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ABSTRACT

This thesis presents a novel method of floor segmentation from a single image for mobile

robot navigation. In contrast with previous approaches that rely upon homographies, our

approach does not require multiple images (either stereo or optical flow). It also does not

require the camera to be calibrated, even for lens distortion. The technique combines three

visual cues for evaluating the likelihood of horizontal intensity edge line segments belonging

to the wall-floor boundary. The combination of these cues yields a robust system that works

even in the presence of severe specular reflections, which are common in indoor environments.

The nearly real-time algorithm is tested on a large database of images collected in a wide

variety of conditions, on which it achieves nearly 90% segmentation accuracy.

Additionally, we apply the floor segmentation method to low-resolution images and propose

a minimalistic corridor representation consisting of the orientation line (center) and the wall-

floor boundaries (lateral limit). Our study investigates the impact of image resolution upon the

accuracy of extracting such a geometry, showing that detection of wall-floor boundaries can

be estimated even in texture-poor environments with images as small as 16 × 12. One of the

advantages of working at such resolutions is that the algorithm operates at hundreds of frames

per second, or equivalently requires only a small percentage of the CPU.
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Chapter 1

Introduction

1.1 Motivation

Segmenting the floor in an image is an important problem for indoor mobile robot navigation.

By detecting which pixels belong to the floor, a mobile robot would be able to avoid obstacles

and determine the geometry of the scene. This information would be useful in constructing

a map of the environment or to guide the robot within an environment for which a map has

already been constructed. Additional reasons for floor segmentation include problems such as

computing the size of the available space in a room.

One of the challenges for indoor corridor floor segmentation is the specular reflections that

are common on the floor. The reflections on the floor may come from the ceiling lights, door

frames, or walls, that even make it difficult sometimes for a human observer to distinguish the

floor area. Several typical corridor images are shown in Figure 1.1, illustrating a variety of

poses and illumination conditions resulting from the ceiling lights and walls. In addition, some

floors are textured while others are uniformly colored, thus further adding to the difficulty of

accurate floor segmentation.



Figure 1.1: Typical corridor images are shown. Strong reflections, shadows, dark areas, and

low-contrast in color are commonly seen, which bring difficulties to vision-based mobile robot

navigation.

One especially noteworthy contribution of our approach is its proper handling of specular

reflections. As seen in the figure above, it is not uncommon for indoor scenes to contain sig-

nificant amounts of reflection of light off the floor, particularly when the overhead lights are

bright, the sun is shining through a window, and/or the floor is particularly shiny. These re-

flections can confuse homography-based approaches, because they cause pixels on the ground

plane to violate the ground plane constraint. Reflections are also known for being difficult to

model, causing spurious intensity edges and altering the color appearance of the floor.

In addition, inspired by psychological studies that the human visual system does not require

high-resolution images to ascertain information about the environment for basic navigation,

also known as the “selective degradation hypothesis” by Leibowitz [17], we apply our floor

2



320x240 160x120 80x60 64x48

32x24 16x12 8x6

Figure 1.2: A typical corridor image at seven different resolutions. Even in resolutions as low

as 32 × 24, it is easy to see the structure of the corridor. For display purposes, we resample

the downsampled images so that all of the seven different resolution images are shown in the

same size.

segmentation to the down-sampled images and surprisingly notice that the results are accurate

even in images with a resolution as low as 32× 24. One typical corridor image and its down-

sampled images are shown in Figure 1.2.

1.2 Approach

Our floor segmentation method for mobile robot applications only requires a single image.

Unlike existing techniques, the approach does not make use of the ground plane constraint

and therefore does not use homographies, optical flow, or stereo information. As a result, it

does not require the camera to be calibrated, not even for lens distortion. Inspired by the work

of McHenry et al. [21] that combines multiple visual cues to detect the difficult material of

transparent glass, our technique combines multiple cues to enable the wall-floor separating

boundary to be estimated in the image. By combining these visual cues, our approach is often

able to ignore the spurious edges, distinguishing between edges arising from the structure of

3



the scene and those produced by the specular reflections. Another contribution of this work

is the introduction of a rather large database of more than 400 indoor corridor images from

dozens of different buildings, exhibiting a wide range of conditions. On this challenging

dataset, our algorithm is able to successfully detect the floor on nearly 90% of the images.

Several results are shown for our floor segmentation in various environments. The algorithm

and results are shown and described in Chapter 2.

Floor segmentation algorithm is then applied in Chapter 3 to extract the geometry informa-

tion from indoor scene. In Chapter 3, we propose a minimalistic representation of a corridor

with three lines that capture the center of the corridor, the left wall-floor boundary, and the

right wall-floor boundary — the intersection of the orientation (center) line with the wall-floor

boundary detected is the vanishing point. To detect this representation, we combine our floor

segmentation with Murali and Birchfield [24, 25] that using median of bright pixels, maximum

entropy and symmetry to determine the center of the corridor in low-resolution images. Be-

sides showing the results of our floor segmentation, we will also subsequently show the results

of our method on low-resolution images, which does not degrade too much with reduction in

resolution. The errors seen in estimation of our corridor percepts change little as resolution

drops up to 20 times the standard resolution in each direction, effecting a reduction of more

than 99% of the original image information.

