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Segmentation of Clustered Nuclei With Shape
Markers and Marking Function

Jierong Cheng and Jagath C. Rajapakse∗, Senior Member, IEEE

Abstract—We present a method to separate clustered nuclei from
fluorescence microscopy cellular images, using shape markers and
marking function in a watershed-like algorithm. Shape markers
are extracted using an adaptive H-minima transform. A marking
function based on the outer distance transform is introduced to
accurately separate clustered nuclei. With synthetic images, we
quantitatively demonstrate the performance of our method and
provide comparisons with existing approaches. On mouse neuronal
and Drosophila cellular images, we achieved 6%–7% improvement
of segmentation accuracies over earlier methods.

Index Terms—Active contours, cell segmentation, cellular imag-
ing, fluorescence microscopy, watershed segmentation.

I. INTRODUCTION

V ISUAL inspection of cellular images is often insufficient
to detect or describe subtle but important changes in cel-

lular morphology. To adequately characterize subtle features
and changes in tissues, a quantitative assessment of cellular
morphology is often desired. The primary step in quantitative
analysis of cell shape and motion is usually the identification or
segmentation of individual cells or cell nuclei. Currently, this is
mostly performed manually or using semiautomatic tools avail-
able in microscopic image analysis software. However, manual
segmentation of nuclei in microscopic images could be very
labor-intensive and even infeasible.

Segmentation tools commonly distributed with microscopy
software (for example, MetaMorph Imaging Software by
Molecular Devices) are usually based on classical techniques
such as correlation matching, thresholding, or morphological
operations. These methods suffer considerably due to overgen-
eralization, limiting their use on images gathered in cell biology
research. Correlation matching, for instance, fails for cells that
change shape in noisy environment and generally requires users
manually define the position of every cell in the first frame.
Segmentation methods based on global thresholding fail for im-
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ages that exhibit strong intensity gradients and/or noise. Prepro-
cessing with smoothing filters and adaptive thresholding helps
but could lead to merging touching cells or nuclei. Watershed
transforms prevent such merging but usually lead to overseg-
mentation unless markers are manually chosen. To overcome
such limitations, existing software tools often allow the users to
interactively correct trajectories or segmentation through user-
friendly interfaces. As a result, however, the benefits of automa-
tion such as speed, reproducibility, and objectivity tend to be
lost. User interaction is a bottleneck for high-throughput imag-
ing applications. Therefore, the development of more reliable
and automated image analysis techniques for cellular imaging
remains an important goal in computational molecular biology.

In recent years, many image analysis approaches have been
adopted for cell and nuclei segmentation from microscopic im-
ages. Active contours compute segmentations of a given image
by evolving contours in the direction of the negative gradient
of image energy. Traditional edge-based active contour meth-
ods [1], [2], where the image energy is computed by the integral
of a locally computed edge map along the contour, render poor
results on fluorescence microscopy images especially when the
boundaries are fuzzy and sensitive to initialization. Various new
models of active contours have emerged to improve evolution of
curves [3]. On the other hand, geometric active contours based
on level sets are becoming increasingly popular because they
neither require any explicit parameterization nor suffer from
any constraints on the topology as snakes. In the model of ac-
tive contours without edges [4], the image energy terms are
computed using intensity variances inside and outside the con-
tour. This region-based approach provides strong robustness to
noise and allows segmentation of cells with blurred edges. The
approach has been used for segmenting and tracking cells in
2-D images [5] and dynamics of 3-D images [6].

Other promising methods for cell or nuclei segmentation in-
clude watershed algorithm [7], [8], multiscale analysis [9], dy-
namic programming-based methods [10], [11], graph-cut meth-
ods [12], and Markov random fields [13]. By analyzing the
edges at different spatial scales, multiscale techniques can han-
dle images with weak edges and nonuniform intensity variations
but they are unable to handle the edges of overlapping nuclei
with minimal or no edge information [9]. Recently, a semiau-
tomatic method for detection of optimal boundaries was pro-
posed [10], [11], which is defined as the path having the highest
average intensity along its length compared to all other possible
paths and obtained using dynamic programming. Graph-cut-
based methods optimize segmentation energies by combining
a wide range of visual cues and constraints, and are related to
active contour methods [12]. However, optimal boundary and
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graph-cut methods depend on manual marking of each cell for
algorithm initiation. A nuclear segmentation algorithm based
on Gaussian Markov random fields suffers from undersegmen-
tation and high false positives [13].

