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An adaptively regularized kernel-based fuzzy �-means clustering framework is proposed for segmentation of brain magnetic
resonance images. �e framework can be in the form of three algorithms for the local average grayscale being replaced by the
grayscale of the average 	lter, median 	lter, and devised weighted images, respectively. �e algorithms employ the heterogeneity
of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean
distance with Gaussian radial basis kernel functions. �e main advantages are adaptiveness to local context, enhanced robustness
to preserve image details, independence of clustering parameters, and decreased computational costs. �e algorithms have been
validated against both synthetic and clinical magnetic resonance images with di
erent types and levels of noises and compared
with 6 recent so� clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image
details and segmentation accuracy while maintaining a low computational complexity.

1. Introduction

Image segmentation is to partition an image into meaningful
nonoverlapping regions with similar features. Segmentation
of brain magnetic resonance (MR) images is necessary to
di
erentiate white matter (WM), gray matter (GM), and
cerebrospinal uid (CSF). Such segmentation is essential for
studying anatomical structure changes and brain quanti	ca-
tion [1]. It is also a prerequisite for tumor growthmodeling as
tumors di
use at di
erent rates according to the surrounding
tissues [2]. Due to potential existence of noise, bias 	eld, and
partial volume e
ect, segmentation of brain images remains
challenging.

Image segmentation techniques can be roughly catego-
rized into [3] thresholding, region growing, clustering, edge
detection, and model-based methods. Clustering is an unsu-
pervised learning strategy that groups similar patterns into
clusters and can be hard or so�. So� clustering is preferred as

every pixel can be assigned to all clusters with di
erent mem-
bership values [4, 5]. �e most popular so� clustering meth-
ods applied toMR images are [4] fuzzy�-means (FCM) clus-
tering [6, 7], mixture modeling, and hybrid methods of both.

Although the FCM algorithm comes with good accuracy
in the absence of noise, it is sensitive to noise and other
imaging artifacts. �erefore, enhancements have been tried
to improve its performance by including local spatial and
grayscale information [8–14] which will be briey elaborated
in Section 2.

A mixture model composed of a 	nite number of Gaus-
sians has been employed for brain MR image segmentation.
�e main strategy to incorporate the local information into
the mixture model is to use hiddenMarkov random 	elds for
more accurate segmentation [15]. Nikou et al. [16] proposed
a hierarchical and spatially constrained mixture model that
takes into account spatial information by imposing distinct
smoothness priors on the probabilities of each cluster and

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 485495, 12 pages
http://dx.doi.org/10.1155/2015/485495



2 Computational and Mathematical Methods in Medicine

pixel neighborhoods. In [17], a nonparametric Bayesian
model for tissue classi	cation of brain MR images known as
Dirichlet process mixture model was explored. Nguyen and
Wu [18] introduced a way to incorporate spatial information
between neighboring pixels into the Gaussian mixture model
(GMM).

To be more robust to noise and attain fast convergence,
FCM and GMM can be combined. Chatzis and Varvarigou
[19] embedded the hidden Markov random 	eld model into
the FCM objective function to explore the spatial informa-
tion. Chatzis [20] introduced a methodology for training
	nite mixture models under fuzzy clustering principle with
a dissimilarity function to incorporate the explicit informa-
tion into the fuzzy clustering procedure. Recently, Ji et al.
[21] employed robust spatially constrained FCM (RSCFCM)
algorithm for brain MR image segmentation by introducing
a factor for the spatial direction based on the posterior
probabilities and prior probabilities.

In [22], Li et al. presented an algorithm for brain
tissue classi	cation and bias estimation using a coherent
local intensity clustering. Later they explored multiplicative
intrinsic component optimization (MICO) [23] to improve
the robustness and accuracy of tissue segmentation in the
presence of high level bias 	eld.

Generally, the current brain MR image segmentation
algorithms su
er from one or more of the following short-
comings: lack of robustness to outliers [8, 9, 13], high
computational cost [8, 13, 14, 16, 21], prior adjusting of crucial
ormany parameters [8–11, 21], limited segmentation accuracy
in the presence of high level noise [8, 11, 19, 22, 23], and loss of
such image details like CSF [9, 13, 14, 21]. In this paper, a new
so� clustering framework is to be explored for better handling
of the aforementioned segmentation problems.

�e rest of this paper is organized as follows. Relatedwork
of FCM algorithm is presented in Section 2. �e proposed
framework is then elaborated in Section 3. Experiments on
synthetic and clinical MR images are presented in Section 4.
Sections 5 and 6 are devoted to discussion and conclusion,
respectively.