1.3 Previous Work

A significant amount of research has focused upon the obstacle avoidance problem. In these

techniques, the primary purpose is to detect the free space immediately around the mobile

robot rather than the specific wall-floor boundary. Most of these approaches utilize the ground

plane constraint assumption to measure whether the disparity or motion of pixels matches the

values that would be expected if the points lie on the ground plane. Sabe et al. [30] use stereo

4



cameras to accomplish this task, while the methods of Stoffler [33] and Santos-Victor [31]

rely upon optical flow. An alternate approach was pursued by Lorigo et al. [19], who used a

combination of color and gradient histograms to distinguish free space from obstacles.

Only a handful of researchers have considered the floor segmentation problem itself. Sim-

ilar to the obstacle avoidance approaches, the techniques employed tend to utilize the ground

plane constraint. Kim and colleagues [14, 7] and Zhou and Li [38] apply planar homogra-

phies to optical flow vectors, while Fazl-Ersi and Tsotsos [10] rely on stereo homographies.

The approach of [38] computes only a sparse representation of the floor by classifying sparse

feature points, while the other two approaches make a pixelwise decision to result in a dense

floor representation.

In the computer vision community, some promising results have been achieved recently for

related problems. Lee et al. [16], for example, have developed a method that is capable of

performing geometric reasoning on a single indoor image. The early line-drawing interpreta-

tion work of Guzman [12], they are able to separate the walls from the floor and ceiling using

intensity edges and geometric constraints. In another piece of work, Hoiem et al. [13] also

assign labels to pixels based upon image data and class priors, primarily for outdoor scenes.

Although the results of these approaches are promising, none operate in real time, thus limit-

ing their application to robotics at the moment. Moreover, the work of [16] requires the ceiling

to be visible, which is often not the case when the camera is mounted on a mobile robot that

is low to the ground.

Regarding to applying our floor segmentation algorithm on low-resolution images, Torralba

et al. [35, 34] in their recent work have presented several psychovisual experiments to show

that 32 × 24 bit images are sufficient for human beings to successfully performs basic scene

classification, object segmentation, identification . They have shown results on an extensively

constructed database of 70 million images that make a powerful argument in favor of low-

resolution vision for non-parametric object and scene recognition. Emphasis has been laid on

5



minimalistic representations for solving visibility based robotic tasks by Tovar et al. [36] and

O’Kane and LaValle [26]. Their work focuses on identifying simple and generic solutions to

basic robot exploration / navigations tasks.

6



Chapter 2

Floor Segmentation Algorithm

In this chapter, we describe our algorithm for floor segmentation [18], illustrated in Figure 2.1.

For each of the input images, horizontal and vertical line segments are detected. The horizontal

line segments are then evaluated as to whether they lie on the wall-floor boundary using three

visual cues. Note that our algorithm operates on a single image, without stereo or motion

information.

2.1 Detecting line segments

2.1.1 Detecting and classifying line segments

The first step of the approach is to detect intensity edges by applying the Canny edge detector

[4] to the grayscale image. Then a robust line fitting method is applied to the intensity edges to

obtain a set of line segments. We use the Douglas-Peucker algorithm [8], with the modification

described in [6] to improve the retention of small line segments that occur at the bottom edge

of doors. Empirically, there is no big difference between the modified version and the original

version. But we believe that in some specific cases, it is worthy to detect the concavity of doors

to accurately segment the floor. Each line segment is defined by two endpoints in the image.



Figure 2.1: Flowchart of the proposed method for floor segmentation.
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Line segments are divided into two categories: vertical and horizontal. Based on over three

hundred corridor images and the ground truth, we determined a tight slope range to the vertical

line segments, so that a line segment is classified as vertical if its slope is within ±5◦ of the

vertical direction. Horizontal line segments are given a wider slope range: A line segment is

classified as horizontal if its slope is within ±45◦ of the horizontal direction. All other slopes

are discarded.

2.1.2 Pruning line segments

Due to the noisy conditions of real-world scenes, the procedure just described often produces

spurious line segments that are not related to the wall-floor boundary. We apply two additional

steps to prune such segments. First, we discard segments whose length is less than a thresh-

old (60 pixels for vertical lines, and 15 pixels for horizontal lines). Then we compute the

intersections of the horizontal line segment pairs, after which we compute the mean of the y

coordinate of the intersections inside the image to yield an estimate of the vanishing line. For

any pair of horizontal line segments, the intersection point is calculated by the cross product

between the two line extensions, using homogeneous coordinates:
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, (2.1)

where each horizontal line is described by ax+by+c = 0, and the intersection point [ vx vy ]
T

is determined by dividing by the scaling factor w. Once the intersection point has been de-

tected, all horizontal line segments that lie above the vanishing line are discarded. The result

of detection, classification, and pruning of line segments is illustrated in Figure 2.2.

