominence are known not to be sufficient, in that a visually distinct texture pair exists which cannot be discriminated by these measures, it was decided to also include the energy, entropy and local homogeneity in the measurement set used in this study.

To see how a texture measure computed from the cooccurrence atrices can be used to determine a visual quality of a patern consider the following example involving periodicity detection. For simplicity consider a periodic texture composed of small black squares appearing on a wite background. Assume that the horizontal distance between the center of one black square to the center immediately to the right is ℓ. Further assume that this texture covers the whole plane. It can be shown [31] that the inertia measure, $I(\delta, T)$, for large enough T computed from this texture has the following properties:

1) $I(\delta, T)=0$ for $\delta=\left(\ell, 0^{\circ}\right)$,
2) $I(\delta, T)>0$ for $\delta=\left(d, 0^{\circ}\right), d=1,2, \ldots, 2-1$, and
3) $I\left(\delta_{n}, 0^{\circ}\right)=I\left(\delta_{n m}, 0^{\circ}\right)$ for $\delta_{n}=\left(n, 0^{\circ}\right), \delta_{n_{m}}=\left(n+n, 0^{\circ}\right)$ and $n, m=1,2, \ldots$.

Consequently to find l one looks for the intersample epacing distance which gives the ainimm horizontal lnertia value, and checks for periodicity in $I(8, T)$. The number $\&$ then gives the period of the texture in direction 0.

The importance of this periodicity detection is that it can be used to identify a special type of unit pattern, the period parallelogram unit pattern [31]. The utility of the period parallelogram unit pattern stems from the fact that any periodic texture can be decomposed into a period parallelogram unit pattern. Further only two vectors, and b shown in Figure 4, epecify not only the size and shape of the period parallelogram unit pattern but the placement rules as well. Section 4.4 shows the importance of the period parallelogram unit pattern in the segmentation of urban scenes.

Figure 4. A period parallelogram unit pattern requires only two vectors a and b to specify both the size and shape of the unit pattern as welI as the placement rules to arrange this pattern.

3. FRAMEWORK FOR LMAGE SEGMENTATION

The proposed segmentation procedure is an early vision system. Classically such procedures have been based upon detecting edges or detecting uniformity by examining the histogram of the gray levels [36]. The cooccurrence matrices contain edge information as well as the firstorder probabilities of the gray levels. Hence measures computed from cooccurrence matrices would appear to be useful early vision operators.

Further it is desirable to have a segmentation procedure that would allow one to move back and forth between segmentation levels, verifying and reinforcing classifications without the need for semantic information. It is believed that texture operators provide a means for doing this. A texture pattern is made up of unit patterns and placement rules [31]. One can consider a commercial block as anit pattern. The structures such as buildings and parking lots can be considered micropatterns of this unit pattern. Cast in this framework, the problem becomes one of analyzing macro and micropatterns of texture. An advantage of this approach is that one can use uniform data structures and analysis procedures in considering different levels of detail. This should provide for a better etructured eegmentation method.

There are basically two approaches to image eegmentation. These are boundary detection and region formation [12,37,38]. Of these, region formtion epproaches are best suited for use with texture operators eince texture operators, inherently, characterize the qualities of a region. Region Lornation approaches can utilize either eplit, Eerge, or oplit and merge techniques. A merge procedure is bottom-up approach where enell regions are combined based upon some uniformity criterion. Unfortunately, the etatistical characterisation of these enall regions is less reliable
than that of larger ones. Further in complicated scenes, such as urban scenes, these mall regions could belong to anyone of a large number of primitive classes such as grass, concrete, car, tree, etc, Combining these primitives to form more maningful groups, i.e., comercial area, residential area, etc., would require a substantial reliance on semantic information.

As an example, one might decide to analyze a comercial area by first detecting edges and then linking them together to form structures of the scene. One could then perhaps consult a model to determine that these structures comprise a commercial area. A problem with this approach is that each of these subproblems is itself difficult and error prone.

A top-down procedure, such as a split procedure, seems to be best suited for use with texture operators since classification accuracies obtainable using texture analysis methods usually decrease as a function of region size. Therefore it is appropriate to use as large a region as possible and divide it as necessary. Further for an early vision system, a split procedure seems most appropriate since it begins with a few broad classes, i.e., comercial area, residential area, lastead of building, street or tree. Because of the nature of the texture algorithm as these large regions are eplit the texture neasures computed from the emaller areas become more censitive to finer detail. Consequentiy, classes whose differentiation depends on finer detail can be handled later at some higher level using amaller region size and perhaps contextual informetion. However, there are problems associated with initially considering -e large region eize. Tor exmmle with large regions, it is likely that a dxture of patterns will be present. These problems are addressed in Section 3.2.

The basic steps involved in the proposed segmentation process are illustrated in Figure 5. At the first level of the segmentation the scene is initially divided into R_{1} regions such that these regions cover the image. The aize of the R_{1} regions has been determined during the training phase when the classes at level 1 were selected. Next the appropriate texture measures are computed from the R_{1} regions. These measures are also determined during the training phase when the K_{1} classes are selected for level 1. Each of the R_{1} regions is examined to determine if it is uniform and should be labeled with one of the K_{1} class labels. If the region cannot be labeled, 1.e. if it is a boundary region or it contains one or more unspecified classes, then it is passed unlabeled to the level 2 stage of processing where new set of classes, K_{2}, is considered. The process should stop when all the regions are labeled. Figure 6 indicates the recursive nature of the process. Section 3.2 explains how the labeling decisions are made.

Several comments are in order. In this study only one level of segmentation was performed where the classes were labeled and the splitting criteria tested. However the formulation of the segmentation procedure will be presented in complete generality. Also the segmentation process vill ultimately need to be extended to provide for a global optimization. This extension can be readily added to the methods presented.

3.1 Motivating the Statistical Segmentation Strategy

Region growing methods necessarily utilize clustering techniques [36,37,38,39]. Typicaily each subregion of the scene 1 s characterized by a measurement vector $\underline{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$, where x_{1} denotes the value of measurement i. Such vector is a point in n-dimensional Euclidean epace, $E^{\text {n }}$. Intuitively, measurement vectors computed from visually similar

Figure 5. A flowchart of the basic steps invoived in the proposed
segmentation procedure.

(c)

Figure 6. The matural pyramid atructure of the eegmentation. (a) An example of a three level segmentation where level 0 correaponds to the whole image, level 1 the first level of the eegmentation, etc. (b) The regions formed during the eegmentation. (c) A tree showing how the regions of (b) were formed.
regions should lie "close" together in E^{n} while measurement vectors computed from visually dissimilar regions should lie "farther" apart. Consequently, measurement vectors computed from regions containing the same class should form a cluster in E^{n}.

The proposed segmentation procedure attempts to incorporate the useful attributes of both supervised and unsupervised clustering approaches [39,40]. It utilizes some knowledge of the scene by allowing one to select the clasies to be considered at each level of proceśsing. This is accomplished by selecting a training set for each class at each level where it is to be considered. Thus measurement selection can be performed so that only the best measures need be used in doing the segmentation, a mode of operation allowed only by supervised procedures. The proposed procedure provides the flexibility to determine whether a region is composed in part or entirely of a class different from the K preselected classes it has been taught to recognize, capability usually only found In unsupervised procedures. This capability to detect such "unspecified" regions is an important part of the segmentation process. The procedure 1 lso provides a mechanism for identifying regions composed of two or more of the K preselected classes, i.e., "boundary" regions. These capabilities enable it to split such umspecified and boundary regions and to exmine the resulting smaller regions using different classes and different level of detail.