One main challenge in nuclei or cell segmentation is the sep-
aration of touching objects. The gradient flow tracking method
finds the corresponding center that each point floods to find the
boundaries between touching cells [14]. The method may have
difficulty in processing images composed of textured blob cells.
The classical watershed algorithm directly uses region minima
or ultimate eroded points (UEPs) as seed points [15]. Although
it can delineate touching objects, oversegmentation is likely to
happen at the same time. There are two proposals to handle
this problem: region merging and marker-controlled watershed.
Region merging approaches could be based on shape or sizes of
cells or nuclei [8], [16], [17].

A marker-controlled watershed algorithm replaces region
minima or UEP with predefined markers, each representing an
object [18]. Although marker-based methods effectively handle
oversegmentation problem, it only works on the premise that
the extracted markers really represent the true objects. Thus,
the difficulty in adopting this method is the accurate extraction
of markers. The proposed method in [19] successfully extracts
cell makers, and thereby segments cells but is limited for objects
with descending intensity and having round shape. A marker ex-
traction method based on condition erosion was proposed in [20]
but the results were sensitive to the sizes of erosion structures
and the thresholds of condition erosions. The marker detection
algorithm in [21] combines the photometric and shape informa-
tion in a framework of pattern classification that decides whether
markers should be merged. However, the marking function used
for watershed flooding was not mentioned and no graphic seg-
mentation results are given to indicate the accuracy of watershed
lines.

Our aim is to develop a fully automatic method for segmen-
tation of nuclei in tissues from 2-D microscopy images. We
specially address the issue of segmentation of nuclei that over-
lap or touch each other, or in the phase of cell division. The initial
segmentation is based on active contours. In order to detect and
separate clustered nuclei in a more robust and precise way, in
this paper, we present a method to find shape markers and a
new marking function to use in a watershed-like segmentation.
The manuscript is organized as follows. Section II describes the
proposed method in detail. In Section III, we show experiments
on synthetic data as well as on two microscopic images obtained
from mouse neurons and Drosophila cells. With synthetic data,
we quantitatively demonstrate our method and provide compar-
isons to earlier methods. With real data, we achieved 6%–7%
improvement of segmentation accuracy over earlier methods. In
Section IV, conclusions and future work are presented.

II. METHOD

The method begins with an initial segmentation of nuclei,
using active contours without edges. Then, a marker-controlled
watershed algorithm with a new marking function capable of
accurately separating clustered nuclei is applied.

A. Object Segmentation

For the segmentation of nuclei from background, the model
of active contours without edges was adopted [4]. In traditional
edge-based active contours, image energy is taken as the inte-
gral of locally computed features along the contour. In contrast,
region-based methods compute image energy from surface in-
tegrals over the entire image. More specifically, image energy
is defined using intensity variances inside and outside of the
contour. Therefore, region-based models are robust to noise and
allow segmentation of objects with blurred edges. The active
contours are implicitly represented by a single level set func-
tion and changes in objects appear automatically as the level set
function evolves. This enables automatic detection of an arbi-
trary number of objects from an arbitrary initial front. We chose
to initialize the level set function as a small circle at the center
of the image.

The energy function of the active contour is based on a re-
duced form of the Mumford–Shah function for image segmen-
tation

E(φ, µI , µO ) = α

∫
x

∫
y

δ(φ)|∇φ|dxdy

+ λI

∫
x

∫
y

H(φ)(g − µI )2dxdy

+ λO

∫
x

∫
y

(1 −H(φ))(g − µO )2dxdy (1)

where Ω ⊂ R2 is the 2-D domain of image g and (x, y) ∈ Ω.
φ is a level set function defined on Ω, whose zero-level set
{(x, y) ∈ Ω|φ(x, y) = 0} defines the segmentation such that
φ > 0 inside the segmented objects and φ < 0 outside. µI and
µO are, respectively, the mean intensity of pixels inside and
outside the zero level set. H and δ are the Heaviside and Dirac
functions. λI , λO , and α are fixed positive parameters.