Not all of the horizontal line segments that remain from the pruning step will be related to

the wall-floor boundary. To determine the likelihood that a horizontal segment ℓh is near this
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Figure 2.2: The wall-floor boundary of typical corridor images is difficult to determine due to

strong reflections and shadows. TOP: Two images, with the result of the modified Douglas-

Peucker line fitting algorithm applied to Canny edge detection overlaid. The line segments are

classified into two groups: vertical (blue) and horizontal (yellow). BOTTOM: Line segments

have been pruned according to length and the vanishing point, as described in the text, to

reduce the influence of reflections and shadows (Best viewed in color).

boundary, we compute a weighted sum of scores for three individual visual cues:

Φtotal(ℓh) = wsφs(ℓh) + wbφb(ℓh) + whφh(ℓh), (2.2)

where ws, wb, and wh are the weights, and φs(ℓh), φb(ℓh), and φh(ℓh) are the three individual

scores, which are now described.

2.2 Structure Score

We have found that a surprisingly effective cue for distinguishing the walls from the floor

in typical corridor environments is to simply threshold the image. This approach works es-

pecially well in environments in which the walls are darker than the floor, and it also takes

10



advantage of the fact that the baseboard is often darker than the floor due either to its painted

color, shadows, or collected dirt. In fact, even when the walls, doors, and floor are nearly

white, the technique is more effective than one might at first expect. This is partly due, per-

haps, to the shadows under the doors that appear no matter the color of the surfaces in the

corridor. In some environments, the walls are lighter than the floor, in which case threshold-

ing will still distinguish between the two but with reverse binary labels compared with those

situations just described.

The structure image is therefore defined as the binary image resulting from thresholding the

image:

S(x, y) = (I(x, y) > τLC) . (2.3)

Since the true edges are generally aligned with the structure of the corridor, we compute the

structure score φs of a line segment ℓh by measuring the distance of each pixel in the line

segment to the nearest non-zero pixel in the structure image:

φs(ℓh) =
∑

(x,y)∈ℓh

d[(x, y),S], (2.4)

where d[(x, y),S] computes the distance between the point (x, y) and the structure image S .

For fast computation, we use the chamfer algorithm to compute the distance [3]. The score is

normalized using a Gaussian distribution with a standard deviation σs:

φ̄s(ℓh) = exp

{

−φs(ℓh)

2σ2
s

}

, (2.5)

where σs = 10.

An important step is to determine the value of the threshold τLC to use. One possible ap-

proach would be to use the gradient magnitude. For example, the top-right image of Figure 2.3

shows the pixels whose gradient magnitude exceeds a threshold. The result clearly reveals the

11



Figure 2.3: TOP-LEFT: A typical corridor image. TOP-RIGHT: Pixels with gradient magnitude

greater than a threshold are shown in white. BOTTOM-LEFT: Using the separating curve from

Figure. 2.4, the edge pixels mostly follow the boundaries of the wall, door frames, and floor.

BOTTOM-RIGHT: The original image thresholded by a value determined by the separating

curve, thus revealing the structure of the corridor.

edges of the doors, lights, and wall, so that a human observer looking at this type of image

could infer the structure of the scene with little difficulty, as was observed by Lee et al. [16].

As a result, we tried to threshold the image using the average graylevel intensity of these

strong edges. However, the distracting intensity edges caused by the reflections on the floor

skew the computed threshold in such a way as to reduce the quality of the thresholded image.

To fix this problem, we first discard these intensity edges in a manner described in a moment

in order to result in a relatively clean thresholded image. The bottom-right of Figure 2.3 shows

the result of the improved thresholding procedure.

We now describe our approach to determining the threshold value τLC . The intensity edges

that arise due to reflections on the floor tend to have very high intensity values but quite low

gradient magnitude values, the latter being because of the inherent blur that occurs because

floors are not perfectly reflective surfaces. To test this hypothesis, we used our database of over

12



400 images. We manually selected over 800 points on these images that lie on true edges on

the walls in the world (i.e., they lie on door frames and so on), and we also randomly selected

the same number of points that are not on true edges (i.e., they are on the ceiling or the floor).

An SVM-based classifier [5] was used to find the best separating hyperplane to distinguish

between the two classes of data using the intensity value and the gradient magnitude of each

point. Figure 2.4 shows the training values along with the separating curve. (The hyperplane

in the higher dimensional space defined by the polynomial kernel function becomes a curve

when projected back into the original feature space.) For all environments, the equation of the

SVM-based separating curve is

[

a b 1

]
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= 0, (2.6)

where a denotes the intensity I of a pixel and b denotes the gradient magnitude |∇I|.