The proposed segmentation approach would seem somewhat similer to that presented by Chen and Pavildis [41,42]. In this case, however, a more sophisticated micivariate formulation for the decision making is developed.

3.2 Formalizing the Concepts

To formilize the above concepte a nuber of definitions are useful. Definition 3. At a particular level of the eegmentation process a
region R is said to be uniform if it is composed entirely of only one of the K classes the procedure has been trained to recognize at that Ievel.

Definition 4. At a particular level a region R is said to be a boundary region if it is composed of two or more of the K classes the procedure has been trained to recognize at that level.

Definition 5. At a particuiar level a region R is said to be an unspecified if any part of R contains a class unknown to the procedure at that level, i.e., something other than one of X classes.

The segmentation procedure requires that given a region R, the followIng decisions be made.
i) Determine if R is either an unspecified region or a boundary region. If it is either then split R to form higher level regions.
ii) Determine if R is a uniform region. If so, label R with one of the K possible class labels.

The capability to call R an unspecified region provides the procedure the ability to recognize an "unusual looking" region and not to force it into one of K known classes.

The required decisions can be stated as a series of hypothesis tests. For simplicity consider only two classes, ω_{1} and ω_{2}. Given a region R, one can define the following hypotheses.
$H_{0}: \quad R$ is composed entirely of class ω_{1}.
$H_{1}: \quad R$ is composed entirely of class ω_{2}.
$H_{2}: \quad R$ is aixture of both ω_{1} and ω_{2}.
H_{3} : A is composed of something other than ω_{1} and/or ω_{2}.

Note that for hypothesis H_{3}, if any part of R contains something other than ω_{1} and or ω_{2} then R is considered as not containing either ω_{1} or ω_{2}

Determination of the uniformity of a region involves two tests. R is uniform if either hypothesis H_{0} or H_{1} is accepted in Tests 1 and 2. If R 15 uniform then Test 3 resolves the labeling.

TEST 1: $\quad H_{3}$ versus H_{0} or H_{1}, to differentiate uniform regions from unspecified regions.

TEST 2: H_{2} versus H_{0} or H_{1}, to differentiate uniform regions from boundary regions.

TEST 3: H_{0} versus H_{1}, to assign a class label to an uniform region.

Methods have been developed for performing these tests. In developing these methods an assumption was made concerning the nature of the probability density functions. The assumption not only aids in developing the tests but also allows a parametric approach be taken.

Assumption 1. Let ω_{j} be one of possible K classes for a level. It is assumed that $f\left(\underline{x} \mid \omega_{j}\right)$ is normal, $N\left(\underline{\mu}, \Sigma_{j}\right)$, with mean μ_{j} and convariance, Σ_{j}.
3.3 The Multiclass Formulations of the Hypotheses Tests

The formulations for hypothesis Tests 1,2 and 3 given above can be easily generalized to cases when more than two classes are involved. This straightforward generalization requires one to consider density functions $f\left(x \mid \omega_{j}\right), j=1, \ldots, K$ all of which exist in the same pattern space.
. Mowever, rather than using this etraightforward formulation a modification will be used; one which affects the way each test will be conducted.

The motivation for the modification is based on the fact that the
number of training samples available limit the number of measurements that can be used. This fact stems from the Hughes' peaking phenomena [43] and Foley [44] suggests that there be at least 10 training samples available for each class for each measurement used. This restriction poses a problem in situations where there is a class with significantly fewer training samples than the other classes. In typical multiclass procedures the number of training samples available for such a class deternines the maximum number of measurements which can be used to define all the classes.

Usually in an image analysis problem the quality of the measurements are such that measure is useful in discriminating only a few of the classes. Consequently, a number of measures are required. Therefore a restriction on the number of measurements imposed by a single class would seemingly adversely effect overall performance. A better approach would be to subdivide the problem into a number of independent decisions wnere the effect of the restriction on the number of measurements will be minimized. A pairwise approach to each test accomplishes this objective.

To describe the pairwise methods used to implement the hypothesis tests the following notation will be used. Let $f_{j k}\left(\underline{x}_{j k} \mid \omega_{j}\right)$ be the class conditional density function of class ω_{j} for the class pair decision involving ω_{j} and ω_{k}. Assume $f_{j k}\left(\underline{x}_{j k} \mid \omega_{j}\right)$ is normal, $N\left(\mu_{j, k}, \Sigma_{j, k}\right)$. To aid in understanding the notation, the subscript $j k$ on f and x is used to indicate the density functions and measurement vector involved in the class pair $\omega_{j}, \quad \omega_{k}$ decision. The subscript g, k on μ and $\Sigma i s$ an ordered pair where j indicates the class ω_{j} of which μ and Σ are the mean vector and covariance matrix and k denotes the other class, ω_{k}, involved in the class pair decision.

To determine the measurement subset which defines the components of $\underline{x}_{j k}$ for each class pair a measurement selection procedure is used. The algorithm used in the study is a forward sequential search (FSS) algorithm which independently selects a subset of the available measurements to use in making each class pair decision. At the $\mathrm{m}^{\text {th }}$ iteration the algorithm augments the subset selected at the ($(\mathbb{1}-1)^{\text {st }}$ iteration with another measure. This measure is the one which when combined with subset selected at the $(\mathbb{m}-1)^{\text {st }}$ iteration gives best probability of correct classification.

3.3.1 TEST 1: Differentiating Uniform from Unispecified Regions

A region R is unspecified if either R is composed entirely of a new class, i.e., not one of the K possible; or it is composed of a combination of two or more new classes; or it is composed of a combination of one or more new classes with one or more of the K classes. In any event the distribution of \underline{x} computed from unspecified regions should be different from the distributions defining the K classes. Consequently, this hypothesis test becomes merely a matter of determining whether \underline{x} is a member of any of the populations of the K classes.

A standard mechanism for performing such a test is to use the Chi-squared test. In a pairwise form of this test, R is considered to be an uniform region if for at least one class ω_{j}

$$
t^{2}=\left(x_{j l}-\mu_{j, l}\right)^{t} \varepsilon_{j, l}^{-1}\left(\underline{x}_{j l}-\mu_{j, l}\right)<x_{a ; d_{j}}^{2}
$$

$\ell=1, \ldots, k, \ell \neq j$. Otheiwise consider R an unspecified region. Here $x_{\alpha_{i} d_{j l}}^{2}=100$ a percentage point of the Chi-squared distribution with $d_{j l}$ degrees of freedom, $a=\operatorname{Prob}\left(t^{2}<x_{a ; d_{j l}}^{2}\right)$, and $d_{j \ell}$ is the dimensionality of $x_{j l}[45]$. Reference 46 gives an application of euch testing to texture analysis.

It should be noted that since the dimensionality of $\underline{x}_{j \ell}$ may vary from class pair to class pair, one needs a method for relating t^{2}, and x^{2} $x_{\alpha_{i j}}{ }_{j l}$. The interrelationship is given by

where

$$
f(t)=\frac{1}{(2 \pi)^{\frac{1}{2}}\left|\varepsilon_{j, \ell}\right|^{d_{j \ell} / 2}} e^{-\frac{1}{2} t^{2}}
$$

and $d V$ is differential of volume. Note that in the above $X_{a ; d_{j \ell}}^{2}=T^{2}$.

