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Abstract

Using tools from dynamical systems and systems identification we develop a framework for the study
of primitives for human motion, which we refer to as movemes. The objective is understanding human
motion by decomposing it into a sequence of elementary building blocks that belong to a known al-
phabet of dynamical systems. In this work we address the problem of defining conditions under which
collections of signals are well-posed according to a dynamical model class M and then can generate
movemes. Based on the assumption of well-posedness, we develop segmentation and classification al-
gorithms in order to reduce a complex activity into the sequence of movemes that have generated it.
Using examples we show that the definition of well-posedness can be applied in practice and show
analytically that the proposed algorithms are robust with respect to noise and model uncertainty. We
test our ideas on data sampled from five human subjects who were drawing figures using a computer
mouse. Our experiments show that we are able to distinguish between movemes and recognize them
even when they take place in activities containing more than one moveme at a time.

Keywords: identification, parameter estimation, classification, signal segmentation, data acquisition,
laboratory experiments

1 Introduction

Building systems that can detect and recognize human actions and activities is an important goal
of modern engineering. Applications range from human-machine interfaces to security to entertain-
ment. With the development of information technology we can expect that computer systems will
be increasingly embedded in our environment, so that human-machine interaction will need interfaces
that are easier to use and more natural. In particular the possibility of interacting with comput-
erized environment without the need for special external equipment is attractive. As humans use
their visual system and auditory system to communicate, several works (see for example (Laptev and
Lindeberg, 2001; Waldherr et al., 1998) and the earlier work on building human-machine interfaces
using vision (Goncalves et al., 1995; Munich and Perona, 1996; Wilson and Bobick, 1995; Yacoob and
Davis, 1996; Wellner, 1991)) ask the question of whether it is possible to develop computerized equip-
ment able to communicate with humans in similar way. As described extensively in (Collins et al., 2000)
there is also an immediate need for automated surveillance systems in commercial, law enforcement,
and military applications. Surveillance cameras are present in banks, stores, and parking lots; it is
desirable to develop continuous automated monitoring to alert security officers about suspicious human
activity while there is still time to prevent a possible crime. Other applications include video-games and
animation where virtual human motion is based on the learning and description of real human motion
(see for example (Zordan and Hodgins, 1999) and (Silva et al., 1997)). Another important application
is biomechanics (see for example (Pedotti et al., 1989)).

A fundamental problem in detecting and recognizing human action is one of representation. Our
point of view is that human activity should be decomposed into building blocks which belong to an
“alphabet” of elementary actions; for example the activity “answering the phone” could be decomposed
into the sequence “step-step-step-reach-lift”, where “step”, “reach” and “lift” may not be further de-
composed. We refer to these primitives of motion as movemes. Our aim is then to build an alphabet of
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movemes which one can compose to represent and describe human motion similar to the way phonemes
are used in speech. In speech recognition phonemes are defined to be the smallest units of sound from
which words are composed and hidden Markov models are widely used to separate a stream of speech
into discrete phonemes that can be then reassembled into words (Rabiner and Juang, 1993). The word
“moveme” intended as primitive of motion was invented by (Bregler and Malik, 1997). They studied
periodic or stereotypical motions such as walking or running where the motion is always the same
and therefore their movemes, like the phonemes, were repeatable segments of trajectory. (Goncalves
et al., 1998) studied motions that were parametrized by an initial condition and a target. They pro-
posed that movemes ought to be parametrized by goal and style parameters. Their moveme models
are phenomenological and non-causal. In this paper we attempt to define movemes in terms of causal
dynamical systems.

The idea of dynamical primitives of motion has also appeared in neurobiology studies. (Bizzi and
Mussa-Ivaldi, 1999) pose the question whether the motor behavior of vertebrates is based on simple
units (motor primitives) that can be combined flexibly to accomplish a variety of motor tasks and
experiments have provided evidence for a modular organization of the spinal cord in frogs and rats.
(Mussa-Ivaldi et al., 1994) ran experiments which showed that the fields induced by the focal activation
of the spinal cord follow a principle of vectorial summation, so that a variety of motor control polices
can be obtained from a simple linear combination of few control modules. This is suggesting that we
could represent elementary actions in terms of vector fields (dynamical systems) and generate more
complicated trajectories by properly combining such vector fields. Experimental results in (Kawato,
1999) and (Flanagan and Wing, 1997) support the idea that kinematic and dynamic internal models
are utilized in movement planning and control. The internal model hypothesis proposes that the brain
acquires an inverse dynamic model of the object to be controlled through motor learning after which
motor control can be executed mostly in a feed-forward manner. This way standard motor tasks for
which the brain has already learned an inverse dynamic model can be accomplished using a feed-
forward control which takes the desired trajectory as input and produces the right motor command to
the controlled object. Under normal conditions, the inverse dynamic model calculates motor commands
which appropriately compensate the dynamics, so that the realized trajectory is a good reproduction
of the desired one. Thus, the role of dynamics in the description of human motion seems to be an
important one.

What is the alphabet of movemes? Which are the dynamical models that we should use to represent
them? Can a continuous trajectory of a human body be decomposed automatically into its component
movemes? To answer these questions we introduce a formal definition of moveme and we set up clas-
sification and segmentation problems which in the dynamical systems framework can be appropriately
formalized. Standard system identification tools and stability arguments can then be applied to derive
analytical error analysis for classification and segmentation algorithms so as to obtain performance
estimates in the presence of noise and modeling uncertainties.

This paper is organized as follows. In Section 2 we define movemes formally according to a dynam-
ical systems framework and provide a practical well-posedness definition that establishes when sets of
actions can define movemes. We introduce the classification problem as a standard problem of pattern
recognition (Bishop, 1995; Vapnik, 1995). In Section 3 we introduce the segmentation problem and in
Section 4 propose a solution for it. The problem of segmenting data streams originating from different
unknown or partially known processes which alternate in time is a general problem of interest to vari-
ous areas, see for example (Gustafsson, 2000; Lavielle, 1998; Willsky and Jones, 1976). We propose a
solution to the problem in our particular scenario in which each one of the segments has been generated
from the perturbed version of a linear dynamical system belonging to a finite known set of possible
linear models. By using system identification techniques (Ljung, 1999; Söderström and Stoica, 1989)
and pattern recognition techniques (Bishop, 1995; Vapnik, 1995) we develop off-line segmentation and
classification algorithms and provide an analytical error analysis. In Section 5, we test our ideas on data
sampled from five human subjects engaged in drawing houses, cars, ships and suns using a computer
mouse. We show how to find movemes from elementary actions (such as reaching a point or drawing
a line) and show how to check for well-posedness. We find a set of motions which we refer to as “free
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motion” for which the well-posedness test fails, and therefore cannot define movemes. We then apply
the segmentation algorithm using the identified movemes to a stream of data of different subjects and
observe a performance (correct identification of segmenting points and correct classification of the com-
posing segments) of about 90%. As a final application we show how we can recognize shapes belonging
to different categories (ship, car, house) based on an elementary categorization algorithm that uses the
segmentation algorithm output for the discrimination. We obtain a categorization error of 5%.

2 Dynamical Definition of Moveme

We provide in this section some theoretical background, a formal definition of moveme in the dy-
namical systems framework, and properties which descend from the proposed definition. We introduce
the classification problem and provide a link between the given theoretical notions with properties that
classes of actions should have in order to define what we call a well-posed set of movemes.

2.1 Definitions, properties, choice of model class

Let M(Θ) denote a linear time invariant (LTI) system class parameterized by Θ ∈ E, E a linear
space, and let U denote a class of inputs. Let y(t) = Y (M(Θ)|u,x0

)(t), for t ≥ t0, denote the output of
M(Θ) once parameter Θ ∈ E, input u ∈ U , and initial conditions x0 have been chosen. Let θ ∈ E′ ⊂ E
be a parameter lying in a subspace of E, and define a map Υ : E → E′. We write θ = Υ(Θ) to represent
the transformation from Θ ∈ E to the reduced set of parameters θ ∈ E′.

Definition 2.1. Let M1 = {M(Θ)|θ ∈ C1} and M2 = {M(Θ)|θ ∈ C2} denote two subsets in M with
Cj ⊂ E′ for j = 1, 2. M1 and M2 are said to be dynamically independent if

(i) the class of systems M and the class of inputs U are such that

Y (M(Θ1)|u1,x0
)(t) = Y (M(Θ2)|u2,x0

)(t), ∀t ≥ t0

if and only if (Θ1, u1) = (Θ2, u2) for u1 ∈ U and u2 ∈ U ;

(ii) the sets C1 and C2 are non empty, bounded, and have trivial intersection, i.e. C1
⋂

C2 = {∅}.

Each of the elements of a set M of mutually dynamically independent model sets is called a moveme.

Definition 2.2. A signal y(t), t ∈ (t0, tM ) is said to be segmentable if there exists a sequence of times
τ0 < τ1 < ... < τl−1 < τl, l ≥ 2, with t0 = τ0 and τl = tM , such that

y(t) = yi(t − τi−1) := Y (M(Θi)|ui,xτi−1
)(t − τi−1), t ∈ [τi−1, τi]

for some ui, Θi, xτi−1
with (Θi, ui) �= (Θi−1, ui−1) for any i. The sequence (y1(t − τ0), ..., yl(t − τl−1))

is referred to as the segmentation of y(t).

From these definitions some straightforward properties follow.

Proposition 2.1. A moveme output yi(t) = Y (M i(Θ∗)|u∗,xt0
)(t), t ∈ [t0, T ], is not segmentable.

Proof. Assume by contradiction that (y1(t − t0), y2(t − τ)) is the segmentation of yi(t) for some τ ∈
(t0, T ). Then from Definition 2.2 y1(t − t0) = Y (M(Θ1)|u1,xt0

)(t − t0), t ∈ [t0, τ ] and y2(t − τ) =

Y (M(Θ2)|u2,xτ
)(t − τ), t ∈ [τ, T ]. Also y1(t − t0) = Y (M i(Θ∗)|u∗,xt0

)(t − t0), t ∈ [t0, τ ] and y2(t −

τ) = Y (M i(Θ∗)|u∗,xτ
)(t − τ),t ∈ [τ, T ]. Therefore Y (M(Θ1)|u1,x0

)(t − t0) = Y (M(Θ∗)|u∗,x0
)(t − t0),

Y (M(Θ2)|u2,xτ
)(t − τ) = Y (M(Θ∗)|u∗,xτ

)(t − τ) which by (i) of Definition 2.1 implies (Θ1, u1) =
(Θ∗, u∗), (Θ2, u2) = (Θ∗, u∗) which in turn implies (Θ1, u1) = (Θ2, u2), contradicting Definition 2.2.

Proposition 2.2. If y(t), t ∈ [t0, T ] is segmentable, then the segmentation is unique.
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Proof. It is sufficient to prove this for the case in which y(t) is composed of only two segments. Let
(y1(t − t0), y2(t − τ∗)) be the segmentation of y(t). Suppose there is a τ < τ∗ such that (ỹ1(t −
t0), ỹ2(t − τ)) is another segmentation, then since τ < τ∗ we have by Definition 2.2 ỹ1(t − t0) =
Y (M(Θ1)|u1,xt0

)(t − t0), t ∈ [t0, τ ], and ỹa
2 (t − τ) = Y (M(Θ1)|u1,xτ

)(t − τ) for t ∈ [τ, τ∗] while

ỹb
2(t − τ∗) = Y (M(Θ2)|u2,xτ∗

)(t − τ∗) for t ∈ [τ∗, T ] which means by Definition 2.2 that ỹ2(t − τ)
is segmentable and its segmentation is (ỹa

2 (t − τ), ỹb
2(t − τ∗)). Therefore (ỹ1(t − t0), ỹ2(t − τ)) is not

a segmentation according to Definition 2.2 since ỹ2(t − τ) is not output of model M for a choice of
parameter, initial conditions and input as the definition establishes. The same argument holds for
τ > τ∗. In the case in which y(t) is composed by more than two segments we can apply the same
argument by considering two segments at a time.

In this paper, we choose our model class M and input u as asymptotically stable linear systems
driven by a unit step input with full state output:

ẋ = Ax + b

y = x , (1)

where A ∈ R
n×n, x = (x1, ..., xn) ∈ R

n, b ∈ R
n, so that Θ = (A|b) ∈ E = R

n×(n+1) and θ = A ∈ E′ =
R

n×n, with Υ(A|b) = A. For such a class of models we make the following assumption.

