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ABSTRACT 
 
In this paper, we present a methodology for combining 
acoustic-phonetic knowledge with statistical learning for 
automatic segmentation and classification of continuous 
speech. At present we focus on the recognition of broad 
classes - vowel, stop, fricative, sonorant consonant and 
silence.  Judicious use is made of 13 knowledge-based 
acoustic parameters (APs) and support vector machines 
(SVMs). It has been shown earlier that SVMs perform 
comparable to hidden Markov models (HMMs) for 
detection of stop consonants. We achieve performance 
on segmentation of continuous speech better than the 
HMM based approach that uses 39 cepstrum-based 
speech parameters.  
 
 
 

1. INTRODUCTION 
 
There is strong evidence that human speech recognition 
(HSR) starts with a bottom-up analysis [1], and then 
later context is integrated into the recognition process. 
Present state-of-the-art automatic speech recognition 
(ASR) systems are top-down [2,3].  That is, the process 
starts by taking a dictionary of words and constituent 
phonemes. Each entry in the dictionary is a word with 
one or more sequences  (pronunciations) of constituent 
phonemes. Hidden Markov models (HMMs) are built for 
each phone (monophone model) or triphone (triphone 
models). For the purpose of recognition, the best path 
through a lattice of words is found and the 
corresponding sequence of words is chosen as the most 
likely sequence. The front ends of ASR usually consist 
of mel-frequency cepstral coefficients (MFCCs) or 
perceptual linear predictive coefficients (PLPs).  
 
We are developing an acoustic-phonetic approach to 
speech recognition in which speech is first segmented 
into broad classes (vowel, stop, fricative, sonorant 
consonant and silence). These manner based segments 
are then analyzed for place of articulation to decide upon 
the constituent phonemes. Acoustic-phonetic approaches 
are bottom-up, but they have been overpowered by 

statistical pattern recognition approaches primarily 
because (1) acoustic-phonetic approaches have used hard 
coded decision rules that are not easy to adapt and (2) 
mapping of phonemes to sentences is a difficult task. On 
the other hand, since an acoustic-phonetic approach to 
recognition involves the explicit extraction of linguistic 
information that is combined for recognition, it is 
relatively straightforward to pinpoint the cause of 
recognition errors.  This diagnosis is typically difficult in 
HMM-based systems where it is hard to determine if 
errors are due to failure of the pattern matcher or ill-
represented speech information. 
 
Our goal in this paper is to develop a system that 
combines the strengths of an acoustic-phonetic approach 
and statistical pattern matching.  In particular, we have 
developed an adaptable and modular system where it is 
easy to assess the full system as well as the components 
for errors.  Phonetic feature theory provides a 
hierarchical framework [6] and support vector machines 
(SVMs) provide the methodology for combining the 
speech knowledge. The success of SVMs has been 
demonstrated for the problem of detection of stop 
consonants [5]. We concentrate on the intensive use of 
knowledge-based parameters with SVMs for automatic 
segmentation of speech.  

 
2. DATABASE 

 
The TIMIT database [4] was used as a corpus of labeled 
speech data. Phonetically rich ‘sx’ and ‘si’ sentences 
from all the eight dialect regions in the training set were 
used for training and development, and the ‘si’ sentences 
from all the dialect regions in the test set (spoken by an 
independent set of speakers) were used for testing. 
 

3. SUPPORT VECTOR MACHINES 
 
SVM [15,16] is a statistical learning method for 
regression and pattern classification. While learning 
from data, SVM performs structural risk minimization 
(SRM) unlike the classical adaptation methods that 
minimize training error in a specific norm. For the two-
class pattern classification problem, SVM finds a 



decision hypersurface ( )d x , where the vector x  
belongs to the space of samples, of the following form  
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The support vectors (SVs) 1{ }l
i ix = , and the weights iα  

are found by using quadratic optimization methods and 

the training data. iy  are the class labels of the support 

vectors that take the value +1 or –1 depending upon the 

class. The kernel ( , )iK x x  is a function of the dot 

product of the vectors x  and ix . The kernel depends on 

the type of the hypersurface ( )d x . The kernels used in 
this project are shown in Table 1 along with the type of 
the hypersurface. For a test vector x , the class is 

determined by the sign of ( )d x . The experiments in 
this project were carried using the SVM Light toolkit 
[8], which provides very fast training of SVMs. 
 