From the figure, it is clear that taking both the gradient magnitude and intensity value into

account yields better separation than using either alone. We define the set ξ′ to denote the

pixels in the image whose intensity value and gradient magnitude cause them to lie above and

to the left of the SVM-based separating curve.

The average intensity of the pixels in this set determines the threshold that is used for

extracting the main structure in a corridor image:

τLC =
1

|ξ′|
∑

(x,y)∈ξ′

I(x, y). (2.7)

For comparison, Figure 2.5 shows the output of two standard algorithms based on the gray-

level histogram, Ridler-Calvard [29] and Otsu [27], on the same image. Compared with our

approach, the standard techniques mistakenly label reflective pixels on the floor, due to the
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Figure 2.4: Linear-based classification of pixels on horizontal line segments. The x coordinate

is the intensity of the pixel, while the y coordinate is its gradient magnitude. From the training

data, some pixels are edge points (red stars), while others are nonedge points (blue circles).

A polynomial kernel based classifier separates the two groups of points by an optimal curve

(black).

failure of the simplified model of a bimodal gray-level histogram to accurately capture the

subtle complexities of indoor scenes. Table 2.1 provides a quantitative comparison using the

images from our corridor image database. The table shows the percentage of images for

which the thresholded result does not contain spurious pixels on the floor. Figure 2.6 shows

the results of this procedure on a variety of corridor images. As can be seen, this simple

heuristic-based thresholding procedure works surprisingly well on most of the images in our

database. However, it fails when the floor is checkered, or the illumination conditions are

poor. However, it is important to note that contrast reversals do not pose a problem in practice.

In other words, when the floor is darker than the walls the thresholding will cause the floor to

be white (in the thresholded image) while the walls are black, but even so, the distance from

pixels on horizontal line segments near the wall-floor boundary to the structure image will

14



Figure 2.5: Results of two standard thresholding algorithms on the same image as the previous

figure: Ridler-Calvard [29] (left), and Otsu [27] (right). Notice the spurious pixels on the floor

due to reflection and shadows.

remain low. This is because pixels near the wall-floor boundary are also near the boundary of

the structure image, whether the structure image is white on the walls and dark on the floor, or

vice versa.

Ridler-Calvard [29] Otsu [27] Ours

correctness 62% 66% 82%

Table 2.1: Quantitative comparison of our thresholding method with two standard algorithms.

Shown are the percentage of images without spurious pixels on the floor.

2.3 Bottom Score

The vertical line segments provide an important cue to provide independent evaluation of

whether a given horizontal line segment is likely to be on the wall-floor boundary. First, we

discard all vertical line segments whose bottom point does not extend below the middle of the

image. This step helps to ignore vertical line segments that arise due to texture on the wall or

ceiling, since the camera on the robot is low to the ground and facing straight ahead. Then, we

sort the remaining vertical segments according to their x coordinate and connect their bottom

endpoints to yield a polyline that extends from the left side of the image to the right side. Even

though this polyline is a rough approximation of the wall-floor boundary, it is fast to compute

and generally reliable enough to help guide the evaluation. The bottom score of a horizontal

15



Figure 2.6: Results of our proposed threshold method on the sixteen typical corridor images

in Figure 1.1.

line segment ℓh is computed as the distance of all of its pixels to the polyline ℓb:

φb(ℓh) =
∑

(x,y)∈ℓh

d[(x, y), ℓb], (2.8)

where d[(x, y), ℓb] computes the distance between the point (x, y) and the polyline. To nor-

malize the score, we use the Gaussian distribution with a standard deviation σb:

φ̄b(ℓh) = exp

{

−φb(ℓh)

2σ2
b

}

, (2.9)

where σb = 30.
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Figure 2.7: Horizontal and vertical line segments detected in two images. The red ellipses

highlight the horizontal segments with the highest bottom score, due to their proximity to the

bottom endpoints of nearby vertical line segments (Best viewed in color).

Figure 2.7 illustrates this computation for two typical corridor images. The horizontal line

segments that benefit most from this computation are highlighted with red ellipses. We can

see that this computation is especially helpful for reducing the likelihood of considering line

segments on the wall to be part of the wall-floor boundary.

2.4 Homogeneous Score

In many cases, the floor of a typical corridor environment is fairly homogeneous in its color

throughout. In contrast, there tend to be moderate to high amounts of texture on the wall re-

gions due to decorations, posters, door knobs, kick plates, nameplates, windows, and so forth.

Similarly, the lights in the ceiling cause texture in that region as well. To take advantage of this

information, we perform color-based segmentation of the image to support those horizontal

line segments which are located just above large homogeneous regions, since the floor is gen-

erally the largest homogeneous region in the image. In other words, line segment just above a

large homogeneous region are weighted higher.

