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Abstract

As the most frequent cause of physical disability, musculoskeletal diseases such as arthritis and 

osteoporosis have a great social and economical impact. Quantitative magnetic resonance imaging 

(MRI) biomarkers are important tools that allow clinicians to better characterize, monitor, and 

even predict musculoskeletal disease progression. Post-processing pipelines often include image 

segmentation. Manually identifying the border of the region of interest (ROI) is a difficult and 

time-consuming task. Manual segmentation is also affected by inter- and intrauser variability, thus 

limiting standardization. Fully automatic or semi-automatic methods that minimize the user 

interaction are highly desirable. Unfortunately, an ultimate, highly reliable and extensively 

evaluated solution for joint and musculoskeletal tissue segmentation has not yet been proposed, 

and many clinical studies still adopt fully manual procedures. Moreover, the clinical translation of 

several promising quantitative MRI techniques is highly affected by the lack of an established, 

fast, and accurate segmentation method. The goal of this review is to present some of the 

techniques proposed in recent literature that have been adopted in clinical studies for joint and 

musculoskeletal tissue analyses in arthritis patients. The most widely used MRI sequences and 

image processing algorithms employed to accomplish segmentation challenges will be discussed 

in this paper.

Keywords

MRI; Image segmentation; Osteoarthritis; Rheumatoid arthritis; Knee; Hip; Wrist

Introduction

Musculoskeletal disorders and diseases are the leading cause of physical disability in the 

United States [1]. The four major musculoskeletal conditions responsible for disability are 

osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and lower back pain [1, 2]. The 

annual cost of treatment for musculoskeletal conditions in 2008 was approximately $849 

billion in the USA alone. Estimates predict that 52.5 million adults in the US (about 1 in 5) 
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suffer from diagnosed arthritis. As the population ages, the number of adults with arthritis is 

expected to increase to 67 million by 2030 [3].

Osteoarthritis, which is characterized by the loss of joint cartilage, and leads to pain and loss 

of function primarily in the knees and hips, affects 9.6 % of men and 18 % of women over 

60 years old [1, 2, 4]. Furthermore, early signs of OA are observed in more than 50 % of 

patients after knee ligament injury, such as anterior cruciate ligament (ACL) tears [5]. 

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects the synovial tissues 

around joints, but eventually erodes bone and cartilage. Out of every 100,000 people, 41 are 

diagnosed with RA every year. About 1.3 million Americans currently live with RA [6]. 

Osteoporosis, which is primarily characterized by low bone mineral density, is also a widely 

prevalent musculoskeletal disease. Wright et al. [7] estimated that in 2010, 10.2 million 

adults in the US had osteoporosis.

Unfortunately, the pathophysiology of these disorders is not completely understood. 

Identifying biomarkers to characterize, track, or even predict the progression of these 

diseases is crucial. In addition, biomarkers to monitor the effect of pharmacotherapies, such 

as assessing responsiveness to these therapies, are desperately needed.

In the last decade, magnetic resonance image (MRI)-based quantitative analyses have 

become more important in the diagnosis and follow-up treatments of major musculoskeletal 

diseases, in particular arthritis and joint injuries. Despite the fact that the main diagnostic 

imaging tool for OA remains the basic radiograph, there is ample evidence that MRI can be 

a valuable tool for assessing morphological changes, such as cartilage volume and thickness 

changes due to OA [8]. Although radiography is the current gold standard for assessing 

structural joint damage in RA, radiography does not visualize the earliest stages of this 

inflammatory disease. In comparison, MRI offers excellent visualization of synovial 

membranes, cartilage and bone [9, 10]. MRI provides clinicians with information about joint 

inflammation and damage, and is more sensitive than conventional radiographs. In 

particular, bone marrow edema patterns (BMEP), as identified by MRI, have been suggested 

as the strongest predictor of subsequent radiographic progression in early RA [11]. Although 

dual X-ray absorptiometry (DXA)-derived bone mineral density (BMD) is the current 

standard reference measure for osteoporosis, several clinical studies recently demonstrated 

that MRI-derived structural measures provided additional information on BMD by 

differentiating individuals with fragility fractures from those without [12]. In summary, MRI 

is an extremely valuable imaging tool for the diagnosis and study of different 

musculoskeletal-related disorders.