Hypersurface 
type 

Kernel Kernel specific 
parameter 

Linear ( . 1)ix x +  None 

Polynomial of 
degree d 

( . 1)d
ix x +  d 

Gaussian 
Radial base 
function (RBF) 

exp(-γ | x - ix |2) γ 

Table 1 : SVM kernels and their corresponding kernel-

specific parameters  

 
4. METHOD 

 
Our event-based speech recognition system (EBS) has 
four modules – an acoustic-phonetic knowledge based 
parameter extraction front-end, a statistical learning 
module, multi-class decision module and a language 
modeling module. In this paper, we concentrate on the 
first three modules for the task of segmentation of 
speech into five broad classes (Figure 1). The front end 
generates 13 APs that are acoustic correlates of the 
manner phonetic features [10] – syllabic, sonorant, 
noncontinuant, obstruent and silence. Using these 
acoustic correlates, speech is segmented into the broad 
classes mentioned before. The different phonemes of 
English that lie in each of the manner classes are shown 
in Table 2. This classification of phonemes is not strict 
since the surface realization can be significantly 
different from its canonical form due to coarticulatory 
effects and weakening processes (lenition).  
  

Manner Phoneme 
Vowel ih, eh, ae, aa, ah, ao, uh, 

ah, ax, ih, ax, axr-h, en, 
em, eng, el, er 

Vowel followed by 
sonorant consonant 

iy, ey, ay, ow, oy, aw 

Sonorant consonant w, l, r, y, m, n, ng, nx, dx, 
hv 

Fricative s, sh, f, th, hh, z, zh, v, dh 
Stop followed by 
fricative 

jh, ch 

Stop b, d, g , p, t, k 

Table 2: Broad manner classification of English 
phonemes 

Speech is analyzed every 5ms with a 10ms Hanning 
window (5ms overlap). Knowledge-based parameters are 
extracted from both the time waveform and the spectrum 
of the signal. A classifier is built for each of the classes – 
vowel, sonorant consonant, fricative, stop and silence. In 
practice, the classifier for sonorancy is used in place of 
classifier of vowel because vowels and sonorant 
consonants are both sonorants and they are distinguished 
by the classifier for sonorant consonants. Each classifier 
operates on a frame of speech and takes the acoustic 
parameters for that frame and in some cases, a particular 
number of adjoining frames. Not all acoustic parameters 
are used by each classifier. The parameters for each 
classifier are chosen on the basis of knowledge. The 
output of each classifier is mapped to a probability 
measure, that is, the a posteriori probability of the 
manner class.  A very crude form of this mapping is used 
in the current set of experiments. The SVM outputs are 
clipped in the range [-1,1], then scaled and translated to 
the range [0,1].  
 
At each frame, the probability outputs of the classifiers 
are compared and the maximum is chosen. A speech 
segment is then hypothesized by a region in which the 
output of a single classifier remains the maximum. Note 
that we have only outlined the system for broad class 
segmentation. For phoneme and sentence recognition, 
there will be a classifier for each of the 20 phonetic 
features that are known to be sufficient to describe the 
sounds in all the languages in the world [6]. We now 
discuss the design and the parameter selection of the 
classifiers. 
 
4.1 APs 
 
Table 3 shows the APs used for the detection of each 
manner class. Except for stop detection, parameters only 
from the current analysis frame are fed to the SVM. 
Stops are characterized by a period of silence (closure) 
followed by a sudden release in energy (onset) and then 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : The three modules of EBS – (1) front end, (2) 
pattern recognition and (3) multi-class decision. SVM 1 
: vowel detection, SVM 2 : sonorant consonant 
detection, SVM 3 : fricative detection, SVM 4 : stop 
detection, SVM 5 : silence detection 

 
a sudden fall in energy (offset). Therefore, for detection 
of stops information not only from one frame but 
adjoining frames is required. Especially, there is about 
30ms of silence before stop bursts [11], so we use 6 
frames preceding the analysis frame and 3 frames 
following the analysis frame for the detection of stop 
burst.  
 