We employ the MST-based segmentation algorithm of Felzenszwalb and Huttenlocher [11]

because it is computationally efficient, requires few parameters (e.g., the minimum size of a

region), and produces reasonable results. The results of this algorithm on a couple of typical
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Figure 2.8: The result of graph-based segmentation [11] on two corridor images used in Fig-

ure 2.7, with each region assigned a random color. Note that the floor is almost a homogeneous

area in both images, while the wall and doors are divided into several smaller regions.

corridor images are shown in Figure 2.8. Notice that the floor is the largest homogeneous

region in both images, which is often the case in our image database. Occasionally, disturbance

from reflection or texture on the floor prevent this cue from being successful, which helps to

motivate the need for multiple cues.

The homogeneous score of a horizontal line segment is computed as

φ̄h(ℓh) =
|R|

|Rmax|
, (2.10)

where |R| denotes the number of pixels in the region R just below the line segment, and Rmax

is the maximum region size among all the segments found by the MST-based segmentation.

2.5 Detecting the wall-floor boundary

Each horizontal segment ℓh for which Φtotal(ℓh) > τφ, where τφ is a threshold, is retained.

Also, we discard overlapped retained line segments by selecting the lowest one. These re-

maining line segments are then ordered from left to right in the image, and their endpoints are

connected. At the left and right borders of the image, the lines are extended. This results in a

polyline stretching across the image defining the boundary between the wall and the floor.
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2.6 Experimental Results

To test the performance of our algorithm, an image database of more than 400 corridor images

was taken in 20 different buildings exhibiting a wide variety of different visual characteristics.

The images were captured by a Logitech QuickCam Pro 4000 webcam mounted about 30 cm

above the floor on an ActivMedia Pioneer P3AT mobile robot. The images were processed by

an algorithm implemented in the C++ programming language on a 2.4 GHz Core 2 processor

(Dell XPS M1330 laptop). Although the computation time varies somewhat according to the

number of detected line segments, the algorithm runs at approximately 7 frames/sec using

unoptimized code.1

To evaluate the likelihood that a horizontal segment ℓh that can be accepted as a part of the

wall-floor boundary, we compute a weighted sum of scores for three individual visual cues:

Φtotal(ℓh) = wsφs(ℓh) + wbφb(ℓh) + whφh(ℓh), (2.11)

where ws, wb, and wh are the weights. For all environments, the weights for the individual

scores are chosen empirically, which are ws = 1.6, wb = 0.75 and wh = 1.0, respectively, and

the total threshold is τφ = 2.7.

To evaluate the algorithm, the images in the database were manually labeled by clicking

on a number of points and then fitting a B-spline curve to yield a ground truth wall-floor

boundary. We define the error of the algorithm applied to an image as the number of pixels

misclassified as floor or non-floor, normalized by the total number of ground truth floor pixels.

Equivalently, the error can be computed as the sum, over all the columns x = 0, . . . , width−1

in the image, of the difference between the ground truth y coordinate y
(x)
GT and the estimated y

1See http://www.ces.clemson.edu/˜stb/research/floor detection for videos of the results and database.
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Figure 2.9: TOP LEFT: Detected wall-floor boundary by our approach. TOP RIGHT: Ground

Truth of the floor drawn manually. BOTTOM LEFT: Blue shade area shows the misclassified

area. BOTTOM RIGHT: Red shade area indicates the ground truth. Then error rate is rerr =
100 blue

red
%, where the number of pixels in each colored region are indicated in the numerator

and denominator.

coordinate ŷ(x):

rerr =

∑

x

∣

∣

∣
ŷ(x) − y

(x)
GT

∣

∣

∣

∑

x

∣

∣

∣
height− y

(x)
GT

∣

∣

∣

, (2.12)

where the image is of size width×height, and the subtraction in the denominator arises from

the convention that the y coordinate is with respect to the top of the image. We set a threshold

of 10%, so that the segmentation for an image is considered a failure for a particular image

if rerr > 0.1 for that image. Using this convention, our approach correctly detects the floor

region in 89.1% of the image database. This evaluation method is illustrated in Figure 2.9.

Figure 2.10 presents the results of our algorithm on some typical corridor images. The first

row displays wall-floor boundaries that extend upward from left to right in the image, while

the second row shows the reverse situation. In the third row, both sides of the corridor are

visible, so that the boundary extends in both directions. And the fourth row shows floors with
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Figure 2.10: Examples of floor successfully detected by our algorithm. Note the variety of

floor materials, floor reflectivity, relative pose of the floor with respect to the robot, and lighting

conditions (Best viewed in color).

extremely strong reflections on the floor, where the floor and wall are again distinguished us-

ing only low-level information. From these results, we can see that our approach is capable

of detecting floors in corridors under different illumination conditions and perspectives. In

addition, Figure 2.11 shows some successful results on images downloaded from the inter-

net, showing the versatility of the approach. Finally, we apply our algorithm to the video

sequences with a low-pass filter added to consecutive frames. Three sample results are shown

in Figures 2.6, 2.6, 2.6.