Regardless of which disease is studied, the overall processing pipeline of extracting MRI 

quantitative measurements often includes a step of image segmentation [13]. An efficient 

and repeatable fully automatic algorithm for segmentation could establish a standardized 

practice for identifying and imaging biomarkers, as well as the ability to better analyze large 

datasets in a timely fashion. Furthermore, manual segmentation is the main obstacle for the 

translation of promising quantitative MRI techniques into clinical practice.
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The path toward developing an automatic extraction of MRI biomarkers that can 

characterize, monitor, and predict arthritis disorders includes several interconnected steps. 

Although segmentation is one of the most critical steps, it is important to consider it in the 

overall context of the pipeline. Image acquisition and standardization between different 

sequences and vendors is also a critical factor. Several studies have recently presented the 

reproducibility of different MRI protocols assessing cartilage morphology, such as volume 

and thickness. Weckbach et al. [14] compared patellar cartilage volume and thickness 

measurement between 3D-fast low-angle shot (FLASH) and 3D-true fast imaging with 

steady-state precession (FISP) image data at 3T. They demonstrated that 3D-FLASH slightly 

overcame the performance of 3D-TrueFISP in the analysis of healthy subjects; yet, this trend 

was reversed when analyzing OA subjects. In a pilot study of the OA Initiative, FLASH and 

double-echo steady state (DESS) were compared in assessing cartilage morphology, and 

showed similar longitudinal reproducibility [15]. Schneider et al. [16] also evaluated the 

effect of different MRI sequences and manual segmentation teams, demonstrating 

equivalence with DESS, FLASH, and coronal formatted DESS. They also suggested that 

results from different segmentation teams, even if based on the same MR acquisition, should 

not be pooled in cross-sectional studies without evidence of comparable precision, 

emphasizing the need for automatic and repeatable segmentation techniques.

Comparison between different sequences becomes even more important when applied to 

compositional imaging. Jordan et al. [17] compared quantification of T1ρ relaxation times 

using CubeQuant, T2 relaxation times using (DESS), and normalized sodium signals using 

3D cones sodium MRI of knee cartilage in vivo at 3T. This study showed less variability in 

the measures than the differences observed in OA patients and healthy controls, suggesting 

that these compositional imaging quantification sequences may be viable tools for studying 

OA.

Machine, site, and vendor standardization is also a critical topic in quantitative MRI. Li et al. 

[18] discussed the longitudinal reproducibility of T1ρ and T2 relaxation time quantification 

using different coils, MRI systems, and sites. This study demonstrated excellent long-term 

reproducibility in phantoms, with Root Mean Coefficient of Variation (RMS-CV) ranging 

from 1.3 to 2.6 % for T1ρ and 1.2 to 2.7% for T2, and further, showed no significant 

differences in the in vivo T1ρ and T2 quantification for two traveling volunteers acquired at 

three different sites. In this study, cartilage segmentation was obtained with a semi-

automatic technique. The scan/rescan reproducibility was improved when a subset of the 

same data was analyzed with a fully automatic atlas-based cartilage segmentation procedure 

[19]. In the last few years, there has been much effort in MRI sequence optimization and 

standardization, as several studies reported that user variability is the main bottleneck in 

their overall pipeline for the efficient extraction of MRI biomarkers. Lately, this bottleneck 

has affected the focus of the imaging community, fueling the search for more automatic and 

reliable segmentation strategies.

In this paper, we review some of the automatic and semiautomatic techniques for the 

segmentation of joint and musculoskeletal tissues in the study of arthritis, available from 

recent literature. Both PubMed and IEEE Explorer were used for the literature research, 

crossing keywords such as: imaging modality (MRI), anatomical location (Knee, Hip, 
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Wrist), disease (Osteoarthritis, Rheumatoid Arthritis), and class of segmentation technique 

(Model-based, Atlas-based, Graph-based, etc.). Studies were selected considering the year of 

publication, the technical validity of the method, the experimental setting (sample size and 

validation metrics), and the impact on the field. Additionally, in the attempt to make this 

paper self-contained and better understandable for non-technical readers, some basic 

concepts about medical image automatic segmentation, and segmentation algorithms are 

included in the background section.