4.2 SVM kernel selection 
 
We trained three different SVMs – linear, polynomial 
and RBF – for the detection of each manner class. 
Sonorant frames were trained against all non-sonorant 
frames including frication, silence, and stops. 30,000 
frames of speech were selected for each class randomly 
from the TIMIT training data, from both male and 
female utterances. The Xi-Alpha estimates [8,9] of the 
error bound provided by the learning process and the 
number of support vectors for each machine is shown in 
Table 4. 
 
We choose RBF kernel with γ = 0.01 for speech 
segmentation experiments because of lowest error bound 
estimate of 10.86%. Similar analysis was carried out for 
other manner classes. The choice of SVM kernel and 
error bound estimate for each class is shown in Table 5. 

Manner Class Parameters 
Sonorant (1) Probability of voicing [7], (2) 

ZCR, (3) ratio of spectral peak in 
[0,400] to the spectral peak in 
[400, SF/2], (4) ZCR of high pass 
filtered speech, (5) Ratio of E[0, 
F3-1000] to E[F3-1000, SF/2], (6) 
E[100,400] 

Stop (1) Energy onset  (2) Energy 
offset (3) E[0,F3] (4) E[F3, SF/2] 

Fricative Same as sonorant parameters, and 
E[F3, SF/2] 

Sonorant 
consonant 

(1) E[640, 2800], (2) 
E[2000,3000]  

Silence (1) E [0,F3], (2) E[F3,SF/2], (3) 
ratio of spectral peak in [0,400] to 
the spectral peak in [400, SF/2] 

Table 3 : APs used for detection for each manner class. 
ZCR : zero crossing rate, SF : sampling frequency, F3 :  
third formant of the speaker, E[a, b] denotes energy in 
the frequency band [aHz, bHz].  

 
Kernel Kernel-

specific 
Parameter 

Number of 
SVs 

Error 
estimate 
(%) 

Linear - 9874 16.35 
Polynomial d = 2 10133 16.66 
Polynomial d = 3 9727 16.10 
RBF γ = 0.05 27474 16.79 
RBF γ = 0.01 13902 10.86 
RBF γ = 0.005 10458 11.47 

Table 4 : Training record of sonorancy SVM. Not all 

values of γ are shown. 

The error bound estimate in detection of sonorant 
consonants is high because boundaries between vowels 
and sonorant consonants are not well defined and there 
is a lot of overlap in the training data. This does not 
harm so much because even if only the central regions of 
the sonorants consonants are detected that would suffice 
for the purpose of phoneme recognition. This may, 
though,  cause insertions of sonorant consonants in the 
vowel regions with weak energies but that problem can 
be solved by using temporal parameters for sonorant 
consonants [14].  
 
4.3 Analysis of SVM outputs 
 
Figure 2 shows two of the parameters for sonorancy 
detection – ZCR and ratio of E[0, F3-1000] to E[F3-
1000, SF/2] – plotted against a speech spectrum. Also 
shown is the output of sonorancy SVM converted to 
probability estimate. Sonorant regions have low ZCR 
and large designated ratio of energies. High values of 

Extraction of APs 

Parameter Selection module. 
Pass only relevant parameters to each classifier 

SVM  
1 

SVM  
2 

SVM  
3 

SVM  
4 

SVM  
5 

Convert SVM outputs to probabilities and find 
the maximum probability at each instant.  