Some examples where the algorithm fails are shown in Figure 2.12. In the first image

from the left, the checkered floor lead to many horizontal line segments that are mistakenly

interpreted by our score model, and the graph-based segmentation detects many small pieces
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Figure 2.11: Results of our algorithm on images downloaded from the web (Best viewed in

color).

Figure 2.12: Examples for which our algorithm fails to properly detect the floor. From left to

right, the failures are caused by strong texture on the floor, texture on the wall, an overly dark

image from poor image exposure, and excessive bright lights at the end of the corridor (Best

viewed in color).

on the floor region rather than a single homogeneous segment. For the second image, the wall

texture also results in many horizontal line segments that distract the algorithm. For the third

image, the shadows and reflection dominate the line segment detection due to the poor gain

control of the camera, making the final result less precise. And for the fourth image, the far

glass door with no absolute edges makes it difficult for even a human observer to precisely

locate the wall-floor boundary, though the results of the algorithm are even worse due to the

lack of horizontal segments in that region of the image.

It is difficult to compare these results with existing techniques. The work of Hoiem et

al. [13] is aimed primarily at outdoor environments, while the recent work of Lee et al. [16] is

designed to reconstruct indoor scenes when the ceiling is visible. Neither system is real time.

Nevertheless, Figure 2.13 shows some successful results of our algorithm working on three of

the failure examples given in the latter paper. Perhaps the closest work to our own in terms of

purpose and scope is that of Kim and colleagues [14, 7], which requires two image frames to

segment the floor from the rest of the scene. Because their approach does not contain a specific
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Figure 2.13: TOP ROW Original Images. MIDDLE ROW Failure results from Lee et al. [16].

BOTTOM ROW Our algorithm working on three failure examples (Best viewed in color).

mechanism to handle strong reflections, it is doubtful that it would work successfully on the

many images in our database that contain such extreme lighting conditions. Similarly, the

obstacle avoidance system of Lorigo et al. [19] is not designed to handle strong reflections.

The output of our system on videos of three different corridors are shown in Figures 2.6

through 2.6.
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Frame 014 Frame 065 Frame 137 Frame 197 Frame 233

Frame 279 Frame 507 Frame 581 Frame 628 Frame 642

Frame 714 Frame 746 Frame 798 Frame 882 Frame 928

Figure 2.14: Results of our algorithm on video sequence 1 (Best viewed in color).

Frame 002 Frame 041 Frame 091 Frame 161 Frame 209

Frame 245 Frame 285 Frame 319 Frame 357 Frame 392

Frame 428 Frame 475 Frame 534 Frame 582 Frame 619

Figure 2.15: Results of our algorithm on video sequence 2 (Best viewed in color).
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Frame 001 Frame 028 Frame 065 Frame 089 Frame 125

Frame 173 Frame 209 Frame 234 Frame 280 Frame 307

Frame 330 Frame 336 Frame 395 Frame 431 Frame 497

Figure 2.16: Results of our algorithm on video sequence 3 (Best viewed in color).
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Chapter 3

Applying Floor Segmentation to

Estimating Minimalistic Corridor

Geometry

In this chapter, we describe a technique to recover minimalistic geometry representation of an

indoor scene [23]. The representation involves three lines separating the scene into left-wall

region, right-wall region, and the floor area. The technique combines our floor segmenta-

tion algorithm (described in the previous chapter) with an orientation line estimation algo-

rithm [24].

3.1 Orientation Line Estimation

We model the geometry of a corridor by three lines in the image. A vertical line indicates

the orientation line, or centerline, of the corridor, which passes through the vanishing point.

The wall-floor boundary is then captured by two diagonal lines that meet at the same point on

the orientation line. Our approach, then, consists of two steps. First is the estimation of the



orientation line in the image by combining multiple cues. Second is the estimation of the wall

floor boundary.

In this section we describe the orientation line estimation by Murali and Birchfield [24].

This approach uses the median of bright pixels (ceiling lights), maximum entropy, and max-

imum symmetry measures in the corridor image to determine its center and therefore the

orientation. This approach has several advantages over existing techniques: It is simple, com-

putationally efficient, and yields good results even for low-resolution images.

3.1.1 Median of bright pixels

The ceiling lights, which are usually symmetric with respect to the main corridor axis, provide

an important cue. Two difficulties are the low resolution of the image and the fact that some-

times the lights are not in the center of the corridor but rather on the sides. A simple technique

that overcomes these difficulties is to apply the k-means algorithm [20] to the graylevel values

the image, with k = 2. The median horizontal position of the brighter of the two regions is

calculated, yielding an estimate of the center of the corridor.