Background on MRI image segmentation

The “computer vision definition” of segmentation is described as the division of an image 

into homogeneous partitions with respect to specific features that can be measured in the 

image, such as intensity or texture, without assigning specific labels to each partition [13].

Choosing the correct feature set and the most effective partitioning strategy makes the 

segmentation one of the most challenging computer vision tasks. Generally in medical 

imaging, as well as in musculoskeletal applications, the definition may be different, and the 

task is even more challenging. Image segmentation becomes the process of partitioning areas 

of the image with a specific semantic meaning (cartilage, bone, muscle, etc.) and not just 

areas homogenous for a specific feature or set of features. Solving the segmentation problem 

manually, even if accurate, is not the most desirable solution as it is extremely time-

consuming. Moreover, even if the manual segmentation is considered the gold standard, it is 

affected by intra- and interuser variability. Though still affected by user variability, semi-

automatic techniques could be a compromise between accuracy and efficacy. Given that the 

objects to be segmented in medicine are usually ill-defined, the evaluation of a candidate 

algorithm is also difficult. Evaluation could be conducted using synthetic data, where images 

are constructed from a model and the true structure boundaries are known. Nevertheless, 

synthetic data hardly represent the variability seen in real cases.

Often, manual segmentation is considered as a gold standard, and the performance of 

segmentation is based on the similarity between the segmentation produced by the 

segmentation algorithm and the manual “gold” standard. Jaccard and Dice similarity indices 

are the two primarily used metrics for the assessment of binary masks overlap. Jaccard index 

is computed as the ratio between the intersection of two binary masks (A ∩ B) and the union 

(A ∪ B). Dice coefficients can be easily derived from the Jaccard coefficients as D = 2 JI(1 + 

J). Even as the most widely used metrics, Jaccard and Dice similarity indices do not provide 

information on the over or under estimation trends of the segmentation. Other metrics, such 

as specificity and sensitivity can be used to determine those estimation trends. It is also 

important to evaluate how this segmentation performance translates into the accuracy of 

extracting a suitable imaging biomarker and what level of accuracy is necessary considering 

the differences we would like to detect. Coefficient of variation (CV) and root-mean-square 

coefficient of variation (RMS-CV) are often used. Manual and automatic segmentation 

measures the imaging biomarker, and the CV is subsequently computed as ratio between the 

averages and standard deviation of the observations.

A classification of semiautomatic and automatic methods can be done considering different 

points of view. A segmentation method can be pixel/voxel-based if each pixel/voxel is 
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segmented based on gray-level values and no contextual information is considered. In this 

methodology, only information from the image histogram is analyzed. The thresholding 

technique is a more trivial example of a pixel/voxel-based image segmentation method. 

Region-based segmentations, such as region growing, split-and-merge. and watershed 

segmentations are strategies that consider information from the neighboring pixel gray-lev-

els. Edge-based segmentations, a class of methods based on the identification of image 

gradients, separate homogeneous regions. Graph searching and livewire methods are two 

examples of edge method techniques. In MRI segmentation, taking into account the a priori 

information about which structures will be found in the images is a widely used strategy. 

This technique typically considers the definition of the structure to be segmented or employs 

atlases. Machine learning and pattern recognition-based methods use a more statistical 

conception of the segmentation problem as a classification of each pixel/voxel as belonging 

to the object of interest (cartilage, bone, etc.) or background class.

In the following, applications of these classes of techniques to solve joint and 

musculoskeletal tissue segmentation in the study of arthritis are reported.

Knee bone and cartilage segmentation

The knee is the largest joint in the body and is one of the sites most commonly affected by 

OA. Cartilage and bone segmentation can extract important features from the joint that are 

useful for studying OA, such as cartilage volume and thickness [20]. Recently, knee bone 

shape was proposed as a possible biomarker for predicting OA progression [21] and as a 

possible risk factor for ACL injuries [22]. Bone segmentation is also critical for the 

assessment of joint biomechanics, which are reported to be associated with cartilage 

degeneration after ACL reconstruction [23, 24]. Moreover, it has been shown that molecular 

and biochemical changes take place in the joint tissue after the onset of OA and knee injuries 

[25, 26]. These biochemical changes can be precursors of further tissue degeneration and 

morphological changes in cartilage that characterize OA.