2. Related Work

�eFCMalgorithm in its original form assigns amembership
value to each pixel for all clusters in the image space.
For an image � with set of grayscales �� at pixel � (� =1, 2, . . . , �), � = {�1, �2, . . . , ��} ⊂ 	� in 
-dimensional
space and cluster centers V = {V1, V2, . . . , V�} with � being a
positive integer (2 < � ≪ �), there is a membership value ��
for each pixel � in the �th cluster (� = 1, 2, . . . , �).�e objective
function of the FCM algorithm is [7]

�FCM = �∑
�=1

�∑
�=1

��� ������� − V�
�����2 , (1)

where � is a weighting exponent to the degree of fuzziness,

that is, � > 1, and ‖�� − V�‖2 is the grayscale Euclidean

distance between pixel � and center V�. �e membership ��
should be constrained to the following:

∀� ∈ [1,�] , � ∈ [1, �] :
�∑
�=1

�� = 1, �� ∈ [0, 1] , 0 ≤ �∑
�=1

�� ≤ �. (2)

�emembership function and cluster centers are updated
iteratively in an alternating process known as alternate
optimization. �e membership function and cluster centers
are

�� = 1
∑��=1 (������� − V�

�����2 / ������ − V�
����2)1/(�−1) ,

V� = ∑��=1 ��� ��∑��=1 ��� .
(3)

As the objective function in (1) does not include any
local information, the original FCM is very sensitive to noise
and the accuracy of clustering in the presence of noise and
image artifacts will decrease. To overcome this problem,
Ahmed et al. [8] modi	ed the objective function by adding
a term for the spatial information of neighboring pixels. �is
algorithm is denoted as FCM S with the following objective
function:

�FCM S = �∑
�=1

�∑
�=1

��� ������� − V�
�����2

+ ���
�∑
�=1

�∑
�=1

��� (∑
	∈��

������	 − V�
�����2) ,

(4)

where � is a parameter to control the spatial information of
neighbors with 0 < � ≤ 1,�� is the set of pixels around pixel�, and�� is the cardinality of��.

�e FCM S algorithm is computationally expensive as
the local neighborhood term has to be calculated in each
iteration step. To overcome this drawback, Chen and Zhang

[10] replaced the term (1/��) ∑	∈�� ‖�	 −V�‖2 with ‖��−V�‖2,
where � is the grayscale of a 	ltered image that could be
calculated once in advance, and used kernel function to
replace the Euclidean distance. �e enhancement could be
in two forms, that is, FCM S1 by using the average 	lter
and FCM S2 by adopting the median 	lter. �eir objective
function is as follows:

�FCM S1,2 = �∑
�=1

�∑
�=1

��� ������� − V�
�����2 + � �∑

�=1

�∑
�=1

��� ������� − V�
�����2 . (5)

Although the accuracy has been improved, it is sensi-
tive to high level noises and di
erent types of noises. In
addition, the parameter �, which has a great impact on the
performance, is set manually with care and requires prior
information about noise.

Yang and Tsai [12] proposed a Gaussian kernel-based
FCM method with the parameter �� calculated in every
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iteration to replace � for every cluster. Similar to FCM S1 and
FCM S2, thismethodhas two forms:GKFCM1 andGKFCM2
for average and median 	lters, respectively. �e parameter ��
is estimated using kernel functions:

�� = min�� ̸=� (1 − � (V ́�, V�))
max� (1 − � (V�, �)) , (6)

where � is the kernel function. �e replacement of � with�� could yield better results than FCM S1 and FCM S2.
However, for good estimation of ��, cluster centers should
be well separated which might not be always true; hence the
algorithm has to iterate many times to converge. Moreover,
the learning scheme requires a large number of patterns and
many cluster centers to 	nd the optimal value for ��.

To tackle the problem of parameter adjustment, Krinidis
and Chatzis [13] proposed the FLICM algorithm with a
fuzzy factor that combined both spatial and grayscale infor-
mation of the neighboring pixels. �e fuzzy factor #�� =∑ �∈�� ,� ̸=� (1/(1 + $��))(1 − ��)�‖�� − V�‖2 was embedded into
(1) as follows:

�FLICM = �∑
�=1

�∑
�=1

[��� ������� − V�
�����2 + #��] , (7)

where pixel � is the center of the local window, pixel � is in
the neighborhood, and $�� is the spatial Euclidean distance
between pixels � and 
.

Although FLICMalgorithm enhances robustness to noise
and artifacts, it is slow since the fuzzy factor (#��) has to be
calculated in each iteration. Moreover, #�� is heavily a
ected
by spatial Euclidean distance from the central pixel to its
neighboring pixels to lose small image details due to the
smoothing e
ect.

To enhance the FLICM algorithm, Gong et al. [14]
developed KWFLICM algorithm with a trade-o
 weighted
fuzzy factor to control the local neighbor relationship and
replaced the Euclidean distance with kernel function. �e

weighted fuzzy factor #́�� of KWFLICM is

#́�� = ∑
�∈�� ,� ̸=�

*�� (1 − ��)� (1 − � (��, V�)) , (8)

where *�� is the trade-o
 weighted fuzzy factor of pixel 
 in
the local window around the central pixel � and 1 − �(��, V�)
is the kernel metric function. �e trade-o
 weighted fuzzy
factor combines both the local spatial and grayscale informa-
tion [14]. Because of the trade-o
 weighted fuzzy factor, its
computational cost increases substantially. In addition, the
algorithm is unable to preserve small image details.