The minimization of image energy is accomplished by letting
the level set function evolve as a function of an abstract time t,
starting from an initialization φ(t = 0, x, y) according to

∂φ

∂t
=

(
α∇ ∇φ

|∇φ| − λI (g − µI )2 + λO (g − µO )2
)

δ(φ).

(2)
Here ∇(∇φ/|∇φ|) is the (mean) curvature of the level set,
generating a regulating force that smoothens the contours. The
other two forces on the right-hand side move the contour toward
the actual boundary of objects.

After nuclei are segmented by active contours, the segmenta-
tion was refined by a series of morphological operations. First,
the holes within segmented nuclei are filled as they could affect
the result of subsequent distance transforms and cause incor-
rect separation of clusters. Thereafter, tiny objects unlikely to
be the fragments of real nuclei are discarded by performing
morphological opening with a disc structuring element.

B. Shape Markers

The watershed segmentation algorithm uses a relief func-
tion f , usually the gradient of the intensity, giving the altitudes
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Fig. 1. Markers and separation of nuclei by a marker-controlled watershed algorithm. (a) Original image. (b) Inner distance map generated after initial
segmentation. (c) Regional minima of (b). (d) Shape markers obtained from adaptive H-minima transform with ∆ = 2. (e) Results of segmentation.

of a topographic surface from its regional minima. The water-
shed line is generally a set of points equidistant to the regional
minima of the relief function measured by a topographic dis-
tance and often used in segmentation objects in images [15].
Marker-controlled watersheds flood from the markers that can
be regarded as the first estimation of the image partitioning [18].

We use the initial segmentation of nuclei obtained by ac-
tive contours to generate markers by using an inner distance
transform. The inner distance transform converts the binary im-
age, consisting of foreground and background pixels, into a
distance map measured using Euclidean distance, where every
foreground pixel has a value corresponding to the minimum dis-
tance from the background. The regional minima of the inverse
of the inner distance map are regarded as markers.

H-minima transform is often used to prevent oversegmenta-
tion. It suppresses all minima, less than a particular depth h of
the relief function [22]. In other words, the intensity of the trans-
formed image is controlled by a minima suppression parameter
h, lower values of which could lead to oversegmentation while
higher values may fail to separate touching objects. In this way,
H-minima transform suppresses undesired minima.

We presume that there exists one-to-one correspondence be-
tween the markers and the objects. To accurately find the value
of h, an adaptive H-minima transform is introduced to extract
the correct number of markers and minimize any over- and un-
dersegmentation of nuclei. In the adaptive H-minima transform,
the depth threshold is increased until before a merger of the re-
gions begins. Let H-minima transform on inverse inner distance
map gI of the image at threshold h be H(gI , h), S be the set
of all connected regions resulted from initial segmentation, and
Nj (h) be the number of minima within connected region j ∈ S
after applying the transform. The adaptive H-minima transform
algorithm learns h adaptively as hadp as follows:

begin: Adaptive H-minima Transform
hadp = 1;
Find H(gI , hadp)
for connected region j ∈ S do

h = hadp ;
if Nj (hadp) > 1 then
repeat
h = h + 1;
Find H(gI , h)

until Nj (h) < Nj (hadp)

hadp = h − ∆;
else
hadp = h;

end if
Find H(gI , hadp)

end for

The regional minima obtained after H(gI , hadp) correspond
to the shape markers for objects. The shape markers demon-
strate not only the number and location but also characterize the
shape of nuclei, and help in generating the marking function. The
adaptive H-minima transform finds the depth threshold before
minima start to merge or disappear. By properly selecting gap
parameter ∆, undesired regional minima are removed, and thus
the number of nuclei contained in each object is accurately de-
termined. The value of ∆ depends on the profile of the distance
function, and therefore on the shapes and size of the clusters.
The resulted shape markers provide information of the number,
location, and shape of nuclei, and are used as the set of minima
to impose onto the marking function. The adaptive H-minima
transform is illustrated on two representative clustered nuclei in
Fig. 1.

C. Marking Function

The segmentation by watershed algorithm depends not only
on the markers but also on the marking function f—the to-
pographic surface flooded by water. A good marking function
should synthesize physical characteristics of the objects to seg-
ment and have different markers and catchment basins charac-
terizing the desired objects.