Assumption 2.1. Given x(t) as the output of model (1) we assume that the initial condition x0 is
such that for any v ∈ R

n+1,

vT x(t) = 0, t ∈ [t1, t2], t2 > t1 =⇒ v = 0,

where x = (xT , 1)T .

This assumption means that the description that model (1) provides for x(t) is minimal in the
sense that x(t) cannot also be described by a lower order dynamical system. In fact if vT x(t) = 0,
t ∈ [t1, t2], t2 > t1 for some v �= 0 then xn(t) = α0 +α1xi(t)+ ....+αn−1xn−1(t) for any t, therefore the
dynamics can be described just in terms of x1(t), ..., xn−1(t) and xn(t) can be derived algebraically. A
direct consequence of such an assumption is that we have a one-one correspondence between x(t) and
parameters (A|b) of model (1), so that we have the following lemma.

Lemma 2.1. Let x(t) and z(t) be generated by two LTI systems

ẋ = A1x + b1

ż = A2z + b2

and let Assumption 2.1 hold. Then z(t) = x(t) for all t if and only if (A1|b1) = (A2|b2).

Proof. (⇐) If (A1|b1) = (A2|b2) then z(t) = x(t) for all t by uniqueness of solutions.
(⇒) If z(t) = x(t) for all t then ż(t) = ẋ(t) for all t, so that A1x + b1 = A2z + b2. This implies
[(A1|b1)−(A2|b2)]x(t) = 0 for all t, which by Assumption 2.1 (applied to each column) implies (A1|b1) =
(A2|b2).

This lemma shows that property (i) of Definition 2.1 is satisfied by our choice of M and U . Property
(ii) is verified by choosing for example Cj , j = 1, ...,m, as balls in R

n×n with centers Aj
c ∈ R

n×n,
j = 1, ...,m, and radii rj , such that:

Cj = Brj
(Aj

c) , j = 1, ...,m

Cj
⋂

Ck = {∅}, j �= k
(2)

where m is the number of movemes and the matrix norm is the Frobenius norm. In what follows we as-
sume that the sets Cj are described by equation (2). Then we have constructed a set M = {M1, ...,Mm}
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of m movemes where Mk = {M((A|b))|A ∈ Ck}, for k ∈ {1, ...,m} and M is in the form given by equa-
tion (1).

Given any signal x(t) we can determine a good representative of such a signal in the class of models
(1) by minimizing the cost function (see for example (Ljung, 1999)):

(Â|b̂) = arg min(A|b)

1

2

∫ T

t0

(ẋ − (A|b)x)T (ẋ − (A|b)x)dt (3)

with x = (xT , 1)T , which gives the least squares estimate of parameters (Â|b̂) so to get the estimate of
x in model class (1) as

˙̂x = Âx̂ + b̂, x̂(t0) = x(t0).

In the case in which x(t) has been generated by (1), by virtue of Assumption 2.1 it is easy to check

that (3) leads to (Â|b̂) = (A|b), so that if A ∈ Cj , for some j ∈ {1, ...,m} we can classify x(t) as output
of moveme M j just by finding k ∈ {1, .., j, ..m} such that Â ∈ Ck. This is equivalent by virtue of (2)
to finding k ∈ {1, .., j, ..m} such that ‖Â − Ak

c‖ ≤ rk, whose solution is unique since the sets Ck are all
not intersecting. Then

argk∈{1,.,j,..,m}{‖Â − Ak
c‖ ≤ rk} = argk∈{1,.,j,..,m}{‖A − Ak

c‖ ≤ rk} = j

The following section addresses the same classification problem in a more general situation in which
x(t) has been generated by a perturbed version of system (1).

2.2 Classification Problem

Let the signal x(t) be generated by the perturbed version of (1):

ẋ = Ax + b + d(t)

y = x
(4)

with A ∈ Cj , for some j ∈ {1, ...,m} and d(t) is a bounded realization of white noise. Under what
conditions on A and d(t) can we still classify x(t) as output of moveme M j? Since A ∈ Cj , there exists
δ < rj such that A = Aj

c + δU with U a unit norm matrix and Aj
c center of Cj . Then system (4)

becomes
ẋ = (Aj

c + δU)x + b + d(t)

y = x .
(5)

Then the problem of classifying x(t) as output of moveme M j becomes the same as identifying j in
system (5) for some conditions on δ and d(t). In the previous section we showed that if d(t) = 0 then we
can exactly identify Aj

c +δU and then correctly classify x(t). The presence of d(t) induces an estimation
error so that Â will not be equal to Aj

c + δU , but it is not necessary to achieve equality for our purpose
as the following lemma shows.

Lemma 2.2. Let x(t), t ∈ [t0, T ] be generated by (5), where Aj
c is the center of Cj for some j ∈ {1, ...,m}

as in (2). Let Â be the least squares estimate according to (3). There exist positive constants d and δ
such that if δ ≤ δ and ‖d(t)‖ ≤ d, then

argk∈{1,...j,...m}{‖Â − Ak
c‖ ≤ rk} = j

Proof. By equation (3) we have

(Â|b̂) =

(

∫ T

t0

ẋ(t) x(t)T dt

) (

∫ T

t0

x(t) x(t)T dt

)−1
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where we can invert
(

∫ T

t0
x(t) x(t)T

)

if either d(t) = 0 by Assumption 2.1, or d(t) �= 0 by the fact

that d(t) is realization of white noise that is uncorrelated in time. Using equation (5), this expression
becomes

(Â|b̂) = (Aj
c + δU |b) +

(

∫ T

t0

d(t)x(t)T dt

)(

∫ T

t0

x(t) x(t)T dt

)−1

so that

(Â|b̂) − (Aj
c|b) = (δU |0) +

(

∫ T

t0

d(t)x(t)T dt

)(

∫ T

t0

x(t) x(t)T dt

)−1

.

Thus we have
‖Â − Aj

c‖ ≤ ‖(Â|b̂) − (Aj
c|b)‖ ≤ δ + d c

where δ and d are upper bounds on δ and d(t), and c is a suitable positive constant which exists since
x(t) is bounded by the stability properties of the dynamics. Then in order for ‖Â − Ak

c‖ ≤ rk to hold
for k = j it is sufficient that

‖Â − Aj
c‖ ≤ δ + d c ≤ rj (6)

which is verified if, for example, δ = rj/2 and d = rj/(2c), which give upper bounds on δ and d(t).
Note that the uniqueness of the solution for k comes from the fact that the sets Ck, Cj for k �= j are not
intersecting as equation (2) guarantees. If such a requirement is not satisfied even when equation (6)
holds, then the solution k ∈ {1, ...j, ...m} of ‖Â−Ak

c‖ ≤ rk may not be unique, leading to ambiguity in
the classification.

2.3 Well-posedness

As the previous section highlighted, the basic requirement for solving the classification problem is
the one of having non intersecting sets in parameter space characterizing the sets of dynamical models
M j , j = 1, ...,m. In practice the sets Cj and Ck, j �= k may be not defined a priori but are derived from
finite sets of signals Sj and Sk, whose characteristics make each element of one set different from each
element of the other and therefore we can say that they define two classes of signals. When can these two
classes of signals define two movemes M j , Mk according to Definition 2.1? Let the two classes Sj and
Sk be composed by signals sj

i (t) = Y (M(Θj
i )|xj

0i,u
j
i
)(t), for sj

i (t) ∈ Sj , and sk
i (t) = Y (M(Θk

i )|xk
0i,u

k
i
)(t),

for sk
i (t) ∈ Sk. Let FM be an estimation procedure establishing a one to one mapping between the

signal Y (M(Θ)|x0,u)(t) and the couple (Θ, u) which exists by virtue of (i) of Definition 2.1 Then we
have

(Θk
i , uk

i ) = FM (sk
i (t)) sk

i (t) ∈ Sk

(Θj
i , u

j
i ) = FM (sj

i (t)) sj
i (t) ∈ Sj .

Let fs : (E×U) → E be the selection operator, such that fs(Θ, u) = Θ, which selects the first element of
the couple (Θ, u). Then define fM := Υ◦fs◦FM , which associates to each signal s(t) the corresponding
parameter θ lying in E′ ⊂ E. We can then write that Cj is the image of Sj through fM and the same
for Ck:

fM (Sj) = Cj

fM (Sk) = Ck.
(7)

Definition 2.3. Classes of signals Sj and Sk with elements sj
i (t) = Y (M(Θj

i )|xj
0i,u

j
i
)(t), for sj

i (t) ∈ Sj ,

and sk
i (t) = Y (M(Θk

i )|xk
0i,u

k
i
)(t), for sk

i (t) ∈ Sk, such that the corresponding sets Cj and Ck given in

(7) are non intersecting, that is Cj
⋂

Ck = {∅}, are said to be well-posed classes according to model M .
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From this definition it follows immediately that well-posed classes of signals define movemes according
to Definition 2.1. In practice we have access to a finite set of signals, Sj = {sj

1(t), ..., s
j
nj

(t)} and

Sk = {sk
1(t), ..., sk

nk
(t)}, which belong to the two classes Sj and Sk, with sj

i (t) = Y (M(Θj
i )|xj

0i,u
j
i
)(t)

for i ∈ {1, ..., nj} and sk
i (t) = Y (M(Θk

i )|xk
0i,u

k
i
)(t) for i ∈ {1, ..., nk}. Let Ĉj and Ĉk be the images,

through fM , of the sets Sj and Sk respectively. By construction we have Ĉk ⊂ Ck and Ĉj ⊂ Cj , so that
potentially we can have trivial intersection between Ĉj and Ĉk, and a no-empty intersection between
the sets Ck and Cj . This creates a problem since if we check Definition 2.3 with Ĉj and Ĉk, which are
the only ones to which we have access, the classes of signals Sj and Sk turn out to be well-posed. The

Sj Sk Sj Sk

fMfMfMfM

Cj Ck Ĉj Ĉk

Figure 1: Relation between sets Ĉj and Ĉk and Cj and Ck.

situation is depicted in Figure 1. The issue comes from the fact that we will use the light sets (Ĉj and
Ĉk) for solving the classification problem ignoring the existence of the dark region that is generating
signals with undecidable class. Then, one needs to check if Sk and Sj are well-posed. The following
lemma gives a possible way to check for well-posedness without knowing the sets Cj and Ck.

Lemma 2.3. Let y(t) = Y (M(Θ)|u,x0
)(t) denote the output of model M for a choice of Θ, u and x0.

Assume to fix u, x0 and Θ|E−E′ , so that y(t) = Y (M(θ))(t), and let the classes Sj and Sk be defined
as

Sj = {y(t)|y(t) = Y (M(θ)) and gj(y, ẏ, t) = 0, hj(y, ẏ, t) ≤ 0}

Sk = {y(t)|y(t) = Y (M(θ)) and gk(y, ẏ, t) = 0, hk(y, ẏ, t) ≤ 0}

for some functions gj, gk, hj and hk. Then the classes of signals Sj and Sk are well-posed if and only
if the system

y(t) = Y (M(θ))(t)

gj(y, ẏ, t) = 0

hj(y, ẏ, t) ≤ 0

gk(y, ẏ, t) = 0

hk(y, ẏ, t) ≤ 0

(8)

is infeasible.

Proof. (⇒). Let us show that well-posed classes Sj and Sk imply infeasibility of (8). According to
Definition 2.3 this is equivalent to showing that non-intersecting sets Cj and Ck (defined in equation (7))
imply infeasibility of the system of equations (8). Let again FM be the one to one mapping between
the signal Y (M(Θ)|x0,u)(t) and the couple (Θ, u) which exists by virtue of (i) of Definition 2.1, and
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since input u, initial condition x0 and Θ|E−E′ have been fixed, FM becomes one to one correspondence
between y(t) = Y (M(θ))(t) and θ. Then we can redefine the sets Cj and Ck as

Cj = {θ|θ = FM (y(t)), and y(t) ∈ Sj} (9)

and
Ck = {θ|θ = FM (y(t)), and y(t) ∈ Sk .} (10)

If (8) is feasible then there exist y(t) such that y(t) ∈ Sj and y(t) ∈ Sk and also there exist θ∗ : y(t) =
M(θ∗)(t), so that by (9) and (10) θ∗ ∈ Cj and θ∗ ∈ Ck, which in turn implies Ck

⋂

Cj �= {∅}. Then
we have shown that trivial intersection of sets Cj and Ck defined in (9) and (10) implies infeasibility of
(8). (⇐). Let us show now that if classes Sj and Sk are not well-posed, then system (8) is feasible. By
Definition 2.3, this is equivalent to show that if Ck

⋂

Cj �= {∅} then system (8) is feasible. Ck
⋂

Cj �= {∅}
implies that there exist θ∗ ∈ Cj and θ∗ ∈ Ck which from (9) and (10) implies that there exist a signal
y∗(t) such that θ∗ = FM (y∗(t)), y∗(t) ∈ Sj and θ∗ = FM (y∗(t)), y∗(t) ∈ Sk, which means that the
signal y∗(t) is both in Sj and Sk which implies that it satisfies (8), then (8) is feasible. This completes
the proof.