Recent advances in quantitative MRI, including T1ρ and T2 relaxation time quantification, 

allow for the characterization of articular cartilage biochemical composition [27]. In 

particular, T1ρ relaxation time, or the spin-lattice relaxation time in the rotating frame, may 

reflect the loss of proteoglycan at the very early stages of OA. MRI quantitative assessments 

of relaxation time maps reflecting degenerative changes in the knee are usually 

accomplished using region of interest (ROI)-based approaches [28]. In this class of 

techniques, compartments of the cartilage are manually or semi-automatically segmented 

and the average of the T1ρ or T2 values are calculated for each ROI. Despite this regional 

specificity, quantitative relaxation time MR images are characterized by relative low spatial 

resolution, making the segmentation task more difficult. There are several techniques to 

segment knee bone and cartilage. In the following sections, the main classes of recently 

proposed approaches are reviewed, emphasizing strengths and shortcomings of each.

Model-based approaches

The statistical shape modeling-based approaches are a very effective class of algorithms 

[29]. Similar to all model-based approaches, these make use of a prior model of what is 
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expected in the image. Typically, the main goal of these algorithms is to best match the 

model to the data in the target image. The model is created, taking into account the 

variability of a population that, as much as possible, represents the dataset target of the 

automatic segmentation. Active shape modeling (ASM) uses an explicit model of the object 

shape and gray level aspect in a region around a defined edge, and is trained with a set of 

images. In this dataset, the boundary of the ROI is segmented, manually or semi 

automatically. The boundary is then sampled with a set of landmarks identified in the same 

anatomical position for each image from the training dataset. The coordinates of all the 

landmark points are used to create a model of the possible shapes in the dataset, applying 

principal component analysis (PCA).

In the active appearance model (AAM) strategy, the gray levels, computed in a patch around 

the border of the ROI, can also be considered in the model [30]. The model generated from 

the training dataset is adapted to the images in the target dataset, and the boundary is defined 

through an iterative process aimed at maximizing the fit of the model to the given image. 

ASM-based approaches show very promising results in solving knee segmentation tasks. In 

one of the first applications presented by Solloway et al. [31], a 2D-ASM method was 

adopted to segment bone and cartilage with the aim of computing cartilage thickness. The 

images for this study were obtained on a 0.5T GE Vectra MRI scanner, and a 3D SPGR 

sequence was adopted with pixel spacing (0.89 × 0.89), slice thickness: 1.5 mm and TR/TE 

50/14 ms. A total of 28 subjects were studied: 16 mild OA patients and 12 control subjects. 

The model was built using 42 manually identified landmarks. This algorithm obtained a 

coefficient of cariation (CV) equal to 2.8% in the computation of cartilage thickness, albeit 

on a single slice.

The manual identification of the landmark in the training set is a possible solution in 2D 

applications, but is not feasible for 3D applications. Seim et al. [32] proposed a strategy 

based on 3D statistical shape modeling (SSM) and generalized hough transform to solve 

issues related to knee segmentation. The technique was previously applied to solve pelvis 

bone segmentations from CT images. This strategy used SSM trained on 60 images for the 

identification of the bone cartilage interface. It estimated the maximum and minimum 

thickness of the cartilage using the same training dataset, and then used this information to 

initialize a multi object, graph-based optimization method for the identification of the 

articular surface. The algorithm was trained and evaluated on a public dataset collected for 

the MICCAI 2010 Workshop Medical Image Analysis for the Clinic— A Grand Challenge 

(SKI0), which included 150 knee MR images [33]. The data for this challenge was acquired 

from over 80 different centers in the USA, using machines from all major vendors (i.e., 

General Electric, Siemens, Philips, Toshiba, and Hitachi, all mostly 1.5 T). The scanned 

plane and resolution were standardized: sagittal in plane resolution 0.4 × 0.4 mm, 1-mm 

slice thickness. The vast majority of the dataset were T1-weighted gradient echo or spoiled 

gradient echo sequences, and fat suppression techniques were common as well. Seim’s 

approach reported a Jaccard Index equal to 73.5 and 74.2 % for the femur and tibia cartilage 

segmentations, respectively.