3.2.2 TEST 2: Differentiating Uniform from Boundary Regions

A boundary region R can be composed of combinations of 2 classes, 3 classes,..., K classes. It can be argued that as the number of classes contained in a boundary region increases the more dissimilar the measures computed from this region will be from any of the K known classes. Consequently the greater the probability that such boundary regions will be detected as uspecified regions by Test 1. The more difficult problem is in differentiatiug uniform region from boundary regions containing oniy two classes. This differentiation is particularly important since as the region size gets galler with increasing levels the basic test differentiating uniform regions from boundery regions is that favolving boundary regions composed of only two classes. Therefore, the objective of Test 2 is differentiating uniform regions from uch boundary regions.

To develop this test let $b_{j k}$ denote a boundary region R composed of ω_{j} and w_{k}. Let x be a measurement vector computed from R. Assume that $\underline{x}=B x_{1}+(1-\beta) \underline{x}_{2}$ where \underline{x}_{1} is the measurement vector computed from the 100 percent of R which contains only class ω_{j} and \underline{x}_{2} be the measurement vector computed from the $100(1-B)$ per cent of R which contains only class w_{j}. Further assume that for $b_{j k}$ boundary regions B is uniformly dis tributed $0<\beta<1$.

Under the above assumption it can be shown that

$$
f_{j k}\left(\underline{x}_{j k} \mid b_{j k}\right)=\int_{0}^{1} f_{j k}\left(\underline{x}_{j k}, B\right) d B
$$

where $f_{j k}\left(\underline{x}_{j k}\right)$ is the density function of $\underline{x}_{j k}$ computed from $b_{j k}$ boundary regions and further where

$$
\begin{aligned}
& f_{j k}\left(\underline{x} j k^{\prime} \beta\right)=N\left(\mu_{j, k}(\beta), \Sigma_{j, k}(\beta)\right), \\
& \mu_{j, k}(\beta)=\beta \mu_{j, k}+(1-\beta) \mu_{k, j},
\end{aligned}
$$

and

$$
\Sigma_{j, k}(\beta)=\beta^{2} \Sigma_{j, k}+(1-\beta)^{2} \Sigma_{k, j}
$$

Given the above the obvious pairwise test is to call R uniform if there exist at least one k such that

$$
f_{j k}\left(\underline{x}_{j k} \mid \omega_{k}\right) P\left(\omega_{k}\right)>f_{j k}\left(\underline{x}_{j k} \mid b_{j k}\right) P\left(b_{j k}\right)
$$

for $j=1, \ldots, k, j \notin k$ where $P\left(b_{j k}\right)$ denotes the a priori probability of occurrence of boundary regions composed of ω_{j} and ω_{k}. Otherwise call R boundary region.

The development of the above test requires the estimation of the - priori probabilities, $P\left(b_{j k}\right)$. These are difficult to estimate and their values can affect the test results. In addition, this test is computa-
tionally complex since it requires $\left(K_{2}^{K}\right)$ numerical integrations to evaluate the density functions $f_{j k}\left(\underline{x}_{j k}\right)$.

Because this test is computationally complex and, moreover, yields only approximate decision surfaces, it was decided to use this test only to provide intuition into developing a simplier test; one which does not require the evaluations of the density functions, $f_{j k}\left(\underline{x}_{j k}\right)$. The simpler test is call R uniform.if there exists at least one k such that

$$
\frac{f_{j k}\left(\underline{x}_{j k} \mid \omega_{j}\right)}{f_{j k}\left(\underline{x}_{j k} \mid \omega_{k}\right)}<x
$$

for $j=1, \ldots, k \quad j \neq k$ and r, a preselected number, $0<r<1$. Otherwise call R an boundary region. This test is referred to as the "ratioing" test.

3.3.3 TEST 3: Labeling Uniform Regions

A pairwise Bayesian classification scheme will be used to label the uniform regions. Such a procedure:is an optimal atrategy for minimizing the average misclassification error for each pairwise problem [47]. The pairwise method involves solving $K(K-1) / 2$ ceparate subproblems each involving a class pair instead of one K class problem directly. In the procedure used in this study the class conditional density functions $f_{j k}\left(\underline{x}_{j k} \mid \omega_{j}\right)$ used in making each class pair decision are assumed to be mormal. Further the a priori probabilities of the classes are assumed to be equal. The results of each class pair decision are tallied using a polling function. The measurement vector is assigned to the class which rejected the vector the fewest number of times.

For a more complete description of these tests the reader is referred to [48].

4. SELECTION Of SCENE DEPENDENT PARAMETERS

In any segmentation method there are certain scene dependent parameters which must be input into the algorithm. For each level to be considered in the proposed segmentation algorithm the following must be specified:
a) the K classes, $\omega_{1}, \omega_{2}, \ldots \omega_{K}$, to be considered,
b) the size of the regions, R to be used,
c) the number of displacement vectors to be used in the computing the cooccurrence matrices and
d) a method for selecting the training samples from the image.

In this study only one level was considered and hence only one set of parameters had to be selected. However, similar reasoning to that presented should be applicable to any level. The level selected for this study should be considered as a low level in the pyramid data structure, see Figure 6, because of the region size used and also because of the amount of detail present in the classes.

4.1 Selection of the Classes for Segmentation

Three criteria were established for selecting the classes.

1) The classes should correspond as directly as possible to the M, C \& G tangible features.
2) Each class should comprise a large enough region of the inage that an adequate training set can be selected.
3) The classes were chosen such that if $\mathrm{R}^{\mathbf{j}}$ represents the regions of the lmage labeled class ω_{g} gthen

K
 U R^{j}
 $j=1$

should be the whole scene. Further

$$
R^{j} \cap R^{k}=\phi . j \neq k .
$$

Criterion 1,2 and 3 led to the selection of the classes in Table 1.
An important point that should be made concerning the runway, vehicle parking, aircraft parking and multilane highway classes is that all these classes are composed of the same micropatterns, namely, a large paved area surrounded by dry land. This might lead one to think that it would be difficult for texture analysis methods to discriminate them. However, one should note that there are clues that can be used by the textural analyzer. A vehicle parking area can be discriminated from the other classes because of the presence of cars parked in a regular fashion. If no cars are present the stripes used to delineate the parking places can be used to make the determination. However, if neither of these signs are present and only a concrete slab is visible then the discrimination would not be possible based solely on textural information. Similarly with the aircraft parking area, if planes are not present and parked in a regular fashion then textural information cannot be used by itself to discriminate this class. Runways and multilane highways can be discriminated because of the difference in the width of the paved area comprising them. Bighways, even those with several lanes, are not usually as wide as runways or taxiways at airports. Also, the natural wear marks, i.e., tire arks, oil marks etc., are different. All these indicators can be detected by texture algorithms.

The dry land class represents a combination of five reasonably diverse M, C \& G tangible features. Many of these $M, C \& G$ features made up such
a small area of the image that they could not be considered as separate classes. For example, there were only two small mineral piles and while there were 19 sited occurrences of deciduous woodland, the total area occupied was very small. Similarly, the total area of crop (cultivated) land in the scene was very small and seemed inadequate for obtaining satisfactory training set. Finally, while there was a reasonably significant amount of levee, decision was made not to consider levee/embankment/fill as a separate class. Given that the mineral pile, deciduous woodland, crop (cultivated) land and levee/embankment/fill features would not be treated as separate classes, it remained to determine with which class each should be merged. The most obvious selection seemed dry land.