We introduced Definition 2.3 for practical reasons and its use will be shown in the experiment section
(Section 5) with an example. In this section we have introduced the notion of moveme, the definition
of segmentability, the classification problem with a possible solution, and the operative definition of
well-posedness. In the following section we consider a segmentable signal corrupted by noise: in the
noiseless case we saw that the segmentation is unique; under suitable assumptions on noise (such as
bounded white noise) we can assume that the segmentation is still unique. Then we introduce the
segmentation problem and propose a solution.

3 Problem Statement

Consider the sequence of systems for i = 0, ..., l

{

ẋ = (Ai + δUi)x + bi + d(t) t ∈ [τi−1, τi)

ẋ = (Ai+1 + δUi+1)x + bi+1 + d(t) t ∈ (τi, τi+1]
(11)

with x ∈ R
n, Ai ∈ R

n×n an unknown matrix whose value can take place in the set of known Hurwitz
matrices {A1

c , ..., A
m
c }, which are centers of the sets defined in (2), i.e. Cj = Brj

(Aj
c) with Cj

⋂

Ck = {∅}
for j �= k, bi ∈ R

n unknown constant vectors, Ui ∈ R
n×n norm one matrices (according to Frobenius

norm), δ ∈ R modeling uncertainty with |δ| ≤ δ, d(t) realization of white noise such that ‖d(t)‖ ≤ d, τi

unknown switching times with τ0 known starting time and τl known ending time.
Consider also the related nominal system obtained letting noise and parameter uncertainty to zero:

{

ẋ = Aix + bi t ∈ [τi−1, τi)

ẋ = Ai+1x + bi+1 t ∈ (τi, τi+1]
(12)

with interconnection condition
ẋ(τ−

i )T ẋ(τ+
i )

‖ẋ(τ−
i )‖‖ẋ(τ+

i )‖
≤ ρ0 < 1 . (13)

where we define
ẋ(τ−

i ) = lim
τ→τ−

i

ẋ(τ)

ẋ(τ+
i ) = lim

τ→τ+

i

ẋ(τ)

The interconnection condition gives a bound on the discontinuity in the trajectory’s derivative at the
switching points, which will be required to detect the end of one segment and the beginning of another.

8



t0 τ time

x(t)

τi

moveme 1 moveme 2

estimated signal

segmentation time

candidate

Figure 2: Signal considered for computation of approximation and parametric errors (one component
shown) and estimated signal x̂ (dashed line).

We wish to obtain sufficient conditions on noise level and parameter uncertainty that allow off-line
determination of the sequence of times {τ1, ..., τl−1} and the sequence of matrices {A1, ..., Al} from the
observation of state x. If we have a good guess of the switching times, then we can apply Lemma 2.2
so to solve the classification problem in each interval between two switching times.

We thus focus our attention on the segmentation part of the problem, that is to determine a good
estimate for the sequence of times {τ1, ..., τl−1}. We use an iterative approach in which at each iteration
we look for the maximizer of a function defined on [t0, tM ] where tM = τl and t0 is a starting time
which coincides with τ0 at the first iteration. We want to show the maximizer of such function falls in
an interval I around the first switching time encountered after time t0; moreover this interval should
shrink down to the switching point when noise and parameter uncertainty go to zero. To define such a
function we define three quantities for system (11): the approximation error, the parametric error, and
the transition factor at time τ , where such quantities are computed based on the observation of x(t)
of system (11) for t ∈ [t0, τ ], τ ∈ (t0, tM ). We begin by computing the least squares estimate for x(t),
t ∈ [t0, τ ]:

(Â|b̂) =

[∫ τ

t0

ẋ xT dt

] [∫ τ

t0

x xT dt

]−1

, (14)

where x := (xT , 1)T . Assuming first that t0 = τi−1, the estimate becomes

(Â|b̂)(τ, t0) =























































































[∫ τi

t0

(Ai +δUi|bi)x xT dt+

∫ τ

τi

(Ai+1 + δUi+1|bi+1)x xT dt+

∫ τ

t0

d(t)xT dt

] [∫ τ

t0

x xT dt

]−1

τi < τ < τi+1

[∫ τ

t0

(Ai +δUi|bi)x xT dt+

∫ τ

t0

d(t)xT dt

] [∫ τ

t0

x xT dt

]−1 τ < τi .

(15)

The estimates given by (15) generate the system

˙̂x = Â(τ, t0)x̂ + b̂(τ, t0) , x̂(t0) = x(0). (16)
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This situation is depicted in Figure 2, where we report the candidate segmentation time τ , the switching
time τi, the portion of signal under study composed by the sequence of two movemes (solid line), the
estimated trajectory (dashed line) obtained by system (16). We define the parametric error at time τ
as

ep(τ, t0) = min
j=1,...,m

‖Â(τ, t0) − Aj
c‖ , (17)

where we consider the Frobenius norm to be the matrix norm. The approximation error at time τ is

ea(τ, t0) =
1

τ − t0

∫ τ

t0

(x − x̂)T (x − x̂)dt , (18)

and the transition factor is defined as

Tr(τ) = 1
2

(

1 −
ẋav(τ−)T ẋav(τ+)

‖ẋav(τ−)‖‖ẋav(τ+)‖

)

(19)

ẋav(τ−) := 1
∆τ

∫ τ

τ−∆τ
ẋ(t)dt, ẋav(τ+) := 1

∆τ

∫ τ+∆τ

τ
ẋ(t)dt

which takes care of local properties of the signal x(t). ∆τ is a positive constant depending on pertur-
bation level which will be determined later.

For each time τ we have different values of these three quantities and the idea is to combine them
in one function of τ which has the maximizer close to the switching point. The function we choose is

W (τ, t0) =
exp(

−ep(τ,t0)
2

σ2 )Tr(τ)

a + ea(τ, t0)
, τ ∈ (t0, tM ] (20)

where a is an arbitrarily small positive constant to prevent the denominator from being zero. By
maximizing function W (τ) we are looking for the value of τ which has small approximation error (which
implies a good guess of dynamical parameters), small parametric error, and a high transition factor.
Expression (19) involves integration over time ∆τ to attenuate the effect of noise and its expression for
system (12) is obtained by letting ∆τ → 0. We find that Tr(τi) ≥ (1− ρ0)/2 and for τ �= τi, Tr(τ) = 0.
The idea of the transition factor term is to preserve this property as much as possible in the perturbed
case so that all the times τi + ∆τ ≤ τ ≥ τi+1 −∆τ and t0 < τ ≤ τi −∆τ are penalized with respect to
time τi. We also choose to minimize ep(τ, t0) so to reduce the effect of perturbation on the parameter

estimates. Alternatively, one could constrain the estimates Â to lie in a ball around Ai, but we do
not know the value of Ai a priori, we just know that it belongs to a set of possible values. Therefore
we decide to minimize the distance of Â from the closest point Aj at time τ according to a Gaussian
metric.

4 Main Result

Consider the sequence of dynamical systems, for t ∈ [τ0, τl], switching at unknown times {τ1, ..., τl−1}
defined as

{

ẋ = (Ai + δUi)x + bi + d(t) t ∈ [τi−1, τi)

ẋ = (Ai+1 + δUi+1)x + bi+1 + d(t) t ∈ (τi, τi+1]
(21)

with x ∈ R
n, the matrices Ai ∈ R

n×n are unknown matrices, Ui ∈ R
n×n are unit norm matrices, and

the vectors bi ∈ R
n are unknown constant vectors. We make a number of assumptions on the nominal

system and its perturbation:

Assumption 4.1. The ith segment is of class j, with j unknown. In formulas we have (Ai +δUi) ∈ Cj ,
and Ai = Aj

c ∈ {A1
c , ..., A

m
c } for some j and the set of known Hurwitz matrices, {A1

c , ..., A
m
c }, is such

that Cj = Brj
(Aj

c) with Cj
⋂

Ck = {∅} for j �= k. (Figure 3 gives an intuitive idea of the sets Cj and
Ck.)
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Cj

Ck

Ak
c

rk

Parameter space
rj

Aj
c

Figure 3: Intuitive picture in 2D space of sets Cj and Ck.

Assumption 4.2. δ ∈ R represents modeling uncertainty with |δ| ≤ δ, and d(t) is realization of white
noise such that ‖d(t)‖ ≤ d.

Assumption 4.3. The nominal system

{

ẋ = Aix + bi t ∈ [τi−1, τi)

ẋ = Ai+1x + bi+1 t ∈ (τi, τi+1]

satisfies the interconnection condition

ẋ(τ−
i )T ẋ(τ+

i )

‖ẋ(τ−
i )‖‖ẋ(τ+

i )‖
≤ ρ0 < 1 .

Assumption 4.4. The state x(t) of the nominal system is such that

vT x(t) = 0, t ∈ [t1, t2], t2 > t1 =⇒ v = 0 .

where x = (xT , 1)T .

We give the following theorem.

Theorem 4.1. Consider the sequence of dynamical systems given in (21) subject to Assumptions 4.1
to 4.4. Let the function W (τ, t0) be defined as

W (τ, t0) =
exp(

−ep(τ,t0)
2

σ2 )Tr(τ)

a + ea(τ, t0)
, τ ∈ (t0, tM ]

for t0 = τi−1 and tM = τl. Then there exist bounds δ∗ and d∗ such that if δ ≤ δ∗ and d ≤ d∗ the potential
function W (τ) admits its global maximizer τ̂i for τ̂i ∈ I = [τi − ∆τ, τi + ∆τ+] where I contracts to τi

as δ → 0 and d → 0. Moreover the estimated class ĵ of the segment in [t0, τ̂i] is equal the class of ith

segment generated by system (21).

Note that the theorem states that we can find j which means that we can determine Aj
c and therefore

Ai. Before proving the theorem we give some intermediate results whose proofs are reported in the
appendix. In what follows we omit the dependence on t0.
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4.1 Intermediate results and proof of the theorem

To prove Theorem 4.1 we make use of a sequence of lemmas, whose proofs are given in the appendix.

Lemma 4.1. Consider expression (15), with δ = 0 and d(t) = 0 for all t, for system (12). There exists
k1 > 0 such that

‖(Â|b̂) − (Ai|bi)‖
2 ≥ k1(τ − τi)

2 , τi < τ < τi+1 (22)

This lemma establishes that the closer τ is to the switching time τi the smaller the lower bound of
the parameter estimation error for the nominal system.

Lemma 4.2. Consider system (12) with estimates (15) with δ = 0 and d(t) = 0 for all t. For the
estimated states generated by system (16) and ea(τ) as defined in (18), there exists k2 > 0 such that

ea(τ) ≥ k2‖(Â|b̂) − (Ai|bi)‖
2 , τi < τ < τi+1 (23)

This lemma states that for the nominal system (12) the approximation error lower bound increases
as the parameter estimates become far from the parameters Ai, bi. These two lemmas hold for the
quantities computed for the nominal system. In order to link such quantities with the ones computed
for the perturbed system (21), we give two additional results: the first one establishes how far two
system’s states are from each other when the two systems differ because of parameter differences and
the presence of noise, the second result explicitly links parameter and approximation errors for nominal
and perturbed systems through the aid of the first result.