In addition to the abovementioned shortcomings,
Szilágyi [24] pointed out serious theoretical mistakes in
FLICM and KWFLICM. It was shown that the iterative
optimization nature of FLICM and KWFLICM did not
minimize their objective functions; instead, they iterated
until the partition matrices converged. Furthermore, their
objective functions intended to employ local contextual
information but theoretically failed and were not even
suitable for creating a valid partition [24].

To this end, a new way to modify the existing FCM
clustering is explored with adaptive regularization for con-
textual information. �e proposed framework utilizes a new
parameter to control the e
ect of pixel neighbors based on
the heterogeneity of local grayscale distribution. A weighted
image is devised that combines the local contextual infor-
mation with respect to the heterogeneity of local grayscale
distribution and the original grayscale that is calculated once
in advance to reduce the computational cost. To improve
segmentation accuracy and robustness to outliers, a kernel
function is employed to replace the Euclidean distance met-
ric. Validation against both synthetic and clinicalMRdata has
been carried out to compare the proposed algorithms with
6 recent so� clustering algorithms in terms of segmentation
accuracy and computational costs.

3. Proposed Algorithms

We introduce a regularizing parameter to enhance segmenta-
tion robustness and preserve image details, devise a weighted
image, and adopt the Gaussian radial basis function (GRBF)
for better accuracy.

3.1. 
e Introduced Regularization Term. �e parameter �
used in [8–10] is usually set in advance to control the desirable
amount of contextual information. Indeed, using a 	xed � for
every pixel is not appropriate since noise level di
ers fromone
window to another. In addition, setting such parameter needs
prior knowledge about noise which is not always available
in reality. Hence, adaptive calculation of � is necessary
according to the pixel being processed.

To be adaptive to noise level of the pixel being processed,
we 	rst calculate the local variation coe�cient (LVC) to
estimate the discrepancy of grayscales in the local window to
be normalized with respect to the local average grayscale. In
the presence of noise to have high heterogeneity between the
central pixel and its neighbors, LVC will increase. Consider

LVC� = ∑�∈�� (�� − ��)2�� ∗ (��)2 , (9)

where �� is the grayscale of any pixel falling in the local win-
dow�� around the pixel �,�� is the cardinality of��, and ��
is its mean grayscale. Next, LVC� is applied to an exponential
function to derive the weights within the local window:

3� = exp( ∑
�∈�� ,� ̸=�

LVC�) ,
*� = 3�∑�∈�� 3� .

(10)

�e ultimate weight assigned to every pixel is associated
with the average grayscale of the local window:

6� =
{{{{{{{{{
2 + *�, �� < ��2 − *�, �� > ��0, �� = ��.

(11)
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0.000 1.952 2.085 1.896 1.989 0.000

0.000 1.978 1.952 1.960 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

(c)
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(d)

Figure 1: Calculation and e
ect of the regularization parameter in di
erent cases. (a) Noisy image. (b) 6×6 subimage, red rectangle from (a),
with 3 di
erent windows A, B, and C. (c) Weights associated with each pixel using the proposed method. (d) Membership values a�er three
iterations.

�e parameter 6� assigns higher values for those pixels
with high LVC (for pixel � being brighter than the average
grayscale of its neighbors, 6� will be 2+*�, and*� will be large
when the sum of LVC within its neighborhood is large) and
lower values otherwise. When the local average grayscale is
equal to the grayscale of the central pixel, 6� will be zero and
the algorithm will behave as the standard FCM algorithm.
�e value 2 in (11) is set through experiments to balance
between the convergence rate and the capability to preserve
details. �e proposed parameter 6� is embedded into (5) to
replace �. Figure 1 shows the calculation of 6� with di
erent
cases of noise.

Here are some remarks on the parameter 6�.
�e 	rst point to emphasize is that 6� is only relevant

to the grayscales within a speci	ed neighborhood, which
is very di
erent from FCM S, FLICM, and KWFLICM,
where the contextual information is expressed, respectively,

by∑�∈�� ‖�	 − V�‖2, #��, and #́��, all containing a loop on the
neighborhood and the cluster center V�. Due to its irrelevance
to clustering parameters, 6� could be calculated in advance
before the clustering process which can greatly reduce the
computational cost. On the contrary, FCM S, FLICM, and
KWFLICMwill need to update the contextual weights at each
iteration, which is the main reason why they have higher
computational cost.