The most diverse class is the comercial/industrial class. It is composed of a total of twenty different $M, C \& G$ features. Each feature comprising this class did not seem to occupy enough area of the image to be considered a separate class. These twenty features were all combined fato one class because no smaller groupings of them could be found which resulted in more homogeneous visual classes and which, at the same time, provided an adequate set of training samples.

Ten of the $47 \mathrm{M}, \mathrm{C} \& G$ features appearing in the image defy categorization in the nine class scheme chosen. Most of these features represent "emall" objects which usually occur as stand alone entities. Examples are ane shaft atructure, display sign, radio/TV antenna, power transaission line etc. features. Because these features occurred so infrequently and comprised such a mall area of the image, they were not con.sidered in the segmentation.

4.2 Selection of the Region Size

For each level of segmentation there is atrong interrelationship between the size of the region R and the classes $\omega_{1}, \ldots, \omega_{K}$ which can be
considered. For each class ω_{j} the training samples for this class must be entirely composed of ω_{j}. The larger R the more difficult it is to find euch training samples. Consequently the larger R the fewer the number, K, of classes that can be considered since each class must occupy a larger area of the scene.

The comercial/industrial class effectively established a lower bound on the region size that could be used since the "unit pattern" of the commercial/industrial class is substantially larger than the unit patterns of the other classes considered. For example, see Figures 7 and 8.

The region size selected, was 145×145. It was a compromise between two opposing requirements. First, one would like the size of R to be as small as possible so that a fine segmentation, i.e., the boundaries between classes can be accurately determined. Unfortunately as should be clear from Figures 7 and 8 the smaller the region size the greater the probability of misclassification. The second requirement, to have each region be labeled as accurately as possible, forces larger region sizes to be used. The size chosen was estimated by overlaying various region sizes on the image and selecting the size which appeared to be larger than the largest of the unit patterns for the various classes considered.

4.3 Selection of the Training Samples

Ground truth information was provided which subdivided the scene into areas corresponding to the $M, C \& G$ features. These data were translated into the aine class form using the correspondences provided in Table 1. Figure 9 shows examples of the training samples selected. Note each .training sample is 145×145.

Figure 7. Examples of (a) a 50×50 region, (b) a 100×100 region, (c) a 145×145 region and (d) a 200×200 region of a commercial/industrial area.

Figure 8. Exmples of (a) 50×50 region, (b) a 100×100 region, (c) a 145×145 region and (d) a 200×200 region of a eobile home area.

residential

vehicle parking
rumway/taxiway

commercial/industrial

dry land

mobile home

water

alrcraft parking

multilane highway

Figure 9. Examples of training samples for the nine classes used in the study.

To "effectively" increase the total number of training samples, overlapping was permitted, i.e., $S_{n}^{j} n S_{m}^{j}$ was not required to be ϕ where S_{n}^{j} is sample n of class ω_{j} and S_{m}^{j} is sample m of class ω_{j}. If $S_{n}^{j} n S_{m}^{j} \neq$ then the area of the intersection was alway less than half the area of S_{n}^{j} or $S_{m}^{j}, 1 . e ., 145 \times 145$. An example of the overlapping is shown in Figure 10. The fact that the training sample regions overlap might seem at first glance, a bit disquieting. However, overlapping is desirable because one can not always be assured how the grid cells will be located in the testing phase of a study. Obviously in the cases where sufficient data is available for training, no overlapping is required.

4.4 Selection of the Displacement Vectors

Recall the displacement vector δ is a parameter in the algorithm. For each value of δ a cooccurrence matrix, $S(\delta, T)$, is computed. Each displacement vector, $\delta=(d, \theta)$, has two components d and θ where d is the intersample spacing distance and θ is the directional orinetation. The θ parameter provides directional sensitivity and investigators have usually assumed that only four values of θ were needed, $\theta=0^{\circ}, 45^{\circ}, 90^{\circ}$, $135^{\circ}[1,2,3,4,5,7,8,22]$. Also, previous work $[6,7]$ usually involved at most two values of d namely, $d=1,2$ for atal of eight different values of 6 .

Recent work $[1,2,9,30,31]$ however, has indicated that the discriminatory power can be improved by considering more values of δ. However, from a practical point of view the number of values must be liaited. The problem then is to select a relatively few 6 values which will allow good discrimimation. Since there is little theory on the subject, of aelecting the © values, heuristic sethod was employed.

First the values of θ were eelected. This was done by determining the orientations of the ajority of the streets appearing in the sene.

Figure 10. Illustrates how the training samples were overlapped to get more training data for the mobile home class.

It should be observed that most manmade urban structures tend to be aligned with the streets. Thus, the orientations of the streets are important. Note that the lower half and the upper right part of the Figure 1 have streets which are aligned in the 75° and 165° directions. The upper left part of the image has streets aligned in the 0° and 90° directions. Finally, the airport has runways aligned in the 19° and 109° directions. Hence, the θ^{\prime} s considered were $0^{\circ}, 19^{\circ}, 75^{\circ}, 90^{\circ}$, 109°, and 165°. Obviously using such scene specific information as the orientation of the streets tends to limit the generality of the segmentation results.

The other component of the period parallelogram in the texture model besides the directions are the magnitudes. In order to determine if urban land use data fit this texture model representative areas from each of the nine classes were examined. Figure 11 shows a representative area selected for the residential class. From each of the representative areas the texture measures were computed for $d=1, \ldots, 80$ and for θ values which reflected the major structural character of the pattern. Usually only two θ values were considered for each of the representative regions and these θ values were usually 90° apart. This reflects the geometry of manmade structures.

Plots were generated showing the variation in the measurement values as a function of dor a given θ. Examples of two such plots for the inertia measure are shown in Figure 12. A comparison of these plots for the nine representative regions allows determination of those d values which provide good discrimination. Consider, for exmple, the

b.

Tigure 11. (a) Residential area and (b) mobile home area used to compute the pominal values of the texture measurements. Note these regions were not required to be 145×145 but just homogeneous areas.

plots in Figure $12(\mathrm{a})$ and $12(\mathrm{~b})$. Observe that there is a significant difference in the inertia measure values of d between 16 through 22. Consequently, d values of 16 and 20 should provide good discrimination. Note d values of 17,18 and 19 would also provide good discrimination between these two classes. Similar consideration of all the plots resulted in the selection of eight values of $d, d=1,2,4,6,8,12,16,20$. Hence the total number of δ values considered initially was 48 , eight d values and six θ values.

There are some interesting observations which can be made about the plots in Figure 12. First, note that the local minimum occurring at $d=74$ In Figure 12 (a) corresponds to the distance between the streets in Figure 11 (a). Further the local minimum occurring at $d=38$ corresponds to the distance from the center of a street to the back property line of a residential lot. Plots of the inertia measure in the 75° direction show that the inertia measure can also be used to gauge the width of the lots. Hence the inerria measure can determine the average lot size in the subdivision pictured, i.e., the period parallelogram unit pattern of the residential area. Such information could theoretically be used to determine the area which has to be searched for objects such as cars, driveways, etc. Similarly plots in Figure $12(\mathrm{~b})$ show that the inertia measure can be used to gauge structural information from the mobile home area of Figure 11 (b).

The last example which shows how structural information can be gauged is the vehicle parking area ghown in Figure 13. Figure 14 shows . the basic structure of this area and gives the number of pixels between the various elements of the scene. Figure 15 shows plots of both the local homogeneity masure and the 1nertia measure computed along the $\theta=75^{\circ}$ direction. Note that the local homogeneity measure can be used to determine

Figure 13. An example of vehicle parking area.