For separation of partially overlapping objects in binary im-
ages, the inverse inner distance map is chosen as the classical
marking function [15]. The inner distance transform generates a
valley connecting the minima [see Fig. 2(a)]. In the hill climbing
implementation of watershed [23], an approximation is neces-
sary to provide an ordered queue to pixels of the same gray level.
This secondary ordering is based on the order in which pixels
are reached by a flooding region, assuming that the distances
between the center and its neighbors in four or eight connected
neighborhoods are equal. That is, there is no penalty for a di-
agonally connected pixel. This approximation of the marking
function often results in jagged watershed lines [24], as it uses
a chessboard distance pattern in place of Euclidean distance to
compute the distance function across plateaus. Unlike Euclidean
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Fig. 2. Euclidean distance map using (a) inner distance transform and
(b) outer distance transform. The distance map of two pixels, created by (c)
the chessboard distance and (d) the Euclidean distance.

distance whose equidistant line from two points is a straight
line [see Fig. 2(d)], the equidistant line of chessboard distance
consists of three vertical/horizontal or diagonal segments as its
propagation take a squarely shape [see Fig. 2(c)].

We propose a new marking function based on outer distance
transform to avoid jagged boundaries of segmented objects. The
outer distance transform converts a binary image into a distance
map where every background pixel has a value corresponding
to the minimum distance from shape markers. As the outer dis-
tance transform measures the distance from the shape markers,
resulting distance map resembles the shape of nuclei. The outer
distance transform generates a single pixel width ridge line [see
Fig. 2(b)] that watershed finds correctly irrespective of the im-
plementation algorithm used and results in a straight watershed
line.

Given an initial segmentation and shape markers M =
(M1 ,M2 , . . . ,MK ), the new marking function is generated
as follows.

1) Calculate the Euclidean distance transform

Di(x) = inf
y∈Mi

D(x, y) (3)

where D(x, y) is the Euclidean distance between points
x and y, and Di(x) corresponds to the minimum distance
between x and the shape marker Mi .

2) Obtain the marking function by

f(x) = min
i
{di + Di(x)} (4)

where di is the level (value) of the marking function f on
Mi . Since we consider f as a 3-D topographic surface,
the function value corresponds to the level/height of the
surface.

The Euclidean outer distance map generates the marking
function from the markers, representing shape characteristics
of the object. The difference between the new marking function
(4) based on outer distance and the classical relief function used
in the watershed algorithm is that the topographical distance
is replaced with the geodesic distance. For connected convex
shapes, the geodesic distance is equivalent to Euclidean dis-
tance. If the relief function f is itself a distance function (i.e.,
|∇f | = 1), the topographical distance reduces to the geodesic
distance and the watershed becomes identical with the geodesic
skeleton by zone influence [25]. In addition, the levels of dif-
ferent markers are accounted for (4). The watershed lines are
generated thereafter based on a simulated flooding process on
the Euclidean outer distance map.

III. EXPERIMENTS AND RESULTS

We demonstrate the efficacy of our method on synthetic im-
ages as well as on real microscopic images of mouse neurons and
Drosophila cells. We compare the segmentation by the present
method with earlier techniques such as classical watershed, con-
dition erosion, and optimal boundary finding by dynamic pro-
gramming.

A. Synthetic Images

Two binary circular nuclei partially clustered with each other
were synthetically created. The segmentation accuracy by the
present method was tested with increasing Gaussian noise. The
effects of watershed segmentation using two different marking
functions are illustrated in Fig. 3. In contrast to the jagged-
ness generated by the classical marking function based on the
inner distance [see Fig. 3(c)], the proposed outer distance mark-
ing function using shape markers generated straight boundaries
separating the nuclei as desired [see Fig. 3(e)].

The accuracy of separation by the proposed marking function
is tested on a set of synthetic images obtained by changing the
orientation θ of the line connecting centroid with respect to the
horizontal line, as shown in Fig. 4. The accuracy of watershed
lines obtained using the classical marking function, geometric
analysis, and the present method are given in Fig. 5. The ground
truth of the boundary of two objects is given by a straight line
normal to the line connecting the centroids. The classical wa-
tershed creates jagged edges and the errors become minimum
when θ = 0◦, 45◦, 90◦, 135◦, etc. The error is measured by the
area of triangles marked by the gray zone in Fig. 5. Using the
conventional method of half base times height, the error is given
by