�e second point is that the contextual information
provided by 6� is based on the heterogeneity of grayscale
distribution within the local neighborhood, which is com-
pletely di
erent from existing enhanced versions of FCM to
base the contextual information on the di
erence between
the grayscales of neighboring pixels and cluster centers. As
a result, the proposed 6� tends to yield a homogeneous

clustering according to local grayscale distribution while
existing enhanced FCM algorithms tend to make the cluster-
ing to have more homogeneous labels by incorporating the
contextual information.

3.2. Devising a Weighted Image. In addition to making �,
respectively, the grayscale of average/median 	lter of the
original image, � can also be replaced with the grayscale of

the newly formed weighted image @:
@� = 12 +max (6�) (�� + 1 +max (6�)�� − 1 ∑

	∈��
�	) , (12)

where �	 and �� are, respectively, the grayscale and neigh-
borhood of pixel � and �� is the cardinality of ��. Formula
(12) is inspired by the weighted image in [9] but utilizes 6�
explicitly to make the weighted image free from parameters
that are di�cult to adjust.

3.3. Measuring Distance Using Kernel Function. �e Euclid-
ean distance metric is generally simple and computationally
inexpensive, but it is sensitive to perturbations and outliers.
Recently, with popular usage of support vector machine, a
new direction appears to use kernel functions. �e kernel
functions are able to project the data into higher dimensional
space where the data could be more easily separated [25].
To do this, a so-called kernel trick has been adopted that
can transform linear algorithm to nonlinear one using dot
product [26]. Using the kernel trick, the Euclidean distance
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term ‖�� − V�‖2 can be replaced with ‖A(��) − A(V�)‖2 that is
de	ned as�����A (��) − A (V�)�����2 = � (��, ��) + � (V�, V�)

− 2� (��, V�) , (13)

where� is the kernel function.
In this paper, we use GRBF kernel [27]:

�(��, V�) = exp(−������� − V�
�����22C2 ) , (14)

where C is the kernel width.
Using GRBF, the kernel function in (13) will be�����A (��) − A (V�)�����2 = 2 (1 − � (��, V�)) . (15)

�e choice of the kernel width C is still a problem and
has to be selected carefully. If it is large the exponential e
ect
will be almost linear. On the contrary, if it is small, the cluster
boundaries will be sensitive to outliers [27]. In [10], C was set
to a 	xed value of 150 while in [12] the authors used sample
variance to estimate C. Similar to [14], we calculate C based
on the distance variances among all pixels:

C = [[
∑��=1 ($� − $)2� − 1 ]]

1/2

, (16)

where $� = ‖�� − �‖ is distance from the grayscale of pixel �
to the grayscale average of all pixels and $ is the average of all
distances $�.
3.4. 
e Proposed Framework. �e proposed adaptively reg-
ularized kernel-based FCM framework is denoted as ARK-
FCM. First, we calculate the adaptive regularization param-
eter 6� associated with every pixel to control the contextual
information using (11). �e objective function is de	ned as

�ARKFCM = 2[[
�∑
�=1

�∑
�=1

��� (1 − � (��, V�))

+ �∑
�=1

�∑
�=1

6���� (1 − � (��, V�))]] .
(17)

Under the conditions speci	ed in (2), the minimization
of �ARKFCM(, V) can be calculated through an alternate
optimization procedure using (derivation is given in the
Appendix)

��
= ((1 − � (��, V�)) + 6� (1 − � (��, V�)))−1/(�−1)∑��=1 (1 − � (��, V�) + 6� (1 − � (��, V�)))−1/(�−1)

(18)

V� = ∑��=1 ��� (� (��, V�) �� + 6��(��, V�) ��)∑��=1 ��� (� (��, V�) + 6��(��, V�)) . (19)

When � is replaced with the grayscale of the average/median
	lter of the original image, the algorithm is denoted
as ARKFCM1/ARKFCM2. When �� is replaced with the

weighted image @� de	ned in (12), the algorithm is denoted
as ARKFCM�. �e main steps for the proposed algorithms
are as follows:

(1) Initialize threshold I = 0.001, � = 2, loop counterJ = 0, V, and (0).
(2) Calculate the adaptive regularization parameter 6�.
(3) Calculate �� for ARKFCM1 and ARKFCM2 or @ for

ARKFCM�.

(4) Calculate cluster centers V(�)� using (�) as in (19).

(5) Calculate the membership function (�+1) with (18).

(6) If max ‖(�+1) − (�)‖ < I or J > 100 then stop;
otherwise, update J = J + 1 and go to step (4).