3.1.2 Maximum entropy

It has been found empirically that, as a general rule, entropy is maximum when the camera is

pointing down the corridor [25]. The reason for this perhaps surprising result is that such an

orientation causes scene surfaces from a variety of depths to be visible, yielding an increase

of image information at this orientation. In contrast, when the robot is turned so that it faces

one of the side walls, the range of visible depths is much smaller and therefore the variety of

pixel intensities usually decreases. A similar observation has been noted by other researchers

in the context of using omnidirectional images [2, 9].
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3.1.3 Symmetry by mutual information

Symmetry is defined as the invariance of a configuration of elements under a group of au-

tomorphic transformations [37]. In the real world, objects are not perfectly symmetric and

moreover, the symmetries are distorted by perspective projection, occlusion, and other imag-

ing effects. Therefore, a continuous value of symmetry is more appropriate, which can be

formed by comparing the two regions on either side of the axis using mutual information.

Mutual information is a measure of the amount of information that one random variable con-

tains about another random variable.

3.1.4 Combining the measurements

The estimations are combined as a weighted average: f(I) = αl(I)fb(I) + αh(I)fe(I) +

αs(I)fs(I), where fb, fe, and fs are normalized value of median of bright pixels, maximum

entropy, and symmetry by mutual information, respectively. Because of the reliability of the

bright pixels, we set αl = 0.8, αh = αs = 0.1. Sample results are shown in the first two rows

in Figure 3.1.

3.2 Wall-floor boundary

We adapt the floor segmentation method described in Chapter 2 which has been shown to be

successfully robust to reflections on the floor. For the seven different resolutions, we compute

the minimum acceptance length of the horizontal line segments lh as lh = ln ηd, where d =
√
w2 + h2 is the length of the diagonal of the image, w and h are the width and height of the

image, respectively, and η = 5 is a scaling factor. Sample result are shown in the last two rows

in Figure 3.1.
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According to the floor segmentation method, there are three different scores (structure score,

homogeneous score, and bottom score) that contribute to the final wall-floor boundary detec-

tion. When applying the method to different resolutions, we notice the structure score always

shows the best accuracy while the bottom score always fails when decreasing the resolution.

Therefore, we adapt the weights for the three scores according to the resolution so that the

Φtotal(ℓh) is relatively high for line segments near the wall-floor boundary. At the same time,

when combining with the orientation line, we compute the intersection of the orientation line

and the wall-floor boundary, which is considered as the vanishing point. Then we apply the

line-fitting algorithm to both half wall-floor boundaries separated by the vanishing point. Us-

ing the slopes and the computed vanishing point, it is easy to find the two terminal points on

the image border. Finally, we connect the vanishing point, two terminal points, as well as the

orientation line and obtain the structure of the corridor. Some sample results are shown in

Figures 3.2.

3.2.1 Width of the corridor

The distance between the two end-points in the wall-floor boundary yields the width of the

corridor (in pixels). We use a homography obtained during a calibration process to transform

to world coordinates.

3.2.2 Lateral position in the corridor

The position of the orientation line with respect to the wall-floor boundaries will give the

lateral position in the corridor. The laser readings were converted from polar to Cartesian to

give a top-down measurement of the corridor at every instance of the image collection. A

homography between a square pattern on the floor of the corridor and its image (4 points)

gives the image to top-down calibration in feet. Several examples are shown in Figure 3.3.
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3.3 Experimental Results

Estimating the pose of the robot or the orientation of the robot in a typical indoor corridor is

one of the necessary tasks for robot exploration/navigation. While many authors have con-

tributed to this work, by estimating vanishing points in a corridor [32, 1, 22, 28], the emphasis

is on clustering detected lines, which perform poorly in low-resolution and textureless im-

ages because lines are not easily detected in such images. A more recent approach by Kong

et al. [15] approaches the problem similarly but uses texture orientation rather than explicit

line detection. In their approach, Gabor filters yield texture estimates, and an adaptive voting

scheme allows pixels to decide the confidence of an orientation. Not only is their approach

much more computationally intensive than ours, but with indoor low-resolution images the

results are significantly less accurate. See Figure 3.5 for some examples.

For orientation, we collected data for 4 different buildings, 8 unique corridors (1 training

+ 7 for testing). For every unique corridor, at equally spaced intervals along the corridor (15

ft), we rotated the robot from −20◦ to +20◦ and collected corresponding odometry (heading),

laser readings (span of −90◦ to +90◦) and images. We ran the entropy detector, light detector

and symmetry detector on the images and compared with ground truth (odometry and/or laser).

Since a linear relationship exits between the detected pixel location corresponding to the center

of the corridor and the robot orientation as explained in previous sections, we use either the

estimate fl or (fh + fs)/2.

For wall-floor boundary and corridor reconstruction, we collected data for 11 distinct cor-

ridors in 6 different buildings. For each corridor, we drove the robot three times (middle,

left, right separated by 1.5 feet) along each corridor and collected images along with their

corresponding laser readings (−90◦ to +90◦ sweep). The Normalized root mean square error

(NRMSE) for estimating the lateral position of the robot for three runs is illustrated in 3.4.