Lemma 4.3. Let A and A1 be Hurwitz matrices and consider the pair of systems

ẋ = Ax + b (24)

ż = A1z + b1 + d(t) (25)

with x and z in R
n, A, A1 ∈ R

n×n, b and b1 constant vectors in R
n, ‖d(t)‖ ≤ d and ‖(A|b)−(A1|b1)‖ ≤

δ. Then if x(0) = z(0) there exist k3 > 0 and k4 > 0 such that

‖x − z‖2 ≤ k3δ + k4d ∀t ≥ 0 (26)

Lemma 4.4. Let ep(τ) and ea(τ) denote parametric errors and approximation errors given in expres-
sions (17) and (18) for the sequence of dynamical systems (21). Let e0

p(τ) and e0
a(τ) denote parametric

errors and approximation errors for the related nominal system (12). Then there exist constants kp > 0
and ka > 0 such that

e0
p(τ) − ∆ ≤ ep(τ) ≤ e0

p(τ) + ∆ (27)

e0
a(τ) − ε ≤ ea(τ) ≤ e0

a(τ) + ε (28)

with ∆ = kp(d + d
2

+ d
3

+ δ + δ
2

+ δ
3
) and ε = ka(d + d

2
+ d

3
+ d

4
+ δ + δ

2
+ δ

3
+ δ

4
+ δ

6
).

Let us consider now the transition factor given in expression (19) for system (21). Our aim is to find
a possible value of the averaging time ∆τ as function of noise level and parameter uncertainty such
that for τi + ∆τ ≤ τ ≤ τi+1 − ∆τ for each i the transition factor becomes smaller and smaller as the
perturbation decreases and reaches zero when we have no perturbation at all.
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Lemma 4.5. Let the transition factor be given by (19) for system (11). There exist positive constants
c1 and c2 such that if

∆τ = −c1 ln

(

1 − 2β

1 − β

)

(29)

then the transition factor is such that

Tr(τ) ≤ c2β τi−1 + ∆τ ≤ τ ≤ τi − ∆τ, (30)

Tr(τ) ≥
1 − ρ0 − ϕ

2
τ = τi, (31)

for all i, where β and ϕ are perturbation dependent quantities and go to zero as the perturbation goes
to zero.

Proof of Theorem 4.1. The proof proceeds in three steps: we show that the function W given in (20)
achieves smaller values in τi−1 + ∆τ ≤ τ ≤ τi − ∆τ than the one at τ = τi. Then we show that such
value is larger also than the one that W achieves at times τi + ∆τ ≤ τ < τi+1 − ∆τ and, finally, at
times τ > τi+1 − ∆τ . Let us first show that W (τi) > W (τ) for τi−1 + ∆τ ≤ τ ≤ τi − ∆τ . In fact

W (τi) =
exp(

−ep(τi)
2

σ2 )Tr(τi)

a + ea(τi)
≥

exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε

by virtue of Lemma 4.5, and Lemma 4.4 and by the fact that e0
a = 0 and e0

p = 0 for τ ≤ τi. For
τi−1 + ∆τ ≤ τ ≤ τi − ∆τ we have

W (τ) =
exp(

−ep(τ)2

σ2 )Tr(τ)

a + ea(τ)
≤

Tr(τ)

a
≤

c2β

a

by virtue of Lemma 4.5, and Lemma 4.4 again and by the fact that e0
a = 0 and e0

p = 0 for τ ≤ τi.
Therefore in order to show that W (τi) > W (τ) for τi−1 + ∆τ ≤ τ ≤ τi − ∆τ , it suffices to show

exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε
>

c2β

a
,

which is the same as requiring

2c2β

a
e∆2/σ2

(a + ε) + ϕ ≤ 1 − ρ0 . (32)

Inequality (32) imposes conditions on the perturbation amplitude once ρ0 has been fixed. In fact in the
perturbed case if the noise and parameter uncertainties are too big even if in the nominal case the local
signal properties would clearly give evidence of a transition, the corrupted signal could not maintain
such local properties that would be hidden by perturbation.

Consider now the case τi + ∆τ ≤ τ ≤ τi+1 −∆τ . For such times, from Lemma 4.1 and 4.2, we have
e0
a(τ) ≥ k(τ − τi)

2 for a suitable k > 0, then plugging this relation into the left side of (28) we obtain
ea(τ) ≥ k(τ − τi)

2 − ε. Using this relation in the expression of W (τ) we have

W (τ) ≤
Tr(τ)

a + k(τ − τi)2 − ε
≤

c2β

a + k(τ − τi)2 − ε

where we have used (30). Since also

W (τi) ≥
exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε
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if we require

exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε
>

c2β

a + k(τ − τi)2 − ε
,

we find

(τ − τi)
2 > max{∆τ2,

ε − a

k
+

2c2β(ε + a)e∆2/2

k(1 − ρ0 − ϕ)
} := (∆τ+)2 . (33)

For such times W (τ) cannot have a maximizer, therefore the maximizer can occur only for (τ − τi) ≤
∆τ+ which tends to zero as the perturbation tends to zero because when ε → 0 and δ → 0, also β → 0
and ∆τ → 0 by Lemma 4.5, so that (∆τ+)2 = max{0,−a/k} = 0 . In presence of perturbation, (∆τ+)
gives a measure of the uncertainty on τi for τ > τi, the left uncertainty is determined by ∆τ only.

We finally show that W (τi) > W (τ) for τ ≥ τi+1 − ∆τ . By definition of ea from (18) we have
ea(τ) = 1

τ−t0

∫ τ

t0
(x̃)T (x̃)dt, where x̃ = x − x̂ and x̂ is generated by system (16). Then we can

rewrite ea as ea(τ) = 1
τ−t0

(

∫ τi

t0
(x̃)T (x̃)dt +

∫ τi+1

τi
(x̃)T (x̃)dt + ... +

∫ τ

τi+m
(x̃)T (x̃)dt

)

, and by applying

Lemma 4.2 to each integral we have for suitable hi’s, ea(τ) ≥ h1‖(Ai, bi)− (Â, b̂)‖2 + h2‖(Ai+1, bi+1)−

(Â, b̂)‖2 + ... + hm+1‖(Ai+m, bi+m) − (Â, b̂)‖2 ≥ h[‖(Ai, bi) − (Â, b̂)‖2 + ‖(Ai+1, bi+1) − (Â, b̂)‖2 + ... +

‖(Ai+m, bi+m) − (Â, b̂)‖2], with h the smallest hi. The term in square brackets has a minimum for

(Â, b̂) = (A∗, b∗)m+1 := (Ai,bi)+...+(Ai+m,bi+m)
m+1 which is the barycenter of the distribution of m + 1

points {(Ai, bi), ..., (Ai+m, bi+m)}. Then we have

‖(Ai|bi) − (A∗|b∗)2‖
2 + ‖(Ai+1|bi+1) − (A∗|b∗)2‖

2

≤ ‖(Ai|bi) − (A∗|b∗)m+1‖
2 + ‖(Ai+1|bi+1) − (A∗|b∗)m+1‖

2

≤ ‖(Ai|bi) − (A∗|b∗)m+1‖
2 + ... + ‖(Ai+m|bi+m) − (A∗|b∗)m+1‖

2

≤ ‖(Ai|bi) − (Â|b̂)‖2 + ‖(Ai+1|bi+1) − (Â|b̂)‖2 + ... + ‖(Ai+m|bi+m) − (Â|b̂)‖2

for any (Â|b̂). Since also ‖(Ai|bi) − (A∗|b∗)2‖
2 + ‖(Ai+1|bi+1) − (A∗|b∗)2‖

2 = ‖(Ai|bi)−(Ai+1|bi+1)‖
2

2 , it
follows that

ea(τ) ≥ h
‖(Ai|bi) − (Ai+1|bi+1)‖

2

2
.

Assuming that ‖(Ai|bi) − (Ai+1|bi+1)‖ ≥ ∆c
min for all i, we have ea(τ) ≥ h

(∆c
min)2

2 . Then

W (τ) ≤
1

a + h
(∆c

min)2

2 − ε
,

where in place of Tr(τ) and of exp(−ep(τ)2/σ2) we have substituted one that is the maximum possible
value they can take. Then since

W (τi) ≥
exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε
,

it is sufficient that
1

a + h
(∆c

min)2

2 − ε
<

exp(−∆2

σ2 )(1 − ρ0 − ϕ)/2

a + ε
,

which implies

(∆c
min)2 >

4e∆2/σ2

(ε + a)

(1 − ρ0 − ϕ)h
+

2(ε − a)

h
(34)

This requirement asks that the minimum distance between parameters generating adjacent segments in
the sequence of dynamical systems (11) has to increase if the perturbation due to parameter uncertainty
and noise increases. In fact when τ increases after τi and multiple segments are included in interval
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(t0, τ) the approximation error increases with respect to the one we have at τ = τi where the only
contribution is due to noise. If such increase is comparable with the contribution of noise that we have
at τ = τi, then it becomes harder to say if we are including new segments in (t0, τ) when τ increases.
A way to prevent this is therefore to ask that the contribution to ea(τ) when τ increases and new
segments are included in (t0, τ) is bigger than the one due to noise. This is guaranteed by a sufficiently
big distance between (Ai|bi) and (Ai+1|bi+1) for each i as expression (34) states. Also it is possible to
show that constant k in expression (33) is proportional to (∆c

min) which means that for higher values
of separations between points (Ai|bi) and (Ai+1|bi+1) we are able to include a smaller portion of the
segment starting at τi before realizing that a switch has occurred.

What we have shown up to this point is that W (τ) for τ ∈ [t0 + ∆τ, τl] has the global maximizer
falling into I = [τi −∆τ, τi +∆τ+] if the noise level and parameter uncertainty are, for a given value of
ρ0 and (∆c

min), such that conditions (33) and (34) are verified and if we take for ∆τ the value specified
in (29). To have the same result hold for τ ∈ (t0, τl] we need to assume that there is no switching point
in (t0, t0 + ∆τ), which is certainly true if we ask that ∆τ < 1

2mini(τi − τi−1). This condition has been
implicitly assumed in order to be able to compute Tr(τ) in the interior of segments between switching
points τi−1 and τi, therefore we can formalize this by letting T = mini(τi − τi−1) denote the shortest

duration of a segment, and asking ∆τ = −c1 ln
(

1−2β
1−β

)

< T
2 , which leads to

β <
1 − e−T/(2c1)

2 − eT/(2c1)
. (35)

To complete the proof we need to show that we can determine Ai exactly. This is a classification
problem of the same kind as discussed in Section 2.2. In fact by Assumption 4.1, Ai = Aj

c for some j
and Cj = Brj

(Aj
c) with Cj

⋂

Ck = {∅} for j �= k. This means that it is sufficient to have an estimation

Â of Ai which lies in Cj , so that ‖Â−Ak
c‖ ≤ rk is satisfied, by the non intersection property of the sets

Ck, only for k = j which means Ak
c = Aj

c = Ai. Then given τ̂i we can compute an estimate for Ai by
(15) as:

(Â|b̂) =

[

∫ τ̂i

t0

(Ai + δUi|bi)x xT dt + d(t)xT dt

][

∫ τ̂i

t0

x xT dt

]−1

and subtracting from both sides (Ai|bi) we find

(Â|b̂) − (Ai|bi) =

[

∫ τi

t0

(δUi|0)x xT dt +

∫ τ̂i

τi

((Ai+1|bi+1) − (Ai|bi)) x xT dt +

∫ τ̂i

t0

d(t)xT dt

+

∫ τ̂i

τi

(δUi+1|0)xT dt

][

∫ τ̂i

t0

x xT dt

]−1

therefore in the worst case scenario where τ̂i > τi we have ‖Â−Ai‖ ≤ ‖(Â|b̂)− (Ai|bi)‖ ≤ k1d + k2δ +
(τ̂i − τi)k3 ≤ k1d + k2δ + (∆τ+)k3 for suitable positive constants k1, k2, k3. Since Ai = Aj

c, to obtain
‖Â − Ai‖ = ‖Â − Aj

c‖ ≤ rj it is sufficient that

k1d + k2δ + (∆τ+)k3 ≤ rj (36)

where ∆τ+ is defined in (33), so that the function C(τ̂i, k) := ‖Â − Ak
c‖ − rk is less or equal than zero

if and only if k = j, and therefore we have found Aj
c = Ai. Therefore by (32), (34), (35), (36) and

Lemma 4.5, and recalling that ϕ = ρ0α + α + ρ0β + ρ0αβ + αβ + α and that β = β(d, δ) and that
α = α(β) = α(d, δ) we can derive conditions on the maximum allowed values for d and δ. Let d∗ and
δ∗ be such bounds.

Theorem 4.1 has been proved assuming W (τ) to be defined on (t0, tM ) where t0 = τi−1 and tM = τl

is the duration of the process (21). The assumption that t0 = τi−1 is valid only at the first iteration
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in which t0 = τ0. Then we find the maximizer τ̂1 of W (τ) for τ ∈ (τ0, τl) which lies in an interval
I = [τ1 − ∆τ, τ1 + ∆τ+] around τ1 and is an estimate of the first switching time τ1. Then we have to
set t0 for the second iteration so that the first switching point encountered after t0 is τ2. In order to
do this we set t0 = τ̂1 + ∆τ so that we make sure that the first switching time encountered is τ2 and
not τ1 again. In fact if the maximization process of W takes place with t0 > τi and in the worst case
scenario with t0 = τi + ∆τ + ∆τ+ nothing changes as long as T − (∆τ + ∆τ+) > 2∆τ which by (29)
and (33) implies an other condition on the noise level, which added to the ones found in Theorem 4.1
give new values for d∗ and δ∗.

Remark 4.1. The result of Theorem 4.1 can be generalized to the case in which matrices Aj in
system (1) have block diagonal form, i.e., Ai = blockdiag (A1

i , ..., A
L
i ), b = (bT

1 , ..., bT
L)T , d(t) =

(d1(t)T , ..., dL(t)T )T , with Al
i ∈ R

p×p, L p = n and matrices Ai taking values in a finite set of matrices
{A1, ..., Am} having the same block diagonal structure. In such a case partitioning the state space
into L independent subspaces (x1, ..., xL) and assuming that for each one of the subspaces the matrix

[
∫ t

t0
xl xT

l dt]−1 is non singular for t > t0 we can compute the parameter estimate for each one of the
blocks as

(Âl
i, b̂

l
i) =

∫ τ

t0

ẋlx
T
l dt[

∫ t

t0

xl xT
l dt]−1 (37)

which is equal to expressions (15) for each one of the subsystems. In expression (16) we have Â =

diag(Â1, ..., ÂL) and b̂ = (b̂1, ..., b̂L). The parametric error (17) has the same definition where Â and
Aj have block diagonal structure. Then everything else holds at the same way. In particular if each
block has the structure

Al
i =







0 1 0 · · · 0
... · · · · · · · · · 1

al1 al2 · · · · · · alp






, bl

i =











0
...
0
blp











dl(t) =











0
...
0

dlp(t)











we can check that the estimates obtained by (37) preserve the structure. In fact let [
∫ t

t0
xlx

T
l dt]−1 =

(v1, ..., vl, vp+1), where vi are column vectors, and let [
∫ t

t0
xlx

T
l dt] = (w1, w2, ..., wp+1)

T , where wi are
column vectors, then wivi = 1 and wivj = 0 for j �= i. By substituting in the estimate expression in

place of ẋl its expression (xl2, ...xlp, ẋlp) we find that
∫ t

t0
ẋlx

T
l dt = (w2, w3, ...wp, ⋆)T , so that

∫ t

t0

ẋlx
T
l dt[

∫ t

t0

xlx
T
l dt]−1 =







0 1 0 · · · 0 0
... · · · · · · · · · 1 0
⋆ ⋆ · · · · · · ⋆ ⋆






,

which clearly preserves the structure of A and b.

Remark 4.2. If in the expression of the interconnection condition defined by (13) instead of ẋ we
have just some of the components of the state vector, that is Cẋ, and the same for the definition of the
transition factor (19), provided that Cẋ0

av(τ−) and Cẋ0
av(τ+) are non zero, everything still applies. (In

fact in such a case we would have a matrix C selecting the components of ẋ multiplying ẋ in expression
(13) and we would find the same matrix in (19) which would lead to an expression for γ0 in equation
(57) of the Appendix of the form

γ0 ≥ 1 −
2‖C(M̃1e

Aτx0 + A−1M̃1e
Aτ b)‖

‖Cẋ0
av(τ−)‖

which leads to
γ0 ≥ 1 − k′(1 − eλ∆τ )

where k′ is a positive constant since ‖Cẋ0
av(τ−)‖ is bounded away from zero by assumption. Then

everything is the same.)
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Remark 4.3. Assume that in the expression of W (τ) given in (20) we add a factor s(τ) with the
properties that s(τ) ∈ [ 1

K , 1) for all τ , K ≥ 1 and s(τ) ≥ 1 − ν for τi−1 < τ ≤ τi, with ν ≪ 1. Then
the proof of Theorem 4.1 proceeds at the same way with the following modifications. Expression (32)
becomes

2c2β

a(1 − ν)
e∆2/σ2

(a + ε) + ϕ ≤ 1 − ρ0,

expression (33) becomes

(τ − τi)
2 > max{∆τ2,

ε − a

k
+

2c2β(ε + a)e∆2/2

k(1 − ρ0 − ϕ)(1 − ν)
} := (∆τ+)2,

and condition (34) becomes

(∆c
min)2 >

4e∆2/σ2

(ε + a)

(1 − ρ0 − ϕ)h(1 − ν)
+

2(ε − a)

h
.

The introduction of such a factor can be helpful in those cases in which (34) is not satisfied because
the distance between parameters generating adjacent segments is not big enough compared to noise. In
fact if we can find a function s(τ) that, for the values of τ for which condition (34) has been computed,
is smaller than 1/K ′, for K ′ ≤ K big enough, then condition (34) becomes

(∆c
min)2 >

4e∆2/σ2

(ε + a)

(1 − ρ0 − ϕ)h K ′
+

2(ε − a)

h
,

which is satisfied for smaller values of ∆c
min. Note also that such a factor can depend on the classification

of the current segment, and it can be introduced for some of the classes only. A good choice of such a
function will be presented in Section 5.4.

4.2 Algorithm implementation

The segmentation algorithm was implemented in MATLAB 6.0 in the case of planar motion modeled
by systems of the form









ẋ
ẍ
ẏ
ÿ









=









0 1 0 0
a1x,i a2x,i 0 0

0 0 0 1
0 0 a1y,i a2y,i

















x
ẋ
y
ẏ









+









0
bx,i

0
by,i









+ d(t), (38)

with asymptotically stable dynamics in each interval between two switching points τi−1 and τi. The
interconnection condition that holds in this case is by replacing ẋ with C(x, ẋ, y, ẏ)T in equation (13),
with

C =

(

0 1 0 0
0 0 0 1

)

.

By virtue of Remark 4.1, the particular structure of system (38) does not require any change. By virtue
of Remark 4.2, the modified interconnection condition also does not affect result of Lemma 4.5 since
ẋ0

av(τ+) and ẋ0
av(τ−) and ẏ0

av(τ+) and ẏ0
av(τ−) are nonzero. (If they were zero it would imply periodicity

of solutions of the system under study which is not true since the dynamics are asymptotically stable.)
For computing the estimates of the parameters according to (14) we used the discrete time version of
system (38), that is









xk

xk+1

yk

yk+1









=









0 1 0 0
a1x,i a2x,i 0 0

0 0 0 1
0 0 a1y,i a2y,i

















xk−1

xk

yk−1

yk









+









0
bx,i

0
by,i









+ d(k),
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where we have used the same coefficients notation as used in system (38) for simplicity. In the actual
segmentation algorithm, W (τ) takes the following form

W (τ) = exp

(

−
(ea(τ) − ec

a)2

σ2
a

)

Tr(τ) exp(−ē2
p(τ))s(τ)p(τ)

a + ea(τ)
(39)

where we have introduced some slight modifications that exploit some additional information on the

characteristics of the signal. In particular, the first term, exp(− (ea(τ)−ec
a)2

σ2
a

), represents a Gaussian

distribution of the approximation error around a mean value: we can obtain a guess of ec
a and σ2

a by
processing part of the data. The parametric error ep takes into account also possible non-spherical
shapes of the distribution of the parameters around the centers. Using the same notation used for
defining ep it can be written as e2

p(τ) = minj(Â − Aj)
T Σ−1

j (Â − Aj)/
√

det(Σj).
The term s(τ) is a shaping term, satisfying the properties described in Remark 4.3, which can be used

to include additional information other than that derived from the dynamical parameters. Introducing
such a term does not affect results of Theorem 4.1 as explained in Remark 4.3. The particular form we
choose is introduced in Section 5.4.

The term p(τ) is introduced in case we have pauses in our signals. Pauses occur for the drawing
tasks described in the next section and must be taken into account by the algorithm. Since we assumed
that there are no pauses within a segment, eventual pauses are likely to be between one segment and
the following one. If at time τ the segment (t0, τ) contains a pause it will be penalized in an amount
proportional to the length of the pause, i.e. p(τ) = k/(pause length). Pauses are detected by making
the difference between adjacent signal’s samples and checking if the result is zero for more than 15−20
steps.

The time t0 which is the starting point of each iteration is obtained as explained at the end of the
proof of Theorem 4.1. The way we implement this is by taking into account that the end of each
segment reaches a steady state in which ẋ and ẏ are very small and comparable to noise (since the
systems are all stable asymptotically). Then we estimate the length of the signal after τ̂i which has
a poor content of information with respect to a given threshold depending on the noise level. This
gives an estimate of the time interval we have to add to τ̂i in order to find a point t0 which lies in the
following segment.

Finally, the segmentation algorithm can be described in the following basic steps:

1. initialization: t0 = τ0, tM = τl, i = 1;

2. maximize W (τ) for τ ∈ (t0, tM ]: τ̂i = maxτ∈(t0,tM ]W (τ);

3. compute class j of the segment found: j = argk∈{1,...,m}(‖Â(τ̂i) − Ak
c‖) ≤ rk;

4. compute ∆τ ;

5. t0 = τ̂i + ∆τ ;

6. i = i + 1;

7. go to (1);

where we recall that τ0 and τl are the starting and ending points of the data stream.

5 Experimental results

To test our approach, we studied a 2D drawing task in which a set of shapes were drawn by five
different subjects using a computer mouse (see examples in Figure 4). We hoped that these experiments
could verify that human subjects use different dynamics for accomplishing different elementary tasks
so to allow automatic recognition of actions. We considered just the motion of the wrist in 2D as a
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Figure 4: Prototypes of the four shapes shown to the subject and example of traces in (x, y) plane
captured by the capturing system.

simple example to start with, and to develop a procedure for analyzing data easily generalizable and
not subject to complexity constraints. In the following section we describe the device used for capturing
data and details on the experiments.

5.1 Experimental setup

Our subjects drew using the XPaint program on a PC running Red Hat Linux 7.2 with a screen
measuring 1600× 1200 pixels and a working window of 700× 500 pixels. The user left the trace of the
trajectory in the working window only when the left mouse button was pressed. For acquiring x and
y time traces we implemented a C routine which was activated in the background at the beginning of
each experimental session and sampled the (x, y) position of the pointer everywhere on the screen at
the rate of 100 Hz and a spatial resolution of one pixel. The routine makes use of XWindow libraries
and captures the pointer position through the function “XQueryPointer” which is called by a timer
every 10 ms and gives the coordinates in pixels with respect to the upper left corner of the screen.
Every 30 minutes the data was saved into files by means of a parallel process. The data so obtained
consists of an array with three columns containing time, x position at that time, y position at the same
time. The time interval between one sample and the following one turned out to be mostly constant
except for slight variations every once in a while due to higher priority of other processes. In order to
have constant sampling time the data was processed through an algorithm that linearly interpolates
data in the regions in which the time interval is not exactly 10 ms. Pixelization of the coordinates does
not heavily affect the data since the trajectories under study are usually more than 50 pixels long.

We defined 4 different drawings by means of prototypes shown in Figure 4: car, sun, ship, and house.
Each of the 5 subjects was shown the prototypes and was asked to reproduce them on a 700×500 pixel
canvas; the dimensions of each drawing could be chosen arbitrarily according to the ones with which
the user was more comfortable, the only specification was to reproduce the prototypes with as high
fidelity as possible in a reasonable amount of time. Each subject drew 10-20 examples for each shape.

In order to accomplish each drawing task the user had to perform a sequence of actions such as
“reach a point A” and “draw a line up to point B”. These actions are the ones that we will consider
as candidates for being elementary motions and then defining a pair of movemes. The idea is then to
use the result of Theorem 4.1 so as to find the sequence of reach and draw movements that the user
did in order to accomplish the task and the switching times between one and the other. In Figure 4
(right) we show also an example of the traces followed by a user while drawing in (x, y) plane. In order
to apply Theorem 4.1 we check first that reach and draw actions define a well posed pair of movemes
according to Definition 2.3.
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Figure 5: Parameter estimates for reach and draw examples projected on the first two Fisher linear
discriminants (left). Typical velocity profile for reach and draw (right).

5.2 Classification

We start from the hypothesis that “draws”, which are straight lines traced with a specific intention
(like drawing a side of the house), and “reaches”, which happen with the intention of shifting fast
the equilibrium position, define a well-posed pair of movemes. We segmented out by hand a set of
straight draws from houses and cars drawn by 2 of the subjects. Reach examples were obtained from a
special experiment session in which the users had to point and click at random buttons appearing on
a 700 × 500 pixels window during a simple video game implemented in MATLAB 6.0.

Before settling for model (38), we considered several other dynamical models for representing the
reach and draw signals in time, starting from a first order, decoupled model for x and y motion,

ẋ = a1xx + bx

ẏ = a1yy + by,

and proceeding to a second order coupled model,









ẋ
ẍ
ẏ
ÿ









=









0 1 0 0
a1x a2x a3x a4x

0 0 0 1
a3y a4y a1y a2y

















x
ẋ
y
ẏ









+









0
bx

0
by









. (40)

The reach dynamical parameters were estimated from 140 examples of reach trajectories obtained from
the video game implemented in MATLAB, and the draw dynamical parameters were estimated from 140
examples of draw trajectories segmented out from cars and houses of 2 of the subjects. The dynamical
parameters were estimated for each one of the dynamical models proposed (first order for x and y,
decoupled; first order for x and y, coupled; second order for x and y, decoupled; second order for x and
y, coupled).

By proceeding with standard pattern recognition techniques (see (Bishop, 1995) for example), we
trained a Gaussian classifier for the parameters derived from the 140 examples per class (training set)
for each one of the model classes proposed, and obtained the best results for the second order for x and
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y, decoupled, dynamical model (obtained by letting a3x = 0, a4x = 0, a3y = 0, a4y = 0 in system (40)):









ẋ
ẍ
ẏ
ÿ









=









0 1 0 0
a1x a2x 0 0
0 0 0 1
0 0 a1y a2y

















x
ẋ
y
ẏ









+









0
bx

0
by









. (41)

For such a model we obtained 3.2% training error, and we tested the generalization properties of the re-
sulting classifier on a test set of 323 additional reach examples (obtained from the MATLAB videogame)
and 118 additional draw examples obtained from the drawings of other two subjects (different from the
ones used for the training set) and obtained 3.63% test error.

Figure 5 represents the projection of the parameters belonging to the training set (living in R
4) on

the first two Fisher linear discriminants (Bishop, 1995) and typical velocity profiles for the draw and
reach trajectories. We let ĈR and ĈD denote the reach and draw clusters, respectively, according to
the notation used in Section 2.3. From the right figure of Figure 5 we notice that a reach trajectory
is usually characterized by a bell shaped velocity profile with high velocity variation in a small time,
while a draw trajectory is characterized by an almost constant or slowly varying velocity.

Since our data set contains also circular shapes like the wheels of the cars, we also introduced a circle
class beyond the reach and draw classes. The dynamical model by which we represent such a class is
system (40), so that we have 8 parameters for classification. We considered an additional parameter
that is the value of ω/T were ω is the principal frequency estimated and T is the duration of the
trajectory: we expect for a circle that to be about 2π. We then trained a Gaussian classifier in R

9 on
a training set composed of 101 examples derived from the wheels of the cars and the suns of two of the
subjects and obtained 4% training error on the circle class. We then tested the classifier on a test set of
124 elements derived from the wheels of the cars and suns of two other subjects (different from the one
used for training) and obtained 8% error on the circle class. The higher test error on the circle class is
due to higher variance across subjects than the variance we have for reach and draw tasks. Introducing
the circle class does not alter the training and test errors obtained for the reach and draw classes (the
percentage of reach and draws classified as circles is close to be zero), therefore the cumulative training
and test errors are 3.4% and 4.6% respectively.

5.3 Well-posedness

Before going on and basing our classification algorithm on the found sets ĈR and ĈD, we have first to
check that reach and draw classes of signals are well-posed so that situation depicted in Figure 1 does not
happen. To check this, we find candidate constraints which can describe reach and draw trajectories, so
that we may apply Lemma 2.3. Reach trajectories are asymptotically stable with bell-shaped velocity
profiles. Draw trajectories are characterized by asymptotic stability properties and by straight lines in
(x, y) plane. These requirements for the model (41) imply a1x = a1y and a2x = a2y. Some of these
parameters are reported in Figure 6 where we can see that their classification is ambiguous since they
lie in the boundary region between the first and the second cluster. Then we have a situation analogous
to the one reported in Figure 1, where the light sets are ĈD and ĈR and the dark set is made up by
elements like the diamonds in Figure 6. Thus there exist parameters that generate trajectories satisfying
both draw (asymptotic stability and straight lines in (x, y) plane) and reach constraints (asymptotic
stability and bell shaped velocity profile with high acceleration peak) whose class is undecidable.

As an extreme example of this, we show in Figure 7 the shape of a house that has been artificially
generated by parameters lying in the region in between the clusters of Figure 6 (dark set of Figure 1),
which the classifier classifies as reaches. This happens because the dynamical parameters associated
to draw trajectories can significantly differ from each other according to the particular task, and also
the velocity profile can consistently vary with respect to the one shown in Figure 5. We show these
differences in Figure 8, where we report the draw parameters when a user draws straight lines between
two points (as it happens in the draws of the house, ship, car), or a line trying to trace an already
existing line, or just a line with no constraints (as it happens in the rays of the suns). We decide
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Figure 6: Diamonds represent some of the parameters corresponding to straight (x, y) trajectories.

0 100 200 300 400 500
0

50

100

150

200

250

2
 

700
   

1388
    

2102
    

2797
    

3493
    

4183
    

4898
    

Figure 7: House generated by points in the overlapping region of clusters of Figure 6.

therefore to use three classes instead of one for the draw: we call them targeting, tracing, and free
motion respectively.

Using these definitions, we see from Figure 8 that there is an evident overlapping of the parameter
sets of the reach class and free motion class. Therefore we exclude from the panorama the free motion
class, and show that the draw class, seen as union of the tracing and targeting motions, can be described
in terms of constraints gD, hD, gR, hR as introduced in Lemma 2.3, such that the system of equations
(8) is infeasible. Driven by the characteristics of the velocity profiles of the targeting and tracing draw
and reach reported in the bottom right plot of Figure 8, we define the following constraints. The reach
trajectories achieve the desired value in a time smaller than a fixed one with respect to a unit step
input (which implies a certain acceleration peak), and in the draw trajectories the velocity variation
has to be smaller than a given value. We then rewrite these constraints in the form of Lemma 2.3 as
ẋ− aẏ = gD(ẋ, ẏ) = 0 and b− ẍ− ÿ = hD(ẍ, ÿ) ≥ 0 for the draw motions, and ẍ + ÿ − c = hR(ẍ, ÿ) ≥ 0
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Figure 8: Parameter estimates for reach and draw targeting, draw tracing and free motion draw with
velocity profiles.

for the reach motions, so that the system

gD(ẋ, ẏ) = 0
hD(ẍ, ÿ) ≥ 0
hR(ẍ, ÿ) ≥ 0

(42)

becomes infeasible for suitable b and c. Then if we assume that the constraints above define fair
specifications for reach and draw trajectories for the values of b and c that make system (42) infeasible,
then the reach and draw classes of signals are well-posed according to Lemma 2.3 . Moreover the ĈR and
ĈD clusters of Figure 5 represent reach and draw actions well, which thus define a pair of movemes MR

and MD. Therefore in what follows we will not deal with free motion draw so to have well-posedness
and fairly apply results of Section 2 and Section 4 to our problem. (Specifically we eliminate the sun
diagram from our set of shapes.)

5.4 Segmentation algorithm performance

We implemented the proposed segmentation algorithm in MATLAB on the data acquired as de-
scribed in the previous sections considering a number of three movemes: the reach, the draw, and the
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Figure 9: The right plot reports the coupling parameters (stars) obtained for angles AOB shown in
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separately.

circle movemes. Before reporting the algorithm performance we describe the choice of the function s(τ)
introduced in Section 4.2 in expression (39). The need for introducing a term with additional informa-
tions comes from the fact that system (41), chosen for representing the movemes, can approximate with
acceptable approximation errors angles in x, y plane, as shown in the left plot of Figure 9, while having
parameters that still lie in the ĈR or ĈD sets. Then the estimated parameters of system (41) for a given
trajectory do not contain information to discriminate between one draw and an angle. This is due
to the absence of any xy coupling information. In fact coupling information would discriminate quite
clearly between the single draw case and the angle of Figure 9: we can check that for approximating
an xy trajectory of the kind of the angle of Figure 9 with the simplest system containing xy coupling,
such as

(

ẋ
ẏ

)

=

(

d1 c1

c2 d2

)(

x
y

)

+ b. (43)

We obtain estimated coupling terms (ĉ1, ĉ2)
T = ĉ that are close to zero for the angle and bounded away

from zero for the single draw, as shown in the right plot of Figure 9 (the same we obtain for the single
reaches that are approximatively straight lines). Thus we choose a shaping term in expression (39), for
the reach and the draw classes, of the form

s(τ) =
1

1 + L exp(−(ĉ − c)T Σ−1
c (ĉ − c))/

√

det(Σc)
,

with L ≥ 1, where c and Σc are obtained by means of a learning phase in which we train the Gaussian
classifier, exp(−(z − c)T Σ−1

c (z − c))/
√

det(Σc), on a set of about 25 examples of angles. The value of
Σc turns out to be very small resulting in a very narrow Gaussian around the mean as we can deduce
form the concentrated cluster of angle’s parameters of Figure 9. By simple computation we can show
that s(τ) satisfies the conditions of Remark 4.3 since s(τ) ∈ [1/(1 + L), 1) for all τ , and s(τ) ≈ 1 for
τ ≤ τi, i.e. when we have just one draw or one reach. Moreover when the segment under observation
is an angle s(τ) ≪ 1.

Since in our data set some squares (windows of the houses) have rounded angles and look very similar
to circles, we introduced a higher level step in the algorithm, in which we decide if a segment detected
as a circle is more likely to be a square. At each iteration in which a circle is detected, to decide if the
data segmented as a circle is more likely to be a square, we run the segmentation algorithm again on
that data without the circle classifier (that is by assuming that the data is a sequence of reaches or
draws or both). Then if the algorithm segments it into a sequence of draws, we compute the likelihood

of each draw that has been detected as the product exp
(

− (ea(τ)−ec
a)2

σ2
a

)

exp(−ē2
p(τ)), which is the part
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of (39) that quantifies how good the detected segment is as representative of its class. We then average
the likelihood of all the detected draws and compare it to a threshold obtained by preprocessing some
of the squares and some of the circles (about 10 examples each). This higher level process does not
affect performance drastically, but turns out to be helpful in 3–4 cases in which the windows of the
houses have not evident corners.

Finally, for minimizing the algorithmic time, we set tM a priori to be t0 plus the maximum duration
of a segment that in our case turned out to be 500 time steps.

The algorithm takes as input the signal (x(t), y(t)) and gives as outputs a sequence of segmentation
points and the classification of the trajectory between two detected segmentation points. The algorithm
performance was computed by assuming a ground truth: we expected to detect a segmentation point
at the beginning and at the end of each reach, draw and circle, and also we expected each one of them
to be properly classified. Then the algorithm error was computed as the sum of classification error
(i.e., a trajectory which is correctly segmented but wrongly classified) and segmentation error (i.e., a
trajectory which is over segmented: every detected point that is not in the data is counted as an error;
or a missed segmentation point). An estimate of such an error was computed on segmentation results on
cars, ships, houses sequences deriving from two subjects each. The error estimate is reported in Table 1
which was obtained by counting the total number of segmentation points detected (denominator) and
the number of segments which were clearly mis-classified or mis-segmented (numerator).

Table 1: Algorithm error

classification error segmentation error cumulative error

CAR 112/1333 = 8.4% 20/1333 = 1.5% 9.9%

HOUSE 108/1050 = 10.29% 23/1050 = 2.19% 12.48%

SHIP 99/1093 = 9.06% 3/1093 = 0.27% 9.3%

Table 2: Confusion matrix

Predicted
Actual Reach Draw Circle unsegmented/unclassified

Reach 167 32 0 10

Draw 35 395 0 12

Circle 0 0 44 2

The average error is about 10.5%. We report several pictures which show the segments classified as
reach, the segments classified as draws, the ones classified as circles and the unclassified ones. The
little circles represent the segmentation points that the algorithm found. The units on the x and y
axis are in pixels. From the table it is evident that the major contribution to the algorithm error is
due to classification error, in particular to confusion between reach and draw since it can happen that
a subject draws quickly without paying enough attention so that some of the draws that should be
targeting draws turn out to be free motion draws (see for example Figure 13). Also some of the reaches
may be confused with draws because they are accomplished too slowly and carefully (especially when
they are short). These errors are more clearly reported in Table 2 where we show the confusion matrix
obtained counting the number of reaches, draws and circles in a set of cars and ships coming from one
of the subjects. Some confusion is also due to the fact that some of the segments are too short, as
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Figure 10: Segmentation results on 4 houses of subject 3.

for example in some of the windows of the houses, so that there is not enough information to classify
them properly (see Figure 10). This explains also why among the three different categories (ship, car,
house) the house category is the one which shows the highest error. The segmentation error comes
almost entirely form missed segmentation points and not from over-segmentation: the biggest portion
comes from the windows of the houses in which some corners were not detected because of too small
dimensions: at such small dimensions the hand dynamics is likely to vary with respect to the one used
for larger motions and the pixelization error and the mouse dynamics may be not negligible anymore
(see Figure 10 again). In Figure 14 we report for completeness the results of the segmentation algorithm
on some of the suns: as we can notice by the figure, the classification error of the rays is about 50%,
due to the confusion between reaches and free motion draws, as explained in the previous section.

5.5 Categorization

To illustrate a possible usage of the output of the segmentation algorithm, we want to recognize what
is the category (car, house, ship) of a certain drawing based on the sequence of movemes that according
to the segmentation algorithm composes it. To this end, we develop an elementary categorization
algorithm that takes as input for each shape the sequence of movemes that it is composed of according
to the segmentation algorithm, and recognizes the category of a shape based just on the number of
reaches, draws and circles that the representing movemes sequence contains. The way this is done is
by associating to each sequence corresponding to one of the three shapes the vector of natural numbers
(R,D,C)T , which are the number of reaches, draws and circles present in the sequence respectively.
We then train a Gaussian classifier with the (R,D,C)T vectors of 15 cars (as drawn by one subject),
9 houses (from two subjects), and 4 ships (from two subjects) so to learn the Gaussian distributions
in R

3 that represent the three different shapes, and obtain 0% training error. Based on the learned
distributions we can classify the remaining data according to a Gaussian metric. We thus perform the
test on the remaining 53 ships (from three subjects), 36 houses (from three subjects), 31 cars (from two
different subjects) and obtain 5.4% test error which is quite small since we based our discrimination just
on the basis of the number of movemes and not on their order in time. If we add the suns to this dataset
the error increases drastically up to 11% on the test set. This happens because when in a sequence a
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Figure 11: Segmentation results on 4 houses of subject 2.

circle is detected, depending on the numbers of reaches and draws, the vector (R,D,C)T can fall either
in the sun Gaussian distribution or in the car Gaussian distribution because in the training set there are
cars with just one detected circle. Therefore the discrimination is based just on the number of reaches
and draws, which is not reliable in the case of the sun where the rays can be classified either way. One
could use more sophisticated tools like introducing some information about the order of the performed
movemes so to use the segmentation algorithm output for higher level kinds of discrimination.

6 Conclusions

We have introduced a dynamical formulation for the notion of movemes. We have addressed the clas-
sification and segmentation problems and proposed an algorithm with error and performance analysis.
We have also provided a procedure for finding movemes from data and shown with an example how it is
applicable in practice. The experimental results show that the moveme segmentation and classification
performance of the proposed algorithm is about 90% on our data set when training and testing are
performed on data coming from distinct subjects. We finally show, with an example, that the output
of the segmentation algorithm can be used so to solve higher level tasks like discriminating between
activities composed by movemes and found an error on our data set of 5% when using a simple-minded
recognition strategy.

Future directions include the exploration of 3D motion of the human body with the same approach.
We hope that the tools here developed will render the search for movemes faster, and that the seg-
mentation and classification algorithm will be applicable to the higher dimensional case with minor
modifications. The 3D motion case includes also more joints in the considered dynamics, so that it will
be possible to look at the whole body motion in 3D. Furthermore, it will be interesting to generalize
the current segmentation and classification algorithms to the on-line case. At this point it would be
useful also to set up a possible solution to the prediction problem, which is one of predicting the next
action (or actions) on the basis of what has already happened. Moreover exploring different classes of
dynamical systems may help modeling human motion with greater accuracy. Also issues regarding to
what extent models are user independent and to what extent we need to train on different individuals
should be addressed.

The ideas proposed in this paper suggest some theoretical directions which could be explored. These
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Figure 12: Segmentation results on 4 cars of subject 1.

directions include the theory of observability and estimation of hybrid systems that are systems in which
we have both continuous and discrete dynamic evolution. The problem is to determine the parameter
values (discrete states), continuous state, and switching times between discrete states, based on the
time evolution of an output variable.
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7 Appendix

Proof of Lemma 4.1

Proof. Let Θ̂ := (Â, b̂), Θi = (Ai, bi) and Θi+1 = (Ai+1, bi+1), then for τ > τi equation (15) becomes

Θ̂(τ) =

[∫ τi

t0

Θix xT dt +

∫ τ

τi

Θi+1x xT dt

] [∫ τ

t0

x xT dt

]−1

and subtracting Θi we find

Θ̃(τ) := Θ̂ − Θi =

[∫ τ

τi

(Θi+1 − Θi)x xT dt

] [∫ τ

t0

x xT dt

]−1

(44)

Define g(τ) = ‖Θ̃(τ)‖2 = tr(Θ̃(τ)T Θ̃(τ)) and identify the matrix Θ̃ ∈ R
n×(n+1) with the vector θ̃ ∈

R
n(n+1) by stretching columns so that g(τ) = θ̃(τ)T θ̃(τ). Since g(τ) is composition of C∞ functions,

by Taylor’s theorem we have

g(τ) = g(τi) + g′(τi)(τ − τi) +
1

2
g′′(c)(τ − τi)

2 , τ ∈ [τi, τi+1]

where c ∈ [τi, τ ]. Clearly g(τi) = 0 and we can check that g′(τi) = 0 also. In fact

g′(τ) = (θ̃′)T θ̃ + θ̃T θ̃′
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Figure 13: Segmentation results on 4 ships of subject 1.

and since θ̃(τi) = 0, g′(τi) = 0. On the contrary g′′(τi) �= 0 in fact

g′′(τ) = (θ̃′′)T θ̃ + 2(θ̃′)T θ̃′ + θ̃T θ̃′′

so that g′′(τi) = 2(θ̃′)T (τi)θ̃
′(τi). Also θ̃′(τi) �= 0 because Θ̃′(τi) �= 0 as we can see from the following

expression

Θ̃′(τ) =
[

(Θi+1 − Θi)x(τ) x(τ)T − Θ̃
]

[∫ τ

t0

x xT dt

]−1

which is non zero for τ = τi since (Θi+1 − Θi)x(τi)x(τi)
T �= 0 by (13). Finally we have

g(τ) =
1

2
g′′(c)(τ − τi)

2 ∀t ∈ [τi, τi+1]

with g′′(c) > 0. Since for each τ there exists a c such that the above relation is satisfied we can consider
the minimum of g′′(c) on [τi, τi+1] which is bounded away from zero since g′′(τi) �= 0 and g(τ) > 0 for
τ > τi. Then

g(τ) ≥ k1(τ − τi)
2 ∀t ∈ [τi, τi+1]

for k1 = minτ∈[τi,τi+1]
1
2g′′(c).

Proof of Lemma 4.2

Proof. Let x̃ = x − x̂ so that

ea(τ) =
1

τ − t0

∫ τ

t0

x̃T (t)x̃(t)dt

where x(t) is generated by ẋ = Aix + bi for t ∈ [t0, τi] and it is generated by ẋ = Ai+1x + bi+1

for t ∈ [τi, τi+1]. Using the short-hand notation Θ̂ := (Â|b̂), Θi = (Ai|bi), Θi+1 = (Ai+1|bi+1),

Θ̃ = (A|b) − (Â|b̂) = Θ − Θ̂, where (A|b) can be either (Ai|bi) either (Ai+1|bi+1). Thus we write the
dynamics for x̃ as

˙̃x = Ax̃ + Θ̃x̂ (45)

where x̂ is the state of (16) with the parameter estimates obtained from (15) with d(t) = 0 and δ = 0,
x̂ = (x̂T , 1)T . Then we can review x̃ as function of Θ̃ so that also ea = ea(Θ̃) := g(Θ̃) which is a C∞
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Figure 14: Segmentation results on suns of subject 1.

function. We study the dependence of g(Θ̃) from the free variable Θ̃ by computing its derivatives and
applying Taylor’s theorem. We then have g(0) = 0 since if Θ̃ = 0 and x̃(0) = 0 and A is a.s. system
(45) stays at the equilibrium x̃ = 0. Let us show Dg(0) = 0.

Dg(c) · Θ̃ =
d

ds
g(c + sΘ̃)|s=0 (46)

and substituting in the expression of g in place of x̃ its expression

x̃(t) =

∫ t

0

eA(t−α)Θ̃x̂(α)dα

and computing (46) we obtain

Dg(c) · Θ̃ =
1

τ − t0

∫ τ

t0

∫ t

0

∫ t

0

[x̂
T
(σ)T cT e(AT (t−σ)+A(t−α))Θ̃x̂(α)

+x̂
T
(σ)T Θ̃T e(AT (t−σ)+A(t−α))cx̂(α)]dαdσdt

which is clearly zero if c = 0. As far as D2
g(0) is concerned it is not zero since

D2
g(c) · (Θ̃, Θ̃) =

d

dt2

d

dt1
[g(c + t1Θ̃ + t2Θ̃)]|t1=t2=0

which is computed as done before and it turns out to be

D2
g(c) · (Θ̃, Θ̃) =

1

τ − t0

∫ τ

t0

∫ t

0

∫ t

0

[x̂
T
(σ)T Θ̃T e(AT (t−σ)+A(t−α))Θ̃x̂(α)

+x̂
T
(σ)T Θ̃T e(AT (t−σ)+A(t−α))Θ̃x̂(α)]dαdσdt

which is not zero for c = 0. We then identify the space R
n×n+1 with R

n(n+1) and associate to the
matrix Θ̃ ∈ R

n×n+1 the vector θ̃ ∈ R
n(n+1). In particular let E be a compact set in R

n(n+1) such that
for τ ∈ [τi, τi+1] θ̃(τ) ∈ E. For θ̃(τ) ∈ E by Taylor’s theorem we have

g(Θ̃) = g(θ̃) = g(0) + dg(0) · θ̃ +
1

2
d2

g(c) · (θ̃, θ̃)
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for c = αθ̃, α ∈ [0, 1], where the first two terms are zero and the last one is zero only if θ̃ is zero as
we showed earlier. Since for each θ̃ ∈ E there is a c such that the above expression is verified we can
consider the smallest eigenvalue of 1

2d2
g(c) as θ̃ varies in E, then

g(Θ̃) = g(θ̃) ≥ k2‖θ̃‖
2 = k2tr(Θ̃

T Θ̃) = k2‖Θ̃‖2 (47)

where k2 = minθ̃∈E λmin(d2
g(c)). Since for τ > τi ea(τ) = 1

τ−t0

∫ τ

t0
x̃T (t)x̃(t)dt ≥ 1

τ−t0

∫ τi

t0
x̃T (t)x̃(t)dt,

we have by (47) for τ > τi ea(τ) = g(Θ̃) ≥ k2‖Θi − Θ̂‖ = ‖(Ai|bi) − (Â|b̂)‖, which completes the
proof.

Proof of Lemma 4.3

Proof. Denote (Ã|b̃) := Θ̃ = (A|b) − (A1|b1) and construct the error system

ė = ẋ − ż = Ax + b − A1z − b1 − d(t)

and letting A = A1 + Ã, b = b1 + b̃ we have

ė = A1e + Θ̃x − d(t)

where x = (xT , 1)T . Since A is Hurwitz consider Lyapunov function for the above error system V =
eT Pe with P > 0 such that PA1 + A1P + Q = 0 for some Q > 0. then we have

V̇ = −eT Qe − dT Pe − eT Pd + xΘ̃T Pe + eT P Θ̃x

and substituting the proper upper bounds we find

V̇ ≤ −λ‖e‖2 + ‖e‖[λpd + 2λpδ‖x‖]

where Λp is the largest eigenvalue of P and λ is the smallest absolute value of the eigenvalues of Q and
completing the squares we finally obtain

V̇ ≤ −0.5λ‖e‖2 + λ2
pd

2
4/λ + 16λ2

pδ
2
/λ

therefore since the second and third terms are bounded ‖e‖2 will be bounded in a ball centered in the

origin of radius
8λ2

pd
2
+3λ2

pδ
2
‖x‖2

λ2 since e(0) = 0 by assumption.

Proof of Lemma 4.4

Proof. Let us first prove relation (27). Then substitute in expression (15) for system (11) x = x0 + x̃
where we denote with x0 the state of the nominal system (12). Then from Lemma (4.3) we have
‖x̃‖ ≤ k1δ + k2d for suitable positive constants k1 and k2. Then we can write also

Φ :=

∫ τ

t0

x(t)T x(t)dt = Φ0 + Φ̃ (48)

where Φ0 =
∫ τ

t0
x0(t)T x0(t)dt and Φ̃ denotes the reminder which is directly proportional to δ and d(t).

Let Θ̂ = (Â, b̂) that is the estimate for (11) derived from (15), and Θ̂0 = (Â0, b̂0) that is the estimate for
the nominal system computed by letting in (15) d = 0 and δ = 0. If τ ≤ τi the result is straightforward,
let’s then show it for τ > τi. By letting

v = [

∫ τi

t0

(Ai + δUi|bi)xxT dt +

∫ τ

τi

(Ai+1 + δUi+1|bi+1)xxT dt +

∫ τ

t0

d(t)xT dt]

and

w = [

∫ τi

t0

(Ai|bi)x
0(x0)T dt +

∫ τ

τi

(Ai+1|bi+1)x
0(x0)T dt]
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we have by (48) and (15)

Θ̂ − Θ̂0 = v[Φ0 + Φ̃]−1 − w[Φ0]−1 = (v − w − (Φ0)−1Φ̃w)[Φ]−1

If we compute the term v−w by rewriting again x = x0 + x̃ we realize that it is proportional directly to
noise and parameter uncertainty, so that all the terms in the right hand side are proportional to noise
and parameter uncertainty. Further computation leads to an upper estimate for the norm of the right
hand side:

‖Â − Â0‖ ≤ ‖Θ̂ − Θ̂0‖ ≤ kp(d + d
2

+ d
3

+ δ + δ
2

+ δ
3
) . (49)

Letting e0
p(τ) = ‖Â0 − Ai‖ we have by the definition of parametric error (17) ‖Â0 − Ai‖ < ‖Â0 − Aj‖

for any j �= i and letting ep(τ) = ‖Â−Ak‖ for some k we have again by definition (17) that ‖Â−Ak‖ <

‖Â − Aj‖ for any j �= k. Therefore with Â = Â0 + Ã we have

ep(τ) = ‖Â − Ak‖ < ‖Â − Ai‖ = ‖Â0 − Ai + Ã‖ ≤ ‖Â0 − Ai‖ + ‖Ã‖ = e0
p(τ) + ‖Ã‖

which gives the right side of (27). For the left side we have

‖Â − Ak‖ = ‖Â0 − Ak + Ã‖ ≥ ‖Â0 − Ak‖ − ‖Ã‖ > ‖Â0 − Ai‖ − ‖Ã‖ = e0
p(τ) − ‖Ã‖

which with (49) concludes the proof of (27).
For proving (28), let x̃ = x− x̂ = x− x0 + x0 − x̂0 + x̂0 − x̂ in the expression of ea(τ) given by (18)

for system (11), where x̂0 is being generated by system (16) with Â0 and b̂0 obtained from (15) with
d = 0 and δ = 0. Therefore letting x̃0 = x0 − x̂0, we have

ea(τ) =
1

τ − t0

∫ τ

t0

(x̃0(t))T x̃0(t)dt +
1

τ − t0

∫ τ

t0

[2(x̃0(t))T (x(t) − x0(t))

+2(x̃0(t))T (x̂(t) − x̂0(t)) + 2(x(t) − x0(t))T (x̂(t) − x̂0(t))

+(x(t) − x0(t))T (x(t) − x0(t)) + (x̂(t) − x̂0(t))T (x̂(t) − x̂0(t))]dt

where the first integral is e0
a(τ). By Lemma 4.3 we have ‖x−x0‖ ≤ k1δ+k2d and ‖x̂0−x̂‖ ≤ k3‖Θ̂−Θ̂0‖,

where ‖Θ̂−Θ̂0‖ ≤ kp(d+d
2
+d

3
+δ+δ

2
+δ

3
) by (49, so that the second integral is directly proportional

to noise and parameter uncertainty. Further computation leads to an upper bound for such integral of

the form ε = ka(d + d
2

+ d
3

+ d
4

+ δ + δ
2

+ δ
3

+ δ
4

+ δ
6
) which leads to expression (28).

Proof of Lemma 4.5

Proof. Given a system of the form of one of (11) we can always rewrite it as

ẋ = Ax + b + w(t)

where w(t) is including also the part deriving from δ. We can rewrite the solution of such a system as

x(t) = eAtx(0) + A−1eAtb − A−1b + w1(t)

where w1 is the contribution due to noise w(t). Therefore

ẋ = AeAtx(0) + eAtb + w(t) = ẋ0(t) + w(t) (50)

Then we compute ẋav(τ−) and ẋav(τ+). We rewrite ẋ as in (50) with A1, b1 and x01 in place of A, b
and x(0) for computing ẋav(τ−) for τi−1 + ∆τ ≤ τ ≤ τi, and with A2, b2 and x02(0) in place of A, b
and x(0) for computing ẋav(τ+) for τ ≤ τi − ∆τ or τ ≥ τi. The situation is described in Figure 15.
Then by integration we have for τi−1 + ∆τ ≤ τ ≤ τi
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ẋav(τ−) = (
I − e−A1∆τ

∆τ
)eA1τx10 + A−1

1 (
I − e−A1∆τ

∆τ
)eA1τ b1 + w1 = ẋ0

av(τ−) + w1 . (51)

For τ ≤ τi − ∆τ or τ ≥ τi we have

ẋav(τ+) = (
eA2∆τ − I

∆τ
)eA2τx20 + A−1

2 (
eA2∆τ − I

∆τ
)eA2τ b2 + w2 = ẋ0

av(τ+) + w2 (52)

where ẋ0
av(τ−) and ẋ0

av(τ+) are the perturbation free terms. Let

γ =
ẋav(τ−)T ẋav(τ+)

‖ẋav(τ−)‖‖ẋav(τ+)‖

which by (52), (51) and by letting M1 = I−e−A1∆τ

∆τ and M2 = eA2∆τ−I
∆τ becomes

γ =
(M1e

A1τx01 + A−1
1 M1e

A1τ b1 + w1)
T (M2e

A2τx02 + A−1
2 M2e

A2τ b2 + w2)

‖M1eA1τx01 + A−1
1 M1eA1τ b1 + w1‖‖M2eA2τx02 + A−1

2 M2eA2τ b2 + w2‖
.

We first isolate in this expression the contribution due to noise. Proceeding with standard arguments
we obtain

γ ≤ γ0(1 + β) + β (53)

γ ≥ γ0(1 − β) − β (54)

(55)

where

γ0 =
(M1e

A1τx01 + A−1
1 M1e

A1τ b1)
T (M2e

A2τx02 + A−1
2 M2e

A2τ b2)

‖M1eA1τx01 + A−1
1 M1eA1τ b1‖‖M2eA2τx02 + A−1

2 M2eA2τ b2‖
(56)

and

β = w
‖(M1e

A1τx01 + A−1
1 M1e

A1τ b1)‖ + ‖M2e
A2τx02 + A−1

2 M2e
A2τ b2‖ + w

‖M1eA1τx01 + A−1
1 M1eA1τ b1 + w1‖‖M2eA2τx02 + A−1

2 M2eA2τ b2 + w2‖

where w is an upper bound on w1 and w2 and it is proportional to δ and d so that β ≤ k(δ+δ
2
+d+d

2
)

for a suitable constant k. We proceed by finding a lower bound for γ0 for τi−1 + ∆τ ≤ τ ≤ τi − ∆τ
and an upper bound for τ = τi. Consider the case τi−1 + ∆τ ≤ τ ≤ τi − ∆τ first. Then we have
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A1 = A2 = A, b1 = b2 = b and x01 = x02 = x0 and M2 = eA∆τM1, so that letting M2 = M1 + M̃1,
with M̃1 = eA∆τ − I which is going to zero as ∆τ goes to zero, we find

γ0 =
(M1e

Aτx0 + A−1M1e
Aτ b)T [(M1e

Aτx0 + A−1M1e
Aτ b) + (M̃1e

Aτx0 + A−1M̃1e
Aτ b)]

‖M1eAτx0 + A−1M1eAτ b‖‖(M1eAτx0 + A−1M1eAτ b) + (M̃1eAτx0 + A−1M̃1eAτ b)‖
.

By minorating the numerator and majorating the denominator and adding and subtracting one, we
obtain

γ0 ≥ 1 −
2‖M̃1e

Aτx0 + A−1M̃1e
Aτ b‖

‖M1eAτx0 + A−1M1eAτ b‖
= 1 −

2‖M̃1e
Aτx0 + A−1M̃1e

Aτ b‖

ẋ0
av(τ−)

(57)

which leads to
γ0 ≥ 1 − k(1 − eλ∆τ )

where λ is the eigenvalue with smallest real part and k is a suitable constant. Then from (54) we derive

γ ≥ [1 − k(1 − eλ∆τ )](1 − β) − β

and asking for example to have γ ≥ 1− (k+2)β, by equating [1−k(1−eλ∆τ )](1−β)−β = 1− (k+2)β
we finally get a possible value for ∆τ :

∆τ = −
1

λ
ln

(

1 − 2β

1 − β

)

which is a choice of ∆τ which goes to zero when β → 0 and it is such that Tr(τ) ≤ (k + 2)β. Then we
have proved (30).

The proof of (31) proceeds analogously: let first consider the expression for γ0 and find an upper
bound for it when τ = τi, and then combine it with (53) to obtain the result. In this case A1 �= A2,

b1 �= b2 and x10 �= x20, so let in expression (56) M1 = A1 + M̃1 with M̃1 = I−e−A1∆τ−A1∆τ
∆τ and

M2 = A2 + M̃2 with M̃2 = eA2∆τ−A1∆τ−I
∆τ , then proceeding with the same arguments as before and

isolating the part due to tilde terms we obtain

γ0 ≤
(A1e

A1τx01 + eA1τ b1)
T (A2e

A2τx02 + eA2τ b2)

‖A1eA1τx01 + eA1τ b1‖‖A2eA2τx02 + eA2τ b2‖
(1 + α) + α

where

α = k
1 − e−λ∆τ − λ∆τ

∆τ

where 1−e−λ∆τ−λ∆τ
∆τ is the largest among the eigenvalue of M̃1 and M̃2 and it is going to zero as

∆τ goes to zero and k is a suitable bound independent on ∆τ . Then from expression (53) we have
γ ≤ γ0(1 + β) + β and also

(A1e
A1τx01 + eA1τ b1)

T (A2e
A2τx02 + eA2τ b2)

‖A1eA1τx01 + eA1τ b1‖‖A2eA2τx02 + eA2τ b2‖
=

ẋ0(τ−
i )T ẋ0(τ+

i )

‖ẋ0(τ−
i )‖‖ẋ0(τ+

i )‖
≤ ρ0

therefore
γ ≤ [ρ0(1 + α) + α](1 + β) + β

so that

Tr(τi) =
1 − γ

2
≥

1 − ρ0 − ϕ

2

with ϕ = ρ0α + α + ρ0β + ρ0αβ + αβ + α which is going to zero as perturbation (and therefore ∆τ) is
going to zero.
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