4. Experiments

In this section, we present the experiments on both syn-
thetic and clinical MR images. For validation, the proposed
algorithms (ARKFCM1, ARKFCM2, and ARKFCM�) are
compared with 6 recent so� clustering algorithms, namely,
GKFCM1 [12], GKFCM2 [12], FLICM [13], KWFLICM
[14], MICO [21], and RSCFCM [23]. As we are unable to
have faithful implementation of RSCFCM [23], RSCFCM
is compared only against the common data with results
reported from [23]. �e algorithms are implemented using
MATLAB so�ware package (a demo version is freely available
online (http://www.mathworks.com/matlabcentral/	leex-
change/54141-arkfcm-algorithm)). All the experiments are
conducted with window size of 3 × 3 pixels, maximum
number of iterations J = 100, and I = 0.001. �e accuracy
of segmentation is measured using the Jaccard Similarity (JS)
metric [28] which is de	ned as the ratio between the intersec-
tion and union of segmented volume K1 and ground truth
volume K2:

JS (K1, K2) = LLLLK1 ∩ K2LLLLLLLLK1 ∪ K2LLLL . (20)

4.1. Experiments on Synthetic Brain MR Images. �e follow-
ing experiments are carried out using Simulated Brain Data-
base (SBD) [29] which contains a set of realistic MR volumes
produced by anMR imaging simulator with ground truths of
CSF, GM, and WM available.

�e 	rst experiment is to segment a T1-weighted axial
slice (number 100) with 217 × 181 pixels corrupted with 7%
noise and 20% grayscale nonuniformity into WM, GM, and
CSF. Figure 2 shows the segmentation results while Table 1
summarizes the JS and average running times.

�e second experiment is to segment a T1-weighted
sagittal slice (number 100) with 181 × 217 pixels corrupted
with 7% noise and 20% grayscale nonuniformity. �is image
is chosen to show the capability of preserving details.
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Table 1: JS and running time on the T1-weighted axial slice (number 100) from SBD with 7% noise and 20% grayscale nonuniformity.

Algorithm GKFCM1 GKFCM2 FLICM KWFLICM MICO RSCFCM ARKFCM1 ARKFCM2 ARKFCM�
WM 0.930 0.933 0.941 0.937 0.894 0.898 0.940 0.941 0.940

GM 0.822 0.855 0.860 0.852 0.782 0.842 0.864 0.868 0.865

CSF 0.781 0.847 0.829 0.805 0.860 0.882 0.863 0.867 0.867

Average 0.844 0.879 0.876 0.865 0.845 0.874 0.889 0.892 0.891

Time (s) 0.911 0.586 3.403 139.470 0.673 2.530 0.356 0.282 0.329

Table 2: JS and running time on the T1-weighted sagittal slice (number 100) from SBD with 7% noise and 20% grayscale nonuniformity.

Algorithm GKFCM1 GKFCM2 FLICM KWFLICM MICO ARKFCM1 ARKFCM2 ARKFCM�
WM 0.773 0.775 0.771 0.765 0.672 0.785 0.788 0.786

GM 0.796 0.806 0.794 0.791 0.669 0.815 0.816 0.816

CSF 0.834 0.852 0.835 0.824 0.869 0.871 0.872 0.875

Average 0.801 0.811 0.800 0.794 0.736 0.824 0.825 0.825

Time (s) 1.377 1.797 5.392 166.717 0.751 0.348 0.329 0.322

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 2: Segmentation results on a T1-weighted axial slice (number 100) from SBD with 7% noise and 20% grayscale nonuniformity. (a)
Original image. (b) Ground truth. (c) GKFCM1 results. (d) GKFCM2 results. (e) FLICM results. (f) KWFLICM results. (g) MICO results. (h)
RSCFCM results. (i) ARKFCM1 results. (j) ARKFCM2 results. (k) ARKFCM� results.

�e segmentation results and JS are presented in Figure 3 and
Table 2, respectively.

�e third experiment is to check the robustness to
Rician noise that commonly a
ects MR images [30]. �e
segmentation results and the JS with average running times
of a T1-weighted axial slice (number 91) with 217 × 181 pixels
corrupted with 10% Rician noise are given in Figure 4 and
Table 3, respectively.

4.2. Experiments on Clinical Brain MR Images with Tumors.
We experimented two T1-weighted axial slices (slices num-
bers 80 and 86, denoted, resp., as Brats1 and Brats2) with
240 × 240 pixels, respectively, from	les pat266 1 and pat192 1
(available fromMICCAI BRATS 2014 challenge, https://www
.virtualskeleton.ch/BRATS/Start2014) (Figures 5 and 6).

From black to white are, respectively, background, CSF, GM,
and WM. It should be noted that clustering is carried out
only for CSF, GM, andWM, with the pathology region being
considered as background.

Since images Brats1 and Brats2 come only with ground
truth for the pathology and have no ground truth for normal
tissues, a quanti	cationmeasure other than JS should be used.
To this end, an entropy-based metric proposed by Zhang
et al. [31] is adopted. �is is to maximize the uniformity of
pixels within each segmented region and to minimize the
uniformity across the regions. First, the entropy of every
region � is calculated:

O(	�) = − ∑
�∈��

P� (�)K� log
P� (�)K� , (21)
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Table 3: JS and running time on the T1-weighted axial slice (number 91) from SBD corrupted with 10% Rician noise.

