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Abs t rac t .  The aim of this work is to track specific anatomical struc- 
tures in temporal sequences of eehocardiographic images. This paper 
presents a new spatio-temporal model and describes the relevant spatial 
and temporal properties that must be taken into consideration to obtain 
the best possible results. It is expressed within a Markov random field 
framework and results are presented with different formulations of the 
temporal properties. 
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1 I n t r o d u c t i o n  

In [HNG92] a model of spatial segmentation for cardiac cavities in ultrasound 
images has been presented. This model supposes that  grey level values of pix- 
els, inside the cavity, follow a normal law parametrized by its constant mean 
and standard deviation. It supposes also that  cavity's boundary includes a lot 
of points having a high gradient norm, and that  the boundary is smooth. This 
model i s  sometimes insufficient and may produce inaccurate results; and we 
found necessary to define an another model [HG93], that  includes temporal  prop- 
erties in three different ways: in the first place, we include a temporal  neighbor- 
hood; secondly we use, inside the segmentation process, the result obtained on 
the previous image of the sequence; and thirdly we use a geometrical constraint 
on the stability of the cavity's center of mass. Again, this model presented some 
limitations and drawbacks, and this paper defines a new spat io-temporal  model 
that  takes two different types of motion into consideration: the cardiac bound- 
aries are moving slowly during the cardiac cycle; the mitral  valves are moving 
very fast. 
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Fig. 1 displays the echocardiographic video data and the cavity of interest 
in this study. These data were obtained on a VINGMED echograph from Henri 
Mondor Hospital, France (thanks to Gabriel Pelle). The sequence is 50 images 
and displays a cardiac cycle. 

A major step in application of Gibbs fields or Markov fields to images viewed 
as two-dimensional arrays was D. and S. Geman's paper on image restora- 
tion [GG84]. The aim of the work presented here is non supervised segmentation 
based on a region growing algorithm lAG92], [Zuc76], and our paper is concerned 
with a special case of a region growing algorithm segmenting a cardiac cavity in 
ultrasound images. 

2 P o s i t i o n  o f  t h e  p r o b l e m  

2.1 D e s c r i p t i o n  of  t h e  p r o p e r t i e s  

This section is devoted to the description of the four main visual properties of a 
cardiac cavity scanned by ultrasound. 

- homoneneity - The grey level values of the pixels inside the cavity are 
homogeneous. This property is translated into the following assumption: 
Vs E C ( x ) ,  im~ ,'~ Af(>~, a2): the grey level value of each pixet of the cavity 
follows a normal law of local mean tt, and constant standard deviation cr. 

- smoothness - The second visual property concerns cavity's smoothness and 
boundary's  smoothness. This property is expressed with an Ising model: the 
probability that a pixel is labelled 1, or -1, becomes higher if points in the 
neighborhood possess the same label. 

- spatial gradient - The initial boundary of the cavity is at tracted by high 
gradient norm values and the growing process must stop at the edge elements. 

- temporal regularity - The result of segmentation presents a temporal regu- 
larity during the cardiac cycle. 

2.2 M a t h e m a t i c a l  definit ion. 

We first define the following sets and variables: 

- S denotes the set of pixels of the image; s = { 0 , . . . ,  255}Rsl, D = {-1 ,  1}Lsq; 
- Irn = (Irn~)~es is a random variable defining the grey level values of the 

pixels. Its realization is i m =  (irn~)~es ~ F; 
- G = (G~)~es  encodes the norm of the spatial gradient, g = (g~)~es E s and 

is obtained by Deriche's filter [Der87]; 
- E = (E~)~es  defines the edge process, e = (e~)~es e ~ ;  e~ = 1 ~ s is an 

edge element; 
- X = ( X s ) ~ e s  defines the segmentation process: x = (x~)~es  e [2 and x~ = 

1 r s is inside the cavity; we denote by C ( x )  the set of pixels inside this 
cavity; 

- u~ is the neighborhood of s (4-neighborhood); 
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- y = ( i m ,  g,e) denotes the observation. It is the result of process Y = 
(Ira, G, E); x ~ is an initial segmentation for the cavity, used at the beginning 
of the optimization process. 

3 S p a t i a l  p r o p e r t i e s  

These properties were studied and compared in [HNG92, HG93]. The property 
1 defines the first term of the energy function, which is minimized during the 
optimization process: 

zec(~) 
(1) 

T being defined by the normal law table for a chosen percentage (95% or 99%). 
Property 2 is expressed by an Ising Model and the second term of the energy 

function: Uy( x) = - a  ~ x8 ( ~ xt ), a being a positive parameter. 
s tEu8  

Property 3 is included in the definition of #8. This local mean must express 
the fact that the grey level values become lower (i.e. darker) in the region of the 
cardiac muscle, where the gradient norm has high value: #8 = P0 + kgs(1 - es). 
k being negative, the value of #, is decreasing from the center to the cavity's 
boundary. 