Speech Utterance (1)

(2)

(3)



Manner 
Class 

Kernel Kernel-
Parameter 

Error-
bound 
estimate 
(%) 

Sonorant RBF  ã =0.01 10.86 
Stop RBF ã=0.001 7.41 
Fricative RBF  ã = 0.008 14.31 
Sonorant 
consonant 

Linear none 49.70 

Silence RBF ã = 0.001 14.92 

Table 5 : SVM kernel selection for different manner 
classes. 

probability are obtained in the sonorant regions and low 
values are obtained in the non-sonorant regions as per 
expectations. Figure 2 illustrates the ease in which fault 
can be found with the system. The oval region in the 
spectrum is a /t/ and is not a sonorant region but as 
shown by the arrow, we get a high probability of 
sonorancy in that region.  
 
This error can be easily explained by presence of low 
ZCR (compared to fricatives) and high E[0,3000Hz] 
which is characteristic of sonorants. That is, the problem 
lies in the parameters. It can be fixed by checking if the 
high energy in the low frequency band is periodic or 
aperiodic [14], that is, by modulating the low frequency 
energy by the periodicity in the low frequency bands. If 
the speech is degraded, similar plots can be obtained to 
see if it is the parameters that are not behaving in line 
with their physical significance. However, if in degraded 
speech, the parameters are behaving well but the 
recognition is not good, outputs of different SVMs can 
be plotted with the spectrogram to find which SVMs are 
going wrong. 

 
4.4 HMM experiments 
 
HMM experiments [17] were carried out using HTK [3]. 
39-parameter set consisting of 12 MFCCs and energy 
with their delta and acceleration coefficients were used 
in the HMM broad classifier. All the manner class 
models were context-independent 3-state (excluding 
entry and exit states) left-to-right HMMs with diagonal 
covariance matrices and 8-mixture observation densities 
for each state. A skip transition was allowed from the 
first state to the third state in each model. 
 

5. RESULTS AND DISCUSSION 
 
A manner class segmentation system may not separate 
out two consecutive phonemes having the same manner 
representation. Therefore, for the purpose of scoring, the 
reference phoneme labels from the TIMIT database were 
mapped to manner class labels with the mappings listed 

in Table 1, and the consecutive identical manner labels 
were collapsed into one. The resulting manner class 
labels were used as the reference labels for scoring EBS 
as well as the HMM broad classifier. EBS with 13 APs 
showed performance better than HMMs with 39 
cepstrum-based parameters. The results are shown in 
Table 6. 
 

 HMM  EBS 
Parameters MFCCs  APs 
Number of parameters 39 13 
% Correct  69.6 82.4 
% Accuracy 64.9 68.3 

Table 6 : Results of broad classification 

The wide gap in the correctness and accuracy of EBS is 
because of a higher number of insertions, primarily, of 
sonorant consonants and stops. Stop insertions normally 
occur at the onset of vowels and strong fricatives 
following a period of silence. Sonorant consonant 
insertions occur at the weak beginning and end of 
vowels. These insertions may be corrected by using 
temporal parameters [14] as well as designing more 
discriminative parameters. 
 
6. CONCLUSION AND FUTURE WORK 

  
We have seen that statistical learning can be applied 
successfully with the knowledge of acoustic-phonetics 
for segmentation of speech with performance 
comparable to HMM systems. The recognition method 
makes it easy to find the source of error in the system. 
The system can be easily retrained for any new set of 
parameters or for recognition of other languages. The 
work will be extended to complete phoneme recognition 
in the future. Neural networks that perform equally well 
may replace SVMs where the number of support vectors 
is too high for real-time operation of EBS. Better 
methods of conversion of SVM outputs to probabilities 
[13] will be applied. These parameters will be used and 
tested with EBS in noise robust conditions. At present 
the learning in EBS is supervised, that is, the system 
requires time-aligned labeled data for training. In the 
future we will explore the possibility of unsupervised 
learning for the system. 
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Figure 2 : Spectrogram of the utterance “Iguanas and alligators are tropical reptiles”. (a) Spectrogram, (b) 
SVM a posteriori probability of sonorancy, (c) Ratio of E[0,F3-1000] to E[F3-1000,SF/2], (d) Zero crossing 

rate (e) Phoneme labels from TIMIT database. The phoneme in the oval region is /t/ 
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