Algorithm GKFCM1 GKFCM2 FLICM KWFLICM MICO ARKFCM1 ARKFCM2 ARKFCM�
WM 0.931 0.921 0.929 0.927 0.885 0.926 0.925 0.922

GM 0.804 0.827 0.831 0.821 0.777 0.838 0.840 0.834

CSF 0.826 0.872 0.861 0.846 0.889 0.887 0.892 0.887

Average 0.850 0.874 0.874 0.865 0.850 0.884 0.886 0.881

Time (s) 1.836 1.869 2.953 124.922 0.649 0.218 0.220 0.218

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3: Segmentation results on a T1-weighted sagittal slice (number 100) from SBD with 7% noise and 20% grayscale nonuniformity. (a)
Original image. (b) Ground truth. (c) GKFCM1 results. (d) GKFCM2 results. (e) FLICM results. (f) KWFLICM results. (g) MICO results. (h)
RSCFCM results. (i) ARKFCM1 results. (j) ARKFCM2 results. (k) ARKFCM� results.

whereQ� is the set of all possible grayscales in region �, P�(�)
is the number of pixels belonging to region � with grayscale�, and K� is the area of region �. For the grayscale image �, theRmeasure is calculated as

R = �∑
�=1

(K�K�)O(	�) + (− �∑
�=1

(K�K�) log
K�K�) , (22)

where the 	rst term represents the expected region entropy of
the segmentation and the second term is the layout entropy.
�e measure R yields smaller value for better segmentation
and higher otherwise. Table 4 summarizes the segmentation
accuracy in terms of R and running times for Brats1 and
Brats2. It should be noted that the R metric is calculated
only for WM, GM, and CSF regions without considering the
background.

5. Discussion

FCM clustering is a well-known so� clustering method
that assigns a membership degree for each pixel to every
cluster. As the segmentation accuracy of FCM algorithm
decays in the presence of noise, artifacts, and increased
number of clusters, many investigations have been carried
out on using contextual information to enhance the quality
of segmentation. But how the contextual information shall be
used e
ectively is still a challenge.

We propose an adaptively regularized kernel-based FCM
clustering framework, with new parameter 6� that adaptively
controls the contextual information according to the hetero-
geneity of grayscale distribution within the local neighbor-
hood. �e new parameter is estimated using local variation
coe�cient among pixels within a speci	ed neighborhood.
A weighted image is devised that combines the original
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Table 4: Segmentation performance measure R and running time on the Brats1 and Brats2 images.

Image Measure GKFCM1 GKFCM2 FLICM KWFLICM MICO ARKFCM1 ARKFCM2 ARKFCM�

Brats1
E 1.311 1.288 1.392 1.424 1.309 1.274 1.270 1.279

Time (s) 2.591 1.516 9.510 635.413 1.747 1.185 1.111 1.272

Brats2
E 1.307 1.297 1.336 1.340 1.298 1.273 1.271 1.279

Time (s) 1.576 1.115 5.170 400.295 1.546 1.091 0.827 0.975

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Segmentation results on a T1-weighted axial slice (number 91) from SBD with 10% Rician noise. (a) Original image. (b) Ground
truth. (c) GKFCM1 results. (d) GKFCM2 results. (e) FLICM results. (f) KWFLICM results. (g) MICO results. (h) ARKFCM1 results. (i)
ARKFCM2 results. (j) ARKFCM� results.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5: Segmentation results on the Brats1 image. (a) Original image. (b) GKFCM1 results. (c) GKFCM2 results. (d) FLICM results. (e)
KWFLICM results. (f) MICO results. (g) ARKFCM1 results. (h) ARKFCM2 results. (i) ARKFCM� results.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 6: Segmentation results on the Brats2 image. (a) Original image. (b) GKFCM1 results. (c) GKFCM2 results. (d) FLICM results. (e)
KWFLICM results. (f) MICO results. (g) ARKFCM1 results. (h) ARKFCM2 results. (i) ARKFCM� results.

image and the parameter 6� to represent the image contextual
information embedded through the weighting procedure.
Furthermore, a GRBF is adopted to replace Euclidean dis-
tance for better partitioning and to be less sensitive to outliers.
�e proposed framework can be in the form of 3 algorithms:
ARKFCM1, ARKFCM2, and ARKFCM� for the local average
grayscale to be replacedwith the grayscale of the average 	lter,
median 	lter, and the devised weighted image, respectively.
Experiments have been carefully carried out to show the
superiority of the proposed algorithms in comparison with
6 recent so� clustering algorithms to be discussed further.