4 T e m p o r a l  p r o p e r t i e s  

In [HG93] we made use of temporai information in different ways: 

- To avoid escapes of the segmentation in the other cavity, when the mitraI 
valve is open (see Fig. 1), we tried to add temporal properties and began 
with a first simple solution by adding a temporal neighborhood to the Ising 
model: l,'~ = {u~, s~-l, s~+l} where u~ is the spatial neighborhood and s~-l, 
s~+l are the pixels at same position than s on the previous image and on 
the next image of the sequence (n is the count of the studied image). The 
probability that a point is labelled 1 inside the cavity becomes higher if the 
pixel has the same label on the previous image or on the next image. 
This constraint is very strong and the segmentation result becomes too stable 
from an image to the next, as some modifications of the cavity are lost. On 
another hand, this temporal constraint is able to solve the problem of the 
opening of the mitral valve as shown on Fig. 2: the result of segmentation 
does not escape inside the other cavity. 

- We suppose also that the position of the center of mass is not varying from an 
image to the next. This constraint is global and we approximate it by adding 
an isotropic constraint on the distance between each pixel of the cavity and 
the center of mass of the reference cavity (its coordinates are (kref,/ref)): 
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Fig. 1. Left: Echocardiographic video image and the studied cavity. Right: Mitral 
valves are opened: inaccuracy of segmentation 

Fig. 2. Results of segmentation on three consecutive images of the sequence. 

"/ ~ [(k8 - ~ref) 2 * (Is - / r e f )  2 - d m  2] where (ks, ls) are the coordinates 
8co(z) 

of s. 
This energy term prevents a growing of the segmentation process in one 
particular direction. It avoids a penetration inside the other cavity if the 
mitral valve is open but, if pixels are nearer than din, the label 1 is prefered. 

In fact we need a temporal regularity constraint only in the region of the mitral 
valve because it is varying very fast. 

In this region we have the following properties: 

- the value of the spatial gradient (9s) is low, 
- the value of the temporal gradient (gt~) is high. 

At this point an energy term is added to help label -t  (outside the cavity) those 
pixels whose g, term is low and gt~ high. In the same way all other configurations 
of gs and gt~ help to label 1 (inside the cavity). In order to normalize the gradient 
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values we make use of two functions, r and ~c,(gt~) with values in [0, i], 
such that r * #c,(gts) is maximum when g~ is low and gG is high. 

These properties may be expressed by the global energy function: 

sdC(z) <s,t> sES 

where r and ~ ,  are two functions in CI(]R, [0, 1]) satisfying: 

- r 1 6 2  l i m e , ( x ) = 0 ;  

- ~c,(0) = 0;~e,(c) = 1/2; l i ra  ~d(x) = 1. 

r is a thresholding function of the high values of the spatial gradient and ~c, is 
a thresholding function of the low values of the temporal gradient. 

With such a modelling, a point is labelled as inside the cavity if - ( i m ~  #~ - ) 2 <_ 

tloc, with: tlo c = T + 2a ~ t e , ~  xt - 25~(g~) * ~r (gt~). Now tlo c becomes very 
2 

low in the region of the mitral valve and the growing process will stop because 
we impose x~ = - 1  (outside the cavity) when reaching this region. The thresh- 
olding functions include a weighting coefficient 6 that must verify the following 
property: if (r -~ 1) and (O~,(gt~) ~_ 1) (i.e. low spatial gradient and high 

�9 2 

temporal gradient) we want to ensure that (zmm~ - ~ )  > tloc. 
We studied this model with the following choices for r and ~ ,  : 

1-F(x/c) - r = 2 , c is the mean of the norm of the spatial gradient, 

I+F(~/~') c p is the mean of the norm of the temporal gradient, 
- 2 , 

- F(z)- 1+~,  a > 1. The value of a allows to adjust the slope of the functions. 
We choose a = 2. 

With these choices, we tested the model and concluded that: 

- The results obtained with this model is approximately accurate, even if the 
mitral valve is open, as is shown on Fig. 3 (left). 

- Moreover, the result are more stable regarding to the iteration count of the 
ICM algorithm. This is illustrated on Fig. 3 where the result with 5, 10 or 20 
iterations of ICM are displayed from left to right. On the image on the right, 
we can observe penetrations in the borders of the mitral valve because the 
segmentation algorithm works with pixels with high gradient norm values 
inside the cavity. 

5 C o n c l u s i o n  

In this paper, we have compared different mathematical translations of spatio- 
temporal properties used for segmentation. We have seen that making use of 
a local temporal neighborhood is too restrictive and that  a global geometric 
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Fig. 3. Results of the model when the mitral valve is opened with 5, 10 and 20 ICM 
from left to right. 

constraint on isotropy is accurate ; our final solution makes use of temporal 
gradient: this is a local constraint that takes into account all the images for 
recursive implementation. So we achieve the temporal  tracking of a cardiac cavity 
during the cardiac cycle. 
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