Sample results of our algorithm on indoor database are shown in Figure 3.6. The output of
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our algorithm on videos of three different corridors are shown in Figures 3.7 through 3.9. Em-

pirically, we found that when approaching the end of a corridor, the angle between the two

wall-floor boundary lines increases toward 180◦. Therefore, this could be used to detect the

end of a corridor.
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320x240 160x120 80x60 64x48

32x24 16x12 8x6

320x240 160x120 80x60 64x48

32x24 16x12 8x6

Figure 3.1: TOP TWO ROWS: The orientation line estimate (vertical green line) for the images

shown in Figure 1.2. Down to a resolution of 16×12, the results remain essentially unchanged.

Only at the lowest resolution of 8 × 6 is the technique unable to recover the orientation line

accurately. BOTTOM TWO ROWS: The wall-floor boundary found by the algorithm described

in Chapter 2 for the different resolution images of Figure 1.2. The accuracy degrades slightly

until the resolution of 32× 24, after which the errors become more pronounced.
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320x240 160x120 80x60 64x48

32x24 16x12 8x6

Figure 3.2: The three-line model estimate of the corridor found by combining the orientation

line with the wall-floor boundary, on the same images. As before, the structure of the corridor

remains intact even in the resolution of 32× 24, with only slight errors visible in 16× 12.
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Figure 3.3: Corridor structure reconstruction from the wall-floor boundary, displayed as a

top-down view. The first row in blue shows the ground truth location of the walls (Cartesian

conversion of polar laser readings), and the next 6 rows in red show the reconstruction results

from the wall-floor boundaries on different resolution images. Each row represents a different

run of the robot in the same corridor, with the robot placed at a different lateral position in the

corridor for each run (The position of the robot is shown by the dotted line at 0).
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Figure 3.4: TOP: Normalized root mean square error (NRMSE) for estimating the lateral

position of the robot for three runs in a single corridor. The structure was accurately captured

in all three cases. BOTTOM: Mean NRMSE for the estimation of the corridor width. There

is not much difference in estimation error rates across the different resolutions, and in fact the

error drops in some cases for 32x24 and 16x12 sizes due to the removal of noise and artifacts

by downsampling.
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320x240 80x60 32x24

Figure 3.5: Comparison between our results (three yellow lines) in the first and the third rows

and those of Kong et al. [15] (pink region) in the second and the fourth rows. Our algorithm

achieves more accurate estimation of both the orientation line and the wall-floor boundary in

indoor scenes, particularly at low resolutions.
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320x240 80x60 32x24

Figure 3.6: Additional results for other corridors, including one without ceiling lights in the

first row. In some case, the low-resolution image yields more accurate results.
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Frame 002 Frame 053 Frame 102

Frame 149 Frame 199 Frame 247

Frame 306 Frame 354 Frame 402

Figure 3.7: Minimalistic geometry estimation at four different resolutions. Sequence 1.
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Frame 002 Frame 057 Frame 122

Frame 174 Frame 214 Frame 271

Frame 321 Frame 373 Frame 425

Figure 3.8: Minimalistic geometry estimation at four different resolutions. Sequence 2.
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Frame 001 Frame 015 Frame 033

Frame 045 Frame 058 Frame 068

Frame 083 Frame 119 Frame 141

Figure 3.9: Minimalistic geometry estimation at four different resolutions. Sequence 3.
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Chapter 4

Conclusions and Discussion

We have presented an image-based floor segmentation algorithm using an uncalibrated cam-

era. The floor is detected by a camera mounted on a mobile robot, which maintains a low

perspective of the scene. The novel approach combines the results of applying three different

visual cues to test the validity of horizontal line segments detected in the image. Our ap-

proach achieves nearly 90% detection of the wall-floor boundary on a rather large database

of over 400 images captured in a variety of environments exhibiting difficult conditions such

as extreme reflection. The algorithm is suitable for nearly real-time mobile robot applications

using an off-the-shelf camera. One limitation of the current approach is its tendency to get

confused when the floor is highly textured, or when the image is especially dark due to poor

gain control.

In addition, applying our floor segmentation algorithm to extract a minimalistic geometric

representation of a typical indoor corridor environment using low resolution images. Moti-

vated by the “selective degradation hypothesis”[17], our approach exploits the redundancy of

image information in order to extract useful information for mobile robotic tasks with min-

imal processing. The proposed algorithm was tested on images from several different corri-

dors, showing that the accuracy of the estimation of the orientation line or corridor geometry



changed very little even when more than 99% of the original information was discarded by

downsampling the image to an extremely low resolution. The extension results can be seen as

an exploration into identifying how much information is needed for basic mobile robot tasks

such as corridor exploration and navigation. By reducing the resolution required for these ba-

sic tasks, the CPU time is freed for other tasks that potentially require higher resolutions and

more involved processing.

Future work includes integrating more visual cues into the floor segmentation algorithm and

applying Adaboost training to obtain a set of parameters for each visual cues.
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