In 2011, Graham et al. [34] proposed a strategy to use 3D active appearance models to solve 

knee segmentation and evaluate it on the same dataset. Today, this method is still ranked 
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with the best performances in both bone and cartilage segmentation, with an average Jaccard 

Index equal to 76.1 and 76.6 % for the femur and tibia cartilage segmentations, respectively. 

Figure 1 shows an example of knee cartilage automatic segmentation performed with this 

method. In this strategy, the landmarks on 3D surfaces were obtained using a variant of the 

minimum description length approach to groupwise image registration (MDL-GIR). This 

method is based on concepts from information theory, and defines the amount of information 

required to encode a model using a particular set of deformations. The mean reference image 

and set of deformations defined the model, mapping the mean image to each example image. 

The most interesting feature of the MICCAI challenge experiment was that the algorithm 

was trained on the Osteoarthritis Initiative dataset, not on a subsample from the same test 

dataset. In this way, the actual generalization performance of the algorithm was presented. In 

addition to the algorithms reviewed here, several other approaches have also been based on 

SSM [35, 36].

Despite promising results, the model-based nature of all algorithms built on the top of the 

SSM theory are characterized by a lack of local accuracy. Local shape features that are not 

correctly modeled in training, due to small sample sizes or high subject variability, are 

usually poorly addressed in the test set. For example, this class of techniques cannot 

properly identify the presence of osteophytes or severe cartilage loss. Thus, this method 

offers an optimal segmentation algorithm with a suboptimal performance in the extraction of 

imaging biomarkers, such as in late-stage OA progression where large shape variations are 

observed. In terms of computational time demands, the compact description of complex 

shapes with few principal components make the SSM-based methods a fast solution for the 

analysis of test data.

Atlas-based approaches

Atlas-based algorithms constitute another class of promising approaches. Overall, these 

strategies shift the post-processing focus from segmentation to registration. Image 

registration is the process of defining the best transformation to align two or more images. In 

atlas-based approaches, a reference is defined by a specific instance in the dataset or by 

merging N images previously aligned in a common coordinate system. For this atlas 

approach, a gold standard segmentation is manually conducted by an expert. Image 

registration applies this segmentation to the coordinate system of each case that needs to be 

segmented, typically applying an affine or non-rigid registration. However, it is well known 

that the manual gold-standard segmentation is subject to user variability, making image 

registration a difficult task to complete. Multi-atlas approaches attempt to manage this 

variability and minimize the registration error. The main strategy is based on constructing 

several atlases and registering all to the same target image. The final segmentation will be 

computed through label fusion methods.

Tamez-Pena et al. [37] presented a pilot study aimed at showing the feasibility of these 

techniques to segment articular cartilage. The study analyzed 19 subjects from the 

Osteoarthritis Initiative dataset. The segmentation was evaluated on 3D DESS images. The 

sequence settings included: pixel spacing (0.37 mm, 0.46 mm) slice thickness = 0.7 mm, 
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TE/TR 4.7/16.3 mm. The CV of the automatic estimation of cartilage volume varied from 

2.5 to 7.5 %, and thickness from 4.4 to 7.0 %.

Shan et al. [38, 39] recently proposed a multi-atlas strategy for both bone and cartilage 

segmentations, combined with a three-label approach that made use of the atlas 

segmentations as prior terms in a probabilistic approach. The method was evaluated on 706 

images of the Pfizer Longi-tudinal Study [39]. This study extensively discussed the choice of 

different types of regularizers. They showed how anisotropic regularization could improve 

segmentation performances. Much of the study also focused on the choice of the classifier. K 

Nearest Neighbors (KNN) and Support Vector Machines (SVM) were tested. For the 

femoral cartilage, KNN and SVM showed similar performances, while the SVM 

outperformed the KNN on the tibial cartilage. The algorithm was also tested on the SKI10 

dataset [33] showing competitive results: femur cartilage average Jaccard values were 75.3 

and 75.6 % for femur and tibia, respectively.