Figure 14. The atructure of vehicle parking area. Also given is
the number of pixels between elements of the scene.

(b)

Figure 15. Plots of (a) the local homogeneity and (b) inertia measure computed from the parking area along the $\theta=75^{\circ}$ direction.
the distance between the rows in the parking lot while the inertia measure cannot. Further it is interesting to note that the power spectrum cannot be used to detect this structure either since the power spectrum and inertia measure are essentially equivalent $[2,31]$.

Given the fact that the texture measures gauge visually perceivable qualities of patterns the process described above for selecting the δ values allows one to incorporate the visual differences among the classes Into the segmentation process.
5. A one level seghentation of the scene

In this section studies are described which
i) evaluate the capabilities of the texture measures to characterize the land use classes;
ii) evaluate the capabilities of the pairwise classification procedure to label the uniform regions, i.e. ones which contain only one land use class; and
iii) estimate the performance of the proposed segmentation procedure.

These studies resulted in a one level segmentation of the scene. Note the capabilities of Chi-Squared test and ratioing tests used in differentiatIng uniform regions from those which should be split are given in Section 6. 5.1 Capabilities of the Texture Measures to Characterize land use Classes

The best method for evaluating the capabilities of the texture measures is to determine how well they can discriminate the land use classes. . Commonly the training results are used to estimate this discriminatory power. To acquire the training results requires

1) the extraction of the texture measures from the training samples;
ii) measurement selection to obtain the measures that should be used to make each class pair decision;
iii) estimation of the necessary mean vector and covariance matrices; and
iv) the application of the pairwise classification procedure to the texture measures extracted from the training samples.

The maximum number of measurements which could be used to make each class pair decision was derived using the Foley criterion [44] with a minimum of 8 samples in each class for each masure used. The masurement seletion method was a forward sequential search procedure [5]. It is worth observing that 3 of the 5 masures selected in the residential/mobile home
class pair decision involved d values of 16 and 20. Note that this agrees with the observations concerning the plots of Figure 12.

The training results for this study are given in Table 2. The percentage of overall correct classification obtained was 90\%. This figure was computed by dividing the total number of correctly classified regions by the total number of training samples.

A few observations concerning the training results should be made. First, it should be noted that the comercial/industrial class and the dry land class represent the two most heterogeneous classes. That is, there are number of visually dissimilar areas comprising each of these classes. Consider, for example, the dry land class. This class is composed of grass land, mixture of grass and trees, cultivated areas with prominent rows and areas of exposed soil with little or no grass. Similarly, the comercial/ industrial class is composed of such heterogeneous possibilities as a drive-in theater screen, wind tunnels, apartments and railroad station/depot. The heterogenous make up of these classes shows itself in the training results from the fact that members of most of the other seven classes were misclassified into one or both of these classes.

Another point of interest about the training results is that the majority of the incorrect classifications were graceful misses. That is, In the majority of instances when a misclassification occurred the class in which the sample was incorrectly placed was a good eecond choice for placing that ample. Consider for example the residential eamples that were aisclassified. These samples were all labeled coumercial/industrial. Residential areas look more like comercial/industrial areas than any of the rest of the classes. Further consider the aisclassified mobile home saples. These samples vere placed in the residential or comercial/ industrial classes. Again, both of these classes represent better alternatives

				mpu	TER C	class	Hfic	TION				
		RES	COM	M ${ }^{\text {H }}$	VPK	DL	WTR	RW	APK	MHW	total	
	RES	78	5	0	0	0	0	0	0	0	83	93.98\%
	COM	2	297	1	1	18	0	0	0	9	328	90.552
	MH	2	3	36	0	0	0	0	0	0	41	87.80\%
	VPK	1	6	0	18	0	0	0	0	0	25	72.00\%
	DL	2	13	2	0	322	1	3	0	10	353	91.22\%
	WTR	0	0	0	0	1	84	0	0	0	85	98.828
	RW	0	2	0	0	6	0	70	0	0	78	89.742
	APK	0	2	0	0	1	0	0	18	0	21	85.712
	MHW	0	13	1	0	8	0	0	0	99	121	81.822
	total	85	342	40	19	356	85	73	18	118	1135	
	overall pencentage cornect classification											90.04\%

RES - Residential
COM - Commercial/Industrial
MH - Mobil Home
VPK - Vehicle Parking Area
DL - Dry Land
WTR - Water
RW - Runway/Taxiway
APK - Aircraft Parking
MHW - Multilane Bighway

Table 2. The results obtained by classifying the training samples. The training results gave an 90% overall correct classification.
than any of the other classes. Also the vast majority of the misclassified vehicle parking area samples were called commercial/industrial area samples. Note that many of the comercial/industrial samples have large parking areas contained in them.

Also consider the confusion between the comercial/industrial class and the dry land class. As was stated earlier both the commercial/industrial and dry land classes are heterogeneous in structure. Further, almost every class has samples which are misclassified into one of these two classes. The confusion between these two classes seems to be based on a similar structure. Many of the comercial/industrial training samples have one or more buildings surrounded by a large grassy area. Evidentially, the methods employed have trouble discriminating areas of bare soil surrounded by grass from buildings surrounded by grass.

Finally both the dry land class and comercial/industrial class are confused with the multilane highway class. To explain this confusion it should be observed that a 145×145 sample of multilane highway must contain things other than multilane highway. In the majority of the training samples of multilane highway the other objects in the 145×145 areas were either comercial/industrial ireas and/or dry land.

These results are encouraging. Even though some misses occur they indicate that texture measures can be used to characterize complicated land use classes.

5.2 Capabilities of the Pairwise Classification Procedure

A procedure which seems appropriate for evaluating the classification scheme is to partition the image into regions as though segmentation were to be performed and then classify only those regions which are uniform. In this case the regions are created by overlaying a 145×145 square grid on the image as shown in Figure 16. The resulting 1156 regions include 680 which have more than 90% of their area composed of one of the nine classes. In the study the definition of uniformity was relaxed to assure an adequate number of samples.

The results of applying the pairwise classification scheme to the 680 regions are shown in Table 3. Ubserve that these results are comparable to the training results given in Table 2 with the most significant difference being only 8% below tne training results. In making this comparison it is important to point out that seldom if ever did a training sample coincide with one of the 680 regions considered. Further it should be observed that three classes, namely, vehicle parking, runway/taxiway and aircraft parking, have higher percentages of correct classification than those achieved during training. This anomaly can be explained for the vehicle parking and aircraft parking classes by noting in Table 3 the small number of samples representing these two classes. To explain the discrepency for the runway/ taxiway class note the fact that the positioning of the paved rmway area within the 145×145 sample region will affect the values of the texture measures. Ideally one would like the runway to pass through the center of the region. However to adequetely train the procedure to recognize this class, amples reflecting less than ideal conditions were ipcluded.

Figure 16: The square grid used to egment the Sunnyvale
scene.

				mpu	TEn	Clas	bifica	tion				
		RES	COM	MH	VPK	DL	WTR	RW	APK	MHW	total	
	RES	28	5	0	0	0	0	0	0	0	33	87.9\%
	COM	5	148	1	0	6	0	5	0	8	174	85.06\%
	MH	0	0	6	0	0	0	0	0	1	7	85.7\%
	VPK	0	1	0	5	0	0	0	0	0	6	83.0\%
	DL	2	30	1	0	232	2	6	2		279	83.2\%
	WTR	0	1	0	0	4	88	2	0	0	95	92.6\%
	RW	0	0	0	0	1	0	40	0	0	41	97.6\%
	APK	0	0	0	0	0	0	0	5	0	5	100.\%
	MHW	0	6	0	0	1	0	0	0	33	40	82.5\%
	rotal	35	191	8	5	246	90	53	7	46	680	
	overall pencentage conmect classification											86.0\%

RES - Residential
COM - Comercial/Industrial
KH - Mobil Home
UPR - Vehicle Parking Area
DL - Dry Land
WTR - Water
RW - Runway/Texiway
APK - Aircraft Parking
MAN - Multilane Eighway
Table 3. The reaulte obtained by applying the pairwise classification scheme to 680 uniform regions of the image.

Consequently the difference in classification accuracies is attributable to the good runway sample region alignment occurring fust by chance in this study.

Finally it should be observed that the misclassifications shown in Table 3 are very similar to those given in Table 2. The only exception being the five comercial/industrial samples which were misclassified in runway/taxiway class. To explain this note that four of five areas misclassified in this manner involved large hangars. According to Table 1 hangars are part of the comercial/industrial class. Yet the large hangars involved in misclassifications look nothing like the comercial/industiral samples included in the training set for this class. This fact together with the visual similarity of regions containing hangars to those containing a rubway explains the confusion. This can be observed frow Figure 17.

5.3 A Segmentation of the Scene

Practically speaking in any automatic segmentation procedure there is a level, say level 1 , at which a labeling of every remaining region must be forced. Usually the percentage of the regions which are unspecified and boundary decreases with increasing i since the smaller the regions R, the more of them that will fail into areas composed of a single class. Admittedly there are mitigating factors, but a reasonable estimate of the Lower bound on the performance of a segmentation can be derived by forcing a Label on the regions at the lowest possible level, level 1 . This follows from the fact that the percentage of unspecified and boundary regions will be maximum at this level. Such a lower bound will be estimed in this section. The data used to ettablish this lower bound are the 1156 145×145 regions shown in Figure 16.

b.

Figure 17. The visual similarity between a region containing - large hangar and one containing a portion of a runway/taxiway. (a) The region containing the hangar. (b) The region containing a runway/taxiway.

In forcing a label on these regions, a difficulty that is imediately encountered relates to establishing ground truth. For example, it is possible for some of these regions to contain multiple land use classes. To avoid any possible ambiguity rules were formulated for scoring the segmentation. Let R be a 145×145 square in question. Further let ω_{j} represent class \mathcal{J} and $A\left(\omega_{j}\right)$ represent the area of R occupied by class ω_{j}. Then the scoring rules are as follows:

1. If R contains n classes, say $\omega_{1}, \ldots, \omega_{n}$, and if $A\left(\omega_{j}\right) \gg A\left(\omega_{k}\right)$ for all k such that $1 \leq k \leq n, k \neq j$; then the correct labeling of R is assumed to be ω_{j}.
2. If R contains n classes, say $\omega_{1} \ldots, \omega_{n}$, and if there are m classes, say $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$, such that $A\left(\omega_{1}\right)=\ldots \approx A\left(\omega_{m}\right)$ and further that $A\left(\omega_{j}\right)>A\left(\omega_{k}\right), 1 \leq j \leq m, m \leq k \leq n$, then the correct labeling is assumed to be anyone of the $\omega_{j}, 1 \leq j \leq$.

The results obtained by pairwise classification procedure to label all the 1156 regions is given in Table 4. In examining these results it is again important to note that seldom if ever did a training sampe coincide with one of the regions shown in Figure 16 . The overall percentage of correct classification is about 83\%.

As will be observed six of the nine classes have good classification accuracies, ones which compare favorably to those obtained when only uniform regions are considered (Table 3). However, three of the classes, namely, mobile home, vehicle parking and aircraft parking, do not. To explain these low classification accuracies it is important to note that when only -unform regions are considered these classes have high probabilities of correct clasification. Given thet each of these clases compose only a

				mpu	TER	class	ifica	rion				
		RES	COM	MH	VPK	DL	WTR	RW	APK	MHW	total	cornect
	RES	43	19	0	0	0	0	0	0	4	66	65.2\%
	com	6	298	1	0	9	0	5	1	14	334	89.2\%
	MH	0	5	6	0	0	0	0	0	1	12	50.0\%
	VPK	0	13	0	8	0	0	0	0	1	22	36.4\%
	DL	2	44	1	0	378	2	12	6	10	455	83.1\%
	WTR	0	3	0	0	6	88	7	1	0	105	83.8\%
	RW	0	0	0	0	1	0	68	0	0	69	98.6\%
	APK	0	1	0	0	3	0	6	9	0	19	47.4\%
	ERHW	0	9	0	1	1	0	1	0	62	74	83.8\%
	rotal	51	392	8	9	398	90	99	17	92	1156	
	overall percentag					cor	ramit	CL	Asif	icatio	ON	83.4\%

RES - Residential
COM - Cowmercial/Industrial
MH - Mobil Home
UPK - Vehicle Parking Area
DL - Dry Land
WTR - Water
RW - Runway/Taxiway
APK - Aircraft Parking
MHW - Multilane Highway

Table 4. The reaults obrained when the image was segmented. It should be noted that few $1 f$ any of the regions used in the segmentation exactly corresponded to the regions comprising the training set.
small percentage of the whole scene the obvious explanation for these poor results is that most of the regions misclassified were actually boundary regions. An examination of the data proves this explanation to be correct.

The percentage of correct classification of the other classes seemed acceptable. As will be observed the algorithm failed gracefully on a eajority of the misclassified samples. Consider the residential class. The majority of the misclassified residential samples were labeled as comercial/industrial. Clearly if a residential area is to be missed, the comercial/industriai class is the one which most closely resembles the residential class.

The vast majority of the misclassified commercial/industrial samples were called either residential, dry land or multilane highway. Siailarly, the vast majority of the misclassified dry land samples were called comercial/ industrial.

This leads one to the water class. As will be observed from Table 4 some water samples are mislabeled as comercial/industrial, dry land, runway and aircraft parking. These are clearly very bad misses. However, there is a mitigating factor. All the water samples which were misclassified into either the commercial/industrial class, the runway/taxiway class, or the aircraft parking class contained a levee, i.e., an unspecified class, since none of the training samples for any of the classes contained levee. Finally some of the confusion between the water class and the dry 1 and class seems to be caused by mixtures of dry land and water. Nater samples which contsined only reasonably amal areas of dry land .were consistently called dry land by the algorithm.

The rumway clase was very accurately classified with caly two of the 68 eamples belng misclassified as diy land. The multilane highway class
had samples misclassified as comercial/industrial, residential and mobile home. It is interesting to note that each of the multilane highway training samples contained areas from these three classes and dry land. However, only the commercial/industrial, residential and mobile home areas contained structures which could markedly affect the texture measures ability to detect the presence of a major road.

6. evaluating the splitting criteria

Recall that the splitting criteria involves two tests, the Chi-Squared test and the ratioing test. The Chi-squared test was formalated primarily to differentiate uniform regions from unspecified regions whereas ratioing was primarily formulated to differentiate uniform regions from boundary regions. In this section studies aimed at evaluating these tests will be briefly described.

6.1 Evaluating the Capabilities of Chi-Squared Test

The data used to evaluate Chi-Squared test were taken from a square area in the extreme upper right hand corner of the image. This area contained 144 regions and comprised the last 12 elements of the first 12 rows of the grid given in Figure 16. This area was selected because it contained a levee and a land/water boundary. The levee is of interest because while being a part of the dry land class any 145×145 region containing a levee must necessarily contain water. Also the training set for the dry land class contained no levee samples. Hence the segmentation procedure should call such regions unspecified. The presence of the land/water boundary could be used to determine whether Chi-squared test could be used to find boundary regions.

The results of applying a simplified version of the Chi-squared test to the 144 regions is summarized in Table 5. The first rou of this table shows how the 53 verified unspecified regions were handled by the segmentation procedure. Observe that 44 (83%) of these were correctly 1dentified as being unspecified by the Chi-squared test. Of the 9 . Iegions which were mistakenly judged as being uniform, 7 of these were correctly classified by the palrwise classifier.

Table 5: A sumary of the results obtained by applying the simplified form of the Chi-squared test to the 144 regions contained in a square area in the extreat upper right hand side of the scene.

The second row of Table 5 shows how the verified boundary regions were handled. Observe that the Chi-squared test correctly identified 11 (37\%) of the 30 regions as boundary regions. Of the 19 regions which were not 1dentified as boundary regions by the Chi-squared test, 17 (89\%) of these were labeled by the pairwise classifier as belonging to one of their major constituent classes. Therefore, only 2 out of 30 samples can be viewed as incorrectly labeled. It should be noted that the Chi-squared test is opecifically derived to differentiate unspecified regions from uniform regions and the correct differentiation of boundary regions from uniform regions is really a secondary consideration for this test.

The third row corresponds to those verified uniform which were correctly labeled as being a member of one of K classes by the Chi-squared test. The fourth row corresponds to thos verified uniform which were incorrectly labeled by the Chi-squared test. Observe that only 6 (10\%) of the correctly labeled uniform regions were called unspecified by the test.

6.2 Evaluating the Capabilities of the Ratioing Test

The results acquired by applying the simplified version of the ratioing test to the 102 regions is given in Table 6. Also shown is the results of applying the the Chi-squared test with $\alpha=.95$ and the pairwise classification procedure to these same 102 samples. The first row shows how the 65 verified boundary regions were handled. Observe that the ratioing test alone could identify 27 of these regions. In all the ratioing test identified 40 of the 65 regions. The Chi-squared test aided by detecting 10 sore. Thus in combination the two tests detected 77% of boundary regions.

The second and third rows show how verified uniform regions, both those which were correctly and incorrectly classified by the pairwise classifier were treated. Observe that the ratioing test mistakenly called

			COMPUTER RESULTS						Total number of regiona
			1-Soundary regions				legions identified as 1-Unifors by the palrviee claselfier		
			Thentified y Chi- gruared zeat	$\begin{aligned} & \text { Ldentifled } \\ & \text { by ratiolas } \\ & \text { zese } \end{aligned}$	Identified py beoh Chi Squared and retioling cests	Total nuaber of 1-Eoundary regions identified	Correctly clabsified	$\begin{aligned} & \text { Incorrectiy } \\ & \text { clasesfed } \end{aligned}$	
83I8093175 03IsIM3A	1-Soundary segican		10	27	13	50	13	2	65
	${ }_{8}^{\text {¢ }}$ 区 ${ }^{\text {E }}$	\qquad	11	4	3	18	11	0	29
		$\begin{aligned} & \text { 2-Valform } \\ & \text { regicas } \\ & \text { sacorrectiy } \\ & \text { clamsificed } \end{aligned}$	1	3	2	6	0	2	8

Table 6: A sumary of the results obtained by applying the simplified forms of the ratioing test and the Chi-squared test to 102 regions. Wote that the table also indicates the classification fesults obtained by the pairwise classifier for the 102 regions.

7 (24\%) of these regions boundary region. Further the Chi-squared test incorrectly labeled an additional 11 (38\%). The poor performance of the Chi-squared test in this case is probably a result of a suboptimal choice of a.

On the third row observe that of the 8 incorrectly labeled uniforms by the classifier 6 (75\%) regions were identified as boundary regions.

7. SUMMARY AND CONCLUSIONS

This paper described a study aimed at segmenting a bigh resolution urban scene. To accomplish this objective a statistical eegmentation procedure was developed; one whose primitive operators were SGLDM texture measures. The procedure is an early vision system based on a split type algorithm. It considers three types of regions at each level of the segmentation, uniform, boundary and unspecified. The procedure is based on three hypothesis tests. Experiments were performed wich indicate the utility of the methodologies employed. In particular a training result of 90% overall correct classification for the nine classes considered confirms the ability of the texture algorithm to characterize land use classes. Further an approximate lower bound of 83% correct classification was established on the performance of the segmentation procedure in independent testing samples. Finally the performance of the tests associated with the decision to split a region were evaluated. The results show that these tests performed well in making a split decision. The results obtained substantiate the use of texture operators to segment complicated urban scenes.

As stated previously the segmentation procedure was not completely implemented in that multiple levels could not be considered. A further study is required to consider this case. Also, methods to incorporate more world knowledge need be investigated. Finally methods for lmproving the measurement selection algorithm should be atudied aince the algorithm used considers only the ability of a measure to correctly classify uniform regions.

1. Weszka, J., C. Dyer and A. Rosenfeld, "A Comparative Study of Texture Measures for Terrain Classification," 1EEE Transactions on Systems, Man, and Cybernetice, Vol. SMC-6, No. 4, April 1976, pp. 269-285.
2. Conners, R. W., and C. A. Harlow, "A Theoretical Comparison of Texture Algorithas," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 3, May 1980, pp. 204-222.
3. Maralick, R. M. and K. Shanmugam, "Computer Claseification of Reservoir Sandstones," IEEE Transactions on Geoscience Electronics, Vol. GE-11, No. 14, October 1973, Pp. 171-177.
4. Baralick, R. M., R. Shanmugam, and Its'Bak Dinatein, "Textural Features for Image Classification," Iree Transactions on Systems, Yan, and Cybernetics, Vol. sMC-3, No. 6, November 1973, Pp. 610-621.
5. Ausherman, D. A. "Texture Discrimination Within Digital Imagery," Ph.D. Dissertation, Univeraity of Missouri, Columbia, December 1972.
6. Kruger, R. P., W. B. Thompson, and A. F. Turner, "Computer Diagnosis of Pneumoconiosis," IEEE Transactions on Systems, Man, and Cybernetics, Vo1. SMC-4, No. 1., January 1974, Pp. 40-49.
7. Hall, E. L., R. P. Rruger, and F. A. Turner, "An Optical-Digital System for Automatic Processing of Chest X-Rays," Optical Engineering, Vol. 13, No. 3, May/June 1974, Pp. 250-257.
8. Darling, E. M. and R. D. Joseph, "Pattern Recognition From Satellite Altitudes," IEEE Transactions on Systems Science and Cybernetice, Vol. SSC-4, Mo. 1, March 1968, PP. 38-47.
9. Tully, R. J., R. W. Connere, C. A. Eariow, and G. S. Lodwick, "Towards Computer Analysis of Puimonary Infiltration," Investigative Radiology, Vol. 13, August 2978, pp. 298-305.
10. Julesz, B. "Visual Pattern Discriaination." IRE Transactions on Infornation Theory, Tol. IT-8, February 1962, pp. 84-92.
11. Julesz, B., E. M. Gilbert, L. A. Shepp, and 日. L. Frisch, MInability of Rumans to Discriminate Between Visual Textures That Agree in Second-Order Statistics-Revisited," Perception, Vol. 2, 1973, pp. 391-405.
12. Pavildis, T., Structural Pattern Reconition, Springer-Verlag, 1977.
13. Chen, 8. C. and T. Pavildie, "Segmentation by Texture Deing a CoOccurrence Matrix and a Split-And-Merge Algorithm, Computer Graphics and Imare Processing, Vol. 10, Mo. 2, June 1979, pp. 172-182.
14. Lendaris, G. G. and G. L. Stanley, "Diffraction-Pattern Sampling For Automatic Pattern Recognition," Proceeding of IEEE, Vol. 58. No. 2, February 1978, pp. 198-216.
15. Galloway, M. M. "Mexture Analysie Deing Gray Level tua Lengths," Computer Graphics and Image Procesing, Vol. 4, No. 2, June 1975, Pp. 172-179.
16. Isu, S. T., "The Mahalonobis Clasifier with the Cenersifed Jeverse Approach for Automated Analyeis of Inagery Texture Data," Computer Graphics and Imere Proceseing, Vol. 9, Uo. 2, Pebruary, 1979. pp. 117-234.
17. Mtchell, O. R. and S. G: Cariton, "Inage Segmentation Daing a Local Extrema Texture Measure," Pattern Recognition, Vol. 10, No. 3, 1978, pp. 205-210.
18. Jensen, J. R., "Spectral and Textural Features to Classify Elusive Land Cover at the Urban Fringe," The Professional Geographer, Vol. 31, No. 4, November 1979, pp. 400-410.
19. Makata, E., J. Iisaka, Y. Ishil, M. Imanaka, and Y. Miyazaki, "Application of Texture Analysis and Image Enhancement Techniques for Remote Sensing." Proceedings of the Twelfth Intermational Symposium on Remote Sensing of Environment, (Ann Arbor, Michigan), Apr11 20, 1978, pp. 1957-1971.
20. Nagao, M., T. Mateuyam, and Y. Ikeda, "Region Extraction and Shape Analysis in Aerial Photographs," Computer Graphics and Image Processing, Vol. 10, No. 3, June 1978, pp. 195-223.
21. Magao, M. and T. Matsuyama, A Structural Analysis of Complex Aerial Photographs, Plenum Press, New York, New York, 1980.
22. Chien, Y. P. and K. 8. Pu, "Recognition of X-Ray Picture Patterns," IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-4, No. 2, March 1974, Pp. 145-156.
23. Baralick, Robert M. "Statistical and Structural Approaches to Texture," Proceeding of IEEE, Vol. 67, No. 5, Jay 1979, pp. 786-8C4.
24. Cael11, T. and B. Julesz, "On Perceptual Ansiyzers Underlying Visual Texture Discrimination, $I, "$ Biological Cybernetics. Vol. 28, No. 3, 1978, pp. 167-175.
25. Caelli, T. and B. Julesz, "On Perceptual Analyzers Onderiying Visual Texture Discrimination, II," Biological Cybernetics, Vol. 29, No. 4, 1978. pp. 201-214.
26. Juleaz. B., E. N. Gilbert, and J. D. Victor, "Viewal Discriaination of Textures with Identical Third-Order Statistice," Biological Cybernetice, Vol. 31, No. 3, 1978, pp. 137-140.
27. Pratt, W. K., O. D. Faugeras, and A. Gagalowice, "Visuni Discrimination of Stochastic Texture Fielde." IEEE Transactions on Systems, Man, and Cybernctice, Vo1. syc-8, No. 11, Vovember 1978. Pp. 796-804.
28. Gagalowicz, A., " A New Method for Texture Fields Synthesis: Some Applications to the Study of Human Vision," IEEE Iransactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-3, No. 5, September, 1981, pp. 520-533.
29. Conners, R. W., "Discriminating Textures Which Have Identical Second-Order Probabilities Using the SGLDM", Remote Sensing and Image Processing Technical Report 402.82, Department of Electrical and Computer Engineering, Louisiana State University, 1982.
30. Conners, R. W., "Towards A Set of Statistical Features Which Measure Visually Perceivable Qualities of Textures," Proceedings Pattern Recognition and Image Processing, (Chicago, Illinois), August 8, 1979, PP. 382-390.
31. Conners, R. W. and C. A. Harlow, "Towards A Structural Textural Analyzer Based On Statistical Methods," Computer Graphics and Image Processing, Vol. 12, No. 3, March 1980, pp. 224-256.
32. Wertheimer, M. "Principles of Perceptual Organization," Reading In Perception, D. C. Beardslee and M. Wertheimer, Eds., D. Van Nostrand Co., New York, N.Y., 1958, Pp. 115-134.
33. Julesz, B. , "Cluster Formation of Various Perceptual Levels," Methodologies of Pattern Recognition, S. Watanabe, Ed., Academic Press, New York, 1969, pp. 297-315.
34. Mach, E., (1897) (Republished by Dover, New York, 1959), Analysis of Sensations.
35. Gibson, J.J., The Perception of the Visual World, Haughton-Mifflin, Boston, 1950.
36. Ohlander, Ron, Keith Price, D. R. Reddy; "Picture Segmentation Using a Recursive Region Splitting Method," Computer Graphic and Image Processing, Vol: B, No. 3, pp. 313-333, 1978.
37. Riseman, E. M. and M. A. Arbib, "Survey: Computational Techniques in Visual Segwentation of Static Scenes," Computer Graphics and Image Processing, Vol. 6, No. 3, June 1977, pp. 221-276.
38. Harlow, C. A. and R. W. Conners, "Image Segmentation and Texture Analysis," Proceeding SPIE Conference Image Understanding Systems II, (San Diego, California), Vol. 205, August 29, 1979, pp. 30-41.
39. Coleman, C. B. and M. C. Andrews, "Image Segmentation by Clustering," Proceedings of IEEE, Vol. 67, No. 5, May 1975, Pp. 773-785.
40. Chen, C. H., "On the Statistical Image Segmentation Techniques," Proc. of the Pattern Recornition and Image Processing Conference, Dallas, Texas, August 1981, Pp. 262-266.

41 Chen, P. C. and T. Pavildis, "Image Segmentation as an Estimation Problem," Computer Graphics and Image Processing, Vol. 12, No. 2, 1980, pp. 153-172.
42. Chen P. C. and T. Pavlidis, "Segmentation by Texture Using Correlation," Proc. of the 5th International Conference on Pattern Recognition, Mami Beach, FLorida, Dec. 1980, PF. 551-553.
43. Kughes, G. F., "On the Mean Accuracy of Statistical Pattern Recognizers," IEEE Transactions on Information Theory, Vol. IT-14, No. 1. January 1968, Pp. 55-63.
44. Foley, Donald, H., "Considerations of Sample and Feature Size," IEEE Transactions on Information Theory, Vol. IT-18, Ho., 5, September 2972,
45. Morrison, D. F., Multivariate Statistical Methods, McGraw-Hill, New York, 1967.
46. Zucker, Steven W., Demetri Terzopoulos, "Finding Structure in Co-Occurrence Matrices for Texture Analysis," Computer Graphics and Image Processing, Vol. 12, No. 3, March 1980, pp. 286-308.
47. Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley Interscience, 1973.
48. Conners, R. W., M. M. Trivedi and C. A. Harlow, "The Scegmentation of a Complex Urban Scene Using Texture Operators," Remote Sensing and Image Processing Laboratory Technical Report 401.82, Department of Electrical and Computer Engineering, Louisiana State Uriversity, March 1982.