5.1. Segmentation Accuracy. �e di
erences in JS between
the proposed algorithms and the other 6 algorithms are
clear for the axial slice with 7% noise and 20% grayscale
nonuniformity (Table 1 and Figure 2) and become more
distinctive in preserving details in the sagittal slice corrupted
with the same noise (Table 2 and Figure 3). �e average JSs
of ARKFCM1, ARKFCM2, and ARKFCM� are, respectively,
0.889, 0.892, and 0.891 for the axial slice as shown in Figure 2,
which are better than the other 6 algorithms with range 1.3–
4.8% (Table 1). For the sagittal slice with 7% noise and 20%
grayscale nonuniformity shown in Figure 3, the average JSs
of ARKFCM1, ARKFCM2, and ARKFCM� are, respectively,
0.824, 0.825, and 0.825, which are better than the other
algorithms with range 1.4–8.9% (Table 2). For the axial slice
corrupted with 10% Rician noise shown in Figure 4, the
average JSs of ARKFCM1, ARKFCM2, and ARKFCM� are,
respectively, 0.884, 0.886, and 0.881, which are better than the
other algorithms with range 1.20–3.6% (Table 3). �e higher
JSs may imply that the proposed algorithms achieve a better
balance in preserving image details in the presence of noise
and grayscale inhomogeneity.

For the clinical brain MR images with tumors (Brats1
and Brats2) shown in Figures 5 and 6, the proposed algo-
rithms achieve smaller R than other algorithms (Table 4).
For Brats1/Brats2 image, ARKFCM2 attains the lowest R of
1.270/1.271, which is smaller than the other 5 algorithms
with ranges 0.018–0.154 and 0.025–0.109, respectively. Visibly,
GKFCM1 (Figures 5(b) and 6(b)) and GKFCM2 (Figures
5(c) and 6(c)) come with good results but they are unable
to preserve small details such as CSF being wrongly broken
possibly due to the di�culty in estimating the parameter��. On the other hand, FLICM (Figures 5(d) and 6(d)) and
KWFLICM (Figures 5(e) and 6(e)) yield smooth results and
do not preserve many details which a
ects the segmentation
accuracy of CSF (CSF is small as compared with surrounding

GM and WM) due to the e
ects of #�� and #́��, respectively.
For MICO algorithm (Figures 5(f) and 6(f)), the edges are
not smooth enough; hence the CSF is not well preserved.
Finally, results of ARKFCM1, ARKFCM2, and ARKFCM�
(Figures 5(g) and 6(g), Figures 5(h) and 6(h), and Figures 5(i)
and 6(i)) show good balance between smooth borders and
preserving image details due to the introduction of adaptive
local contextual information measure 6� to replace the 	xed

value of � or the oversmoothing factors #�� or #́��.
5.2. Computational Cost. In terms of computational cost, the
objective function of FCM algorithm in its original form
[6] contains only the di
erence between the grayscale of the
current pixel � and the cluster centers V�. �is is basically
to cluster grayscales as there is no spatial information, so it
has the smallest computational cost and can be implemented
based on grayscale histogram to reduce the computational
cost further [9, 11]. �e enhancement of original FCM is
to add the local contextual information to make it robust
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to noise and image artifacts at the expense of increased
computational cost [7–14].

�e GKFCM1 and GKFCM2 algorithms [12] use the
parameter �� to replace � and need an additional loop on
the number of clusters to be calculated at each pixel to
update the local contextual information. So they have higher
computational cost than the original FCM, FCM S1, and
FCM S2 at each iteration.

�e FLICM algorithm [13] introduces #�� which needs
an additional loop on the neighborhood of the current
pixel to calculate the local information in every iteration;
thus it has a high computational cost. As an extension of

FLICM, KWFLICM [14] introduces #́�� that requires two
additional loops on the neighborhood, so it has the highest
computational cost at each iteration.

�e RSCFCM algorithm [21] uses a spatial fuzzy factor
that is constructed based on the posterior and prior prob-
abilities and takes the spatial direction into account. �at
increases the complexity as many parameters have to be
optimized and consequently the computational complexity.

MICO algorithm [23] comes with fast calculations due
to the convexity of its energy function particularly in the
presence of less noise but tends to have many iterations in the
presence of high level noise.

�e proposed algorithms incorporate the local contextual
information by introducing LVC, which is a measure of
grayscale heterogeneity and has nothing to dowith the cluster
centers. So it can be calculated once in advance and hence
reduce the complexity of the clustering procedure.

�e eventual computational cost will be the multipli-
cation of the computational cost for each iteration and
the number of iterations for convergence. �e number of
iterations will be dependent on the initialization as well as the
objective function. To make fair comparisons, initializations
are all set randomly and the average number of iterations
for convergence is then recorded for 10 converged times.
From Figure 7, it can be seen that the average iteration
times will be data dependent, with ARKFCM2, ARKFCM�,
and ARKFCM1 having the minimum number of iterations
followed by FLICM, GKFCM2, and GKFCM1, respectively.

�e running times for the tested images agree well with
the above analysis as illustrated in Figure 8. For SBD images
given in Figures 2, 3, and 4, the KWFLICM algorithm takes
the longest time (124–166 seconds), followed by FLICM
(3–5.4 seconds), RSCFCM (about 2.5 seconds), GKFCM1/
GKFCM2 (0.6–1.9 seconds), and the proposed algorithms
(0.22 to 0.36 seconds). For the clinical MR images in Figures
5 and 6, it takes more time (due to more iterations) as
the images are more complicated, but the trend remains
the same with the proposed algorithms having the lowest
computational cost (Table 4 and Figure 8).

5.3. Neighborhood Size. �e local neighborhood window size
is a crucial factor to determine the smoothness of clustering
and details to be preserved. We have experimented with
di
erent window sizes and found that a window size of
3 × 3 pixels achieves the best balance between segmentation
accuracy and computational cost. Increasing window size to
5 × 5 pixels has very small impact on the JS but 7 × 7 pixels
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or more will, signi	cantly, decrease the accuracy, such as
losing image details like CSF. �erefore, it is recommended
to use a local window of size 3 × 3 pixels for constructing the
neighborhood.

5.4. Limitation. From the experiments, it was found that
the proposed algorithms could be sensitive to severe noise
in small areas between edges that have width 1 or 2 pixels
(e.g., area between ventricles, Figures 4(h), 4(i), and 4(j)).
Potentially, this may be solved by embedding edge detection
technique into the clustering process which is yet to be
explored.
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6. Conclusion

An adaptively regularized kernel-based FCM framework has
been proposed to enhance the original FCM for higher
segmentation accuracy at low computational cost.�e frame-
work can be in the form of three algorithms that employ the
heterogeneity of grayscales in the neighborhood employed
for local contextual information. �e main advantages are
adaptiveness to local context, enhanced robustness, and inde-
pendence of clustering parameters to decrease computational
cost. GRBF kernel has been adopted as a distance metric. We
validated the proposed algorithms on synthetic and clinical
MR images with tumors. �e proposed algorithms attain a
higher JS (Tables 1, 2, and 3) and lower entropy measureR (Table 4) than the 6 recent so� clustering algorithms and
could preserve small image details (Figures 2, 3, 4, 5, and 6). In
addition, the proposed algorithms have a low computational
cost and are, to the best of our knowledge, the only algorithms
that are adaptive to local context and do not include cluster
centers. �erefore, they attain a trade-o
 between high
segmentation accuracy and low computational cost.�e pro-
posed algorithms can be a potential tool for segmenting brain
MR images for further processing and other images as well.

Appendix

�e objective function �ARKFCM given in equation (17) with
conditions in (2) is a constrained minimization problem
which can be solved using Lagrange multiplier method. Let
the minimization problem of �ARKFCM be written as follows:

PARKFCM (��, V�, U�, 6�)
= 2 �∑
�=1

�∑
�=1

��� (1 − � (��, V�))
+ 2 �∑
�=1

�∑
�=1

6���� (1 − � (��, V�))
+ �∑
�=1

U�(1 − �∑
�=1

��) .

(A.1)

By taking the derivative of PARKFCM with respect to �� and
setting the result to zero, for� > 1, we have

VPARKFCMV�� = 2��−1�� (1 − � (��, V�))
+ 2�6��−1�� (1 − � (��, V�)) − U�

= 0.
(A.2)

By using (A.2) we can calculate �� as follows:
��
= [ U�2� (1 − � (��, V�) + 6� (1 − � (��, V�)))]

1/(�−1) . (A.3)

Since ∑��=1 �� = 1 ∀V�, from (A.3) we can get

�∑
�=1

[ U�2� (1 − � (��, V�) + 6� (1 − � (��, V�)))]
1/(�−1) = 1, (A.4)

U�
= 1

[∑��=1 (2� (1 − � (��, V�) + 6� (1 − � (��, V�))))−1/(�−1)]�−1 .
(A.5)

By substituting (A.5) into (A.3) with necessary calculations,
the 	nal �� is

��
= ((1 − � (��, V�)) + 6� (1 − � (��, V�)))−1/(�−1)∑��=1 (1 − � (��, V�) + 6� (1 − � (��, V�)))−1/(�−1) .

(A.6)

Similarly, by taking the derivative of PARKFCM with respect to
V� and setting the result to zero, we have

VPARKFCMVV� = �∑
�=1

����(��, V�) (�� − V�)
+ �∑
�=1

6�����(��, V�) (�� − V�) = 0.
(A.7)

A�er necessary calculations, the 	nal V� is

V� = ∑��=1 ��� (� (��, V�) �� + 6��(��, V�) ��)∑��=1 ��� (� (��, V�) + 6��(��, V�)) . (A.8)
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