Carbadillo-Gamio et al. [40] also presented an atlas approach for the analysis of thickness 

and T2 relaxation times in patella cartilage. This method, compared to previously cited 

works, registered all the target images in the space of the atlas template, allowing for local 

statistical analysis. This method was recently modified and expanded on the overall knee 

joint [19].

The challenge of image registration makes the atlas-based segmentation techniques difficult 

to implement. The specific shape of the cartilage makes the interpolation step of transferring 

the segmentation mask from the atlas to the target image highly critical. Different choices in 

this phase may overestimate or underestimate the cartilage volume and thickness. Thus, 

algorithm setting should be always properly done, and comparison with a manually 

segmented gold standard should be considered. Mixing data from different pipelines should 

only be done after a proper cross sectional calibration of the results. Registration and label 

fusion, in the case of multi-atlas approaches, are both highly computational and intensive 

tasks, making the atlas-based methods unsuitable for real-time application. On the other 

hand, Shamonin et al. [41] showed how the usage of a GPU can sensitively speed up one of 

the most widely used state-of-the-art registration toolkit (elastix [42, 43]). This paper 

outlines how several of the non-rigid registration processing steps are highly parallelizable 

through Gaussian pyramids and the resampling step. The Gaussian filtering relies on a line-

by-line causal and anti-causal filtering, where all image scan lines can be independently 

processed. The resampling step requires the same independent operation for every voxel. 

Moreover, the parallel implementation preserves the accuracy of the registration. These 

features make GPU an attractive tool capable of balancing segmentation time and result 

accuracy in non-rigid image registration, consistent with the application of atlas-based 

segmentation.

Graph-based approaches

Graph-based methods also play a big role in the knee segmentation literature. The s/t graph-

cuts framework proposed by Boykov et al. [44] offers an object extraction method for N-

dimensional images. Each voxel in the image is described as a node of a graph, where the 

weight of the graph’s edge connecting two nodes is related to both regional and boundary 
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properties. There are several semiautomatic applications of this method. Shim et al. [45] 

showed how the use of the graph-cuts method significantly expedites the process of cartilage 

segmentation. Ababneh et al. [46] later proposed a fully automatic graph cut for bone 

segmentation. This method was evaluated on 376 MR images from the Osteoarthritis 

Initiative (OAI) database, and showed very high segmentation performances (0.95 Dice 

similarity index). Nevertheless, no experiments using similar techniques for cartilage 

segmentation are reported in this specific study.

Contrary to what was described for model-based and atlas-based methods, the graph-based 

technique does not model previous knowledge about the expected anatomy. This often 

results in better performances for extracting morphological biomarkers in late stages of 

disease. On the other hand, the lack of a model can also cause pitfalls in the algorithm. 

Systematic quality controls on segmentation results should always be considered in the 

pipeline if graph-based approaches are used for the segmentation. Graph-cut methods offer 

an approximate way to solve complex minimization problems [44] generally obtaining a 

good balancing between time and segmentation performance.

Machine learning-based approaches

In the last few years, a great deal of work has been done to employ machine learning (ML) 

techniques to solve medical imaging segmentation tasks [47]. Both unsupervised and 

supervised techniques have been proposed. In unsupervised strategies, the algorithm does 

not need any training dataset. Image labeling is completed by exploiting latent patterns in 

the voxel intensity distribution or other features and applying clustering techniques. On the 

other hand, supervised learning techniques require a training set so the algorithm can learn 

the correct label for each voxel through examples. Folkesson et al. [48, 49] presented a 

method based on the K nearest neighbor (KNN) classification strategy, and showed 

successful cartilage segmentation performances in the medial side of the joint on low-field 

MR images. A hierarchical schema was presented in this study. In the first step, cartilage 

was segmented from the background, which led to several false positives. This step was 

refined by a three-label classification strategy in the second step. A features vector was 

considered, taking the intensity of a single voxel and close neighbors into account. Parasoon 

et al. [50] further modified the work of Folkesson et al. by showing the combined use of 

KNN classifier and support vