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Abstract. Segmentation of neural cells in three dimensional fluorescence mi-

croscopy images is a challenging image processing problem.  In addition to be-

ing important to neurobiologists, accurate segmentation is a vital component of 

an automated image processing system. Due to the complexity of the data, par-

ticularly the extreme irregularity in neural cell shape, generic segmentation 

techniques do not perform well. This paper presents a novel segmentation tech-

nique for segmenting neural cells in three dimensional images.  Accuracy rates 

of over 90% are reported on a data set of 100 images containing over 130 neural 

cells and subsequently validated using a novel data set of 64 neurons. 

1   Introduction 

Microscopy and image acquisition technology has undergone a recent revolution, 

generating multidimensional data sets that require significant automation to analyse 

efficiently. Studies have shown that many neurodegenerative disorders (including 

Parkinson’s disease and Alzheimer’s disease) have a significant impact on neuronal 

structure. The ability to recognize changes in the morphology of neurons together 

with more subtle changes that occur within the cells with respect to the distribution of 

cytoplasmic proteins and cell organelles, will allow cell function to be determined.  

The capacity to analyse the morphology of these cells using unbiased, automated 

techniques would greatly facilitate advances in the field. In order to analyse the mor-

phology of individual neural cells, we must first segment them from the rest of the 

image.  

 

Our previous work in cell morphology analysis [1] used manually guided segmenta-

tion techniques to conduct experiments on our initial data set, but with increasing data 

becoming available, there is a need for accurate automated image analysis systems. In 

addition, manual techniques are subject to human bias, making automated quantitative 

techniques desirable.  However, the automated segmentation of neural cells of the 

central nervous system presents a major challenge due to inherent features such as 

irregularity of cell shape and size, and arborising interconnecting cell processes. 



Many existing segmentation techniques in fluorescent microscopy concentrate on the 

segmentation of morphological structures such as the cell nuclei [2, 3], or the com-

plete cell (nucleus and cytoplasm) [4]. Fernandez et al. [2] and Jarkrans [3] both try to 

detect and separate directly neighbouring cell nuclei. Fernandez et al. propose the 

detection of dominant or concave points on the binary contour of the region as points 

where a splitting of the nuclei might be possible. In contrast, Jarkrans uses a contour 

analysis based on a smoothed chain code, which reflects the curvature of the nucleus 

contour. 

 

 

 

Figure 1. An olfactory bulb neuron in a) 2D MIP Image; b) 3D Volume image 

 

We have developed a method for generating optically resolvable, thick tissue speci-

mens [5].  The cellular and sub-cellular compartments of these specimens are probed 

using multiple fluorescent probes.  These structures may be resolved in three dimen-

sional space using structured illumination and wide-field microscopy ([6], [7]).  Thus, 

we are able to produce large data sets of high resolution  three dimensional (3D) im-

ages probed with multiple markers [5]. These images contain more information than 

their two dimensional (2D) counterparts, and present new possibilities for automated 

analysis. Figure 1 shows a cell that would normally be difficult or impossible to seg-

ment in a two dimensional image become a more manageable image processing task 

when analysed in three dimensions. When considering a three dimensional image, 

new segmentation techniques are needed to facilitate further processing. 

 

Current three dimensional segmentation techniques can be broken down into edge 

based techniques and region based techniques. In edge-based approaches such as [8] , 

the points located on the edges are first identified, followed by edge linking, contour 

analysis and surface definition. In region-based approaches a number of seed regions 

are first chosen. These seed regions grow by adding neighbouring points based on a 



compatibility threshold [9]. In the context of fluorescence microscopy, goal seed 

regions are the cell nuclei or centres where the signal intensity is highest. As the re-

gion growing reaches the edges of the cell, the intensity values drop off and therefore 

don’t meet the compatibility threshold. 

 

In [10], Yu et al. propose a seed region finding approach to segmenting tightly packed 

cell nuclei within 3D confocal images of neurospheres. They focused on a method to 

find seed regions in the centre of objects of different sizes and then use an “Evolving” 

Generalized Voronoi Diagram to separate touching nuclei. Another nuclei segmenta-

tion algorithm proposed by Long et al [11] uses the 3D watershed method to segment 

cell nuclei. They combine a foreground contour mask with intensity-based watershed 

segmentation and post-process the segmentation results to correct over and under 

segmentation errors. 

 

Our project goals required the entire cell body to be segmented, so these nuclei seg-

mentation techniques may not be suitable. In this paper, we propose a method that 

involves a 2D slice by slice analysis as per Cai et al in [12], as well as intensity based 

analysis as used in [11], and then use contour tracking to merge 2D slices into 3D 

neuron masks. We tested this algorithm on 100 images of the olfactory bulb of mice 

and found we were able to segment cells with high accuracy. 

2   Research Methodology 

 

 

Figure 2. Overview of segmentation process 



2.1   Pre-Processing  

The 3D image data is loaded as a „stack‟ of 2D images.  All the individual 2D images 

(„slices‟) share the same x and y dimensions. The number of images is variable de-

pending on the thickness of the tissue sample, but a typical stack has between 80 and 

120 slices, each slice representing 0.25 – 0.5 µm of cell thickness along the z axis.  

2.2   Slice Analysis 

Each slice has a 3x3x3 Gaussian filter applied to it to remove noise and is then 

thresholded to separate the foreground from the background. Similar works ([13], 

[11]) use Otsu‟s method [14] for automatically detecting a threshold that separates 

foreground background. Whilst using an automated thresholding technique does pro-

vide more tolerance for intensity variations in the data set, it also has the drawback of 

looking to discriminate foreground and background data regardless of the image con-

tents. In some images with little „real‟ foreground data (an image with no neurons in 

it), an automatic thresholding technique is more likely to produce false positive ob-

jects. Both methods will be used in experimentation. 

 

Once thresholded, each slice then has a series of morphological operations performed 

on it to remove irrelevant or insignificant objects. Firstly, the slices are filtered again 

to remove any noise or stray pixels created in the thresholding process. After the 

slices have been filtered, morphological opening (erosion followed by dilation) is 

performed to remove small objects followed by morphological closing (dilation fol-

lowed by erosion) to fill in holes inside foreground objects.  

 

Once the objects have been separated, we identify potential neuron cross sections by 

eliminating small objects and computing a contour roundness metric. After estimating 

the perimeter and area of each object in the scene, an isoperimetric value is calculated 

using the formula: 

 

 
 

If the objects isoperimetric value is below a preset threshold, the object is discarded as 

a candidate; else it is added to the candidate list. With an appropriate threshold, this 

filtering allows our technique to remove foreground objects like thick axon trunks, 

whose cross sections are typically more rectangular shaped than neural cell bodies. 

2.3   Neuron Segmentation  

Once each slice has been individually analysed and objects placed on the candidate 

list, the objects on the list need to be grouped to create 3D masks. Assuming a con-

servative minimum cell thickness of 3 microns, an object must be present in at least 



12 slices (at 0.25 µm slice thickness) to be considered. We discard any neurons touch-

ing image boundaries as they may not contain complete neurons. Objects that overlap 

in the x and y planes on adjacent images are examined for contour similarity. A high 

rate of change of the contour of the object over a series of slices can be used to iden-

tify overlapping or touching objects, or identify slices with noisy data around the cell. 

By creating a rate of change threshold, objects that have irregularities in their con-

tours between Z-slices can be discarded. 

 

Once the neurons have been identified, they can be segmented in one of two ways. A 

bounding box can be created using the maximum detected radius of any slice to iden-

tify where a neuron is located. This is useful for cell counting applications, but does 

not suit applications where the morphology of the cell is important. Instead, a three 

dimensional matrix can be constructed as a mask over the original image, with the 

detected cell cross-section in each slice used to create a series of two dimensional 

masks. This extracts the morphology of the cell for further analysis. 

2.4   Algorithm Pseudo-code 

Psuedo-code for the segmentation technique can be seen below. 

 

 

Segmentation Algorithm 

 

mThresh = metricThreshold 

cThresh = contourThreshold 

 

for each Slice S ∈ Image 
{ 

  Filter and threshold S; 

  Perform opening and closing on S; 

  Fill holes and detect objects in S; 

 

  for each object K ∈ S; 
  { 

    Calculate roundness metric for K; 

    if (isoperimetric > mThresh && K does not touch  

        image edges) 

      Add K to candidate list C 

  } 

} 

 

 

 



 

for each candidate X ∈ C 
{ 

  Remove X from candidate list C   

  Add X to Neuron N 

 

  for each candidate Y ∈ C 
  { 

    if (contourChange(Y,N) < cThresh && X and Y  

        are adjacent) 

      Add Y to Neuron N 

      X is assigned Y 

      Remove Y from candidate list C 

  } 

 

  if(N.sizeZ > minZSize) 

    Add N to results list R 

} 

 

3   Experimental Results, Analysis and Discussion 

To develop our proposed segmentation technique, 100 images of olfactory bulb neu-

rons were obtained. Tissue specimens were harvested from laboratory mice, embed-

ded in PEG using the protocol detailed in [5] and sectioned coronally at a thickness of 

40 μm. Fifty images were taken of olfactory neurons from wild type laboratory mice 

and another 50 were taken from mice with a focal deletion of the gene sequence cod-

ing for the neurotrophic factor neurturin.   

 

Images were taken at 630x magnification using a Zeiss AxioImager Z1 equipped with 

an Apotome system to create Z-stacks. These images were manually analysed by 

neurobiologists and found to contain 134 cells. We tested our algorithm using several 

different parameters for threshold, minimum object size and isoperimetric threshold. 

 

Table 1. Results using manual threshold values 

Minimum 

Object Size 

Isoperimetric 

Threshold 

Threshold Accuracy 

2500 0.7 0.2 74% 

2500 0.7 0.3 88% 

2500 0.7 0.4 80% 

4000 0.7 0.2 77% 

4000 

4000 

0.7 

0.7 

0.3 

0.4 

83% 

72% 



 

 

The highest accuracy was obtained using a fairly low threshold (0.3), with 123 de-

tected cells and 5 miss-classifications, resulting in an accuracy of 118/134 (88%). 

Lowering the threshold to 0.2 increased the number of false positives, while any 

higher resulted in an increased number of missed cells. We then used Otsu‟s method 

to automatically calculate the threshold for the dataset. 

 

Table 2. Otsu‟s thresholding vs. manual thresholding 

Threshold False 

Positives 

Missed 

Cells 

Accuracy 

0.3 5 11 88.1% 

Otsu 7 8 88.8% 

 

 

The use of Otsu‟s thresholding technique yielded 126 detected cells, but 7 miss-

classifications giving an overall accuracy of 88.8%. As expected, Otsu‟s technique 

created more foreground data than a preset manual value and resulted in an increase 

in false positives. To attempt to reduce the number of false positives, we tested Otsu‟s 

technique with higher post processing thresholds for object size and isoperimetric 

values. 

 

Table 3. Adjusting algorithm parameters with Otsu‟s thresholding technique  

Minimum 

Object Size 

Isoperimetric 

Threshold 

False 

Positives 

Missed 

Cells 

Accuracy 

2500 0.7 7 8 88.8% 

2500 

4000 

4000 

0.75 

0.7 

0.75 

6 

2 

2 

17 

10 

19 

82.8% 

91.1% 

84.3% 

 

 

By increasing the post-processing thresholds we are able to eliminate nearly all of the 

false positives without significantly compromising the correctly labelled cells. This is 

particularly useful in our application where we can generate large data sets, so missed 

cells will have little impact, but a large number of false positives could cause inaccu-

racies in the analysis of cell morphologies.   

 

To test our results, a separate validation data set of 30 images was obtained and seg-

mented using the parameters that produced the best results on our original “develop-

ment” dataset.   

 



Table 4. Accuracy of algorithm on validation dataset.  

Minimum object size 4000, Isoperimetric threshold 0.7  

Dataset False 

Positives 

Missed 

Cells 

Accuracy 

Original (100 images, 134 cells) 2 10 91.1% 

Validation (30 images, 64 cells) 2 5 89.1% 

 

 

The validation images contained a high density of neurons per image in comparison to 

the development data set.  Despite the increased density of cells in the validation set, 

our segmentation technique was able to segment cells with an accuracy of 89.1%. The 

number of false positives was relatively low, and only 5 out of the 64 cells were not 

recognized.  

 

Our overall accuracy of 91.1% and 89.1% is comparable to other segmentation tech-

niques ([11], [12]) developed for related 3D microscopic image analysis tasks. A 

closer inspection of the results also showed that 7/10 (70%) of the missed cells in the 

original data set occurred in just 4 (4%) of the images where there is a low signal to 

noise ratio either due to a weak fluorescent signal or a high non-specific background 

signal. As our aim is to completely automate the image analysis process, the weak 

images are not manually removed from the dataset, however an extension to our work 

will involve the automated identification of poor images and their removal from the 

dataset to prevent biasing of the study outcomes.   

 

4  Conclusions and Future Research 

In this paper we have presented a technique for segmenting neurons in 3-Dimensional 

images that combines both edge based and region growing techniques. This algorithm 

requires very little manual input and is able to automatically detect seed points in 

complex scenes. Using contour analysis we can accurately detect objects over a series 

of slices and determine whether or not they are a neuron. The technique was validated 

using a novel data set of greater complexity and demonstrated to work accurately.  

This work provides a critical component for future automated image analysis. Using 

the segmented neuron data, we can develop techniques to automatically analyse neu-

ron morphology and population numbers to aid neurobiological and other cell bio-

logical research.  
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