error(θ)=




1√
2
a2 sin(θ) sin(45◦ − θ), when 0◦ ≤ θ ≤ 45◦

1√
2
a2 cos(θ) sin(θ − 45◦), when 45◦ < θ ≤ 90◦

(5)
where a is the half of the length of ground truth line. We mea-
sure the accuracy as area correlation, i.e., the intersection/union
of the areas enclosed by the estimated boundary and the desired
boundary. The watershed segmentations obtained using different
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Fig. 3. Separation of nuclei. (a) Original synthetic image with Gaussian white noise (SNR = 8 dB). (b) Inner distance map. (c) Watershed segmentation using
inner distance map as marking function. (d) Outer distance map generated with shape markers and ∆ = 2. (e) Final segmentation using the outer distance map as
the marking function.

Fig. 4. Shaded triangles show the errors due to jagged lines created by classical
watershed algorithm using inner distance map as the marking function.

Fig. 5. Accuracy of segmentation of synthetic images, using different marking
functions against tilt angle.

marking functions are compared with the ground truth segmen-
tation, and the area correlation measured for different values of
θ is shown in Fig. 5. The difference between the experimental
results and geometrical calculation is due to the discretization
and the added noise.

The performances of the proposed marking function and the
classical marking function on synthetic images with the presence
of noise are given in Fig. 6. As seen, the proposed marking
function segments the clusters more precisely than the classical
marking function at all noise levels. The method fails only when
the SNR drops below about 4 dB.

Fig. 6. Robustness of object separation to noise on synthetic images.

Fig. 7. Sensitivity of parameters on the performance of cluster separation:
the diameter of the structuring element s and tolerance value of the adaptive
threshold ∆ (in pixel values).

B. Sensitivity to Parameters

The parameters of the active contours were empirically set
to α = 0, λI = 1.5, and λO = 1.0. µI and µO were computed
iteratively in the algorithm. There are two parameters that af-
fect the separation of clusters. One is the kernel size s of the
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Fig. 8. Results of nuclei segmentation on a representative neuronal cell image by. (a) Classical watershed. (b) Condition erosion watershed. (c) Optimal boundary
by dynamic programming. (d) Proposed algorithm (∆ = 5).

Fig. 9. Nuclei segmentation on three Drosophila cell images. (a) Original images. (b) Classical watershed. (c) Condition erosion watershed.
(d) Optimal boundary by dynamic programming. (e) Proposed algorithm (∆ = 5).

structural element used in the opening during initial segmen-
tation. Smoother object boundaries are obtained when s is in-
creased at the expense of accuracy. The other is ∆ in the adap-
tive H-minima transform, which determines the gap between
shape markers. Note that adaptive H-minima transform is per-
formed on each cluster, and each cluster has its own largest
H-minima transform (hadp ). So, the resulting hadp is adap-
tive to each cluster. The value of ∆ was empirically found in
the experiments and in the range [2, 5]. If properly selected

small enough, the same value of ∆ can be used throughout the
image.

For images in Fig. 1(a), s = 4 and ∆ = 2 were found to
give the best separation (units are in pixels). By considering the
separation result displayed in Fig. 1(e) as the ground truth, we
test the robustness of our algorithm by varying the values of the
parameters; the accuracies against parameter values are given
in Fig. 7. As seen, the errors were less than 0.5% for changes
within [2, 7] pixel values of the parameters.
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TABLE I
COMPARISON OF SEGMENTATION BY THE PROPOSED METHOD AND EXISTING METHODS ON IMAGES OF NEURONAL CELL NUCLEI

TABLE II
COMPARISON OF SEGMENTATION BY THE PROPOSED METHOD AND EXISTING METHODS ON IMAGES OF DROSOPHILA CELL NUCLEI

C. Real Images

We performed segmentation of nuclei on two real datasets:
neuronal cell images and Drosophila cell images. The neuronal
cells of mouse brain contained 53 fluorescence microscopy im-
ages of 1392 × 1040 pixels. The imaging was performed on
a Zeiss Axio Imager Z1 equipped with a Plan-Apochromat
20×/0.75 objective. The images were recorded with a pro-
grammable virtual camera (PVCAM) and tagged to extract the
nuclei. There were a total of 383 nuclei out of which 71 were
clustered. The dataset of Drosophila Kc167 cells contained four
microscopy images of 450 × 450 pixels. There were 432 nu-
clei in total, out of which 96 were clustered. The details of
Drosophila images are available in [26].

To demonstrate the efficacy of cluster identification, we com-
pared our method to the classical watershed algorithm [15],
marker-controlled watershed using condition erosion [20], and
optimal boundary finding by dynamic programming as proposed
by Baggett et al. [10]. The classical watershed algorithm uses
region minima of inner distance map as markers while the con-
dition erosion algorithm detects markers with a “first coarse,
then fine” erosion strategy. Both of the two methods adopt
Euclidean inner distance map as the marking function. In opti-
mal boundary finding by dynamic programming, the user is re-
quired to indicate a point approximately in the center of the cell
and a point on the border that encompasses two or more cells.
In our implementation, the border points were automatically ap-
proximated by the point at the middle of the centers of clustered
nuclei. Since the border between the clustered nuclei is of rela-
tively lower intensity than surrounding pixels, the optimal path
is defined as the path that has the lowest average intensity along
its length compared with all other possible paths.

Examples of nuclei segmentation results are displayed in
Figs. 8 and 9. The classical watershed algorithm suffered from
oversegmentation, and the condition erosion algorithm occa-
sionally undersegmented or oversegmented the clusters because
of incorrect detection of markers. In contrast, the proposed
method generated more precise segmentation while removing
the jaggedness of boundaries. The boundary generated by the
dynamic programming method tends to be irregular and even
incorrect when the number of nuclei in a cluster increases or
the intensity contrast along the border is low. The performance
of this method is found to be highly dependent on user input
and intensity contrast. Compared to the dynamic programming

method, the proposed method separated the clusters using shape
information and is found to be more robust to intensity variations
of nuclei.

The comparison of segmentation results with different meth-
ods is shown in Tables I and II. From neuronal cell images and
Drosophila cell images, 97.39% and 96.30% of cell nuclei were
correctly segmented, respectively. As seen, the classical water-
shed algorithm had produced high oversegmentations whereas
the difficulty of the condition erosion method lies in the set-
ting of erosion structure size and it cannot ensure the existence
of proper thresholds to prevent both oversegmentation and un-
dersegmentation. The proposed method outperformed the other
methods and was able to segment most touching nuclei correctly
from clusters.

IV. CONCLUSION

We presented an automated technique to segment cell nu-
clei in fluorescence microscopy images, which is capable of
accurately separating clustered nuclei. The method relies on ge-
ometric active contours for initial segmentation, and thereafter
on a watershed-like algorithm using shape markers and mark-
ing function. An adaptive H-minima transform was proposed to
accurately find shape markers, avoiding oversegmentation. The
shape markers convey not only the number and location of nuclei
but also represent shapes of the nuclei. A new marking function
based on outer distance transform on the initial segmentation
is introduced in place of traditional inner distance transform.
The new algorithm produce smooth or straight boundaries un-
like other watershed-based methods that usually produce jagged
boundaries.

The experimental results show that the proposed method is
more robust to noise in separating clustered nuclei than the
classical watershed algorithm and condition erosion method.
The proposed method generates smoother watershed lines, and
thus obtains higher accuracy in nuclei separation than the earlier
methods. Moreover, our experiments on several image datesets
indicate that the performance is not sensitive to its parameters.

Our method is based on the presumption that there exists
one-to-one correspondence between shape markers and objects.
Therefore, when the size and the shape of nuclei vary a lot in
one cluster, the algorithm could fail to detect the correct number
of nuclei. Our algorithm mainly focuses on preventing overseg-
mentation while undersegmentation is not explicitly accounted
for. As seen in the experiments, the proposed method generated
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very few undersegmentation of cells, which is mostly due to
dividing cells that are ambiguous to separate. In case of very
irregular boundaries, our method may require use of more spe-
cific priors or inclusion of strong shape constraints for accurate
localization of the interfaces between nuclei. When morpholog-
ical hole filling was performed, our method could remove small
holes that can be gaps among clustered nuclei. An algorithm
based on nuclei size, the distance to nuclei centers, etc., may
distinguish them from holes inside nuclei.

The future of this paper could integrate more information
such as texture of intensities and a prior biological knowledge
of the cells into the segmentation process. As the method is fully
automated unlike earlier techniques [10], [11], it is suited for
high throughput and spatiotemporal analysis of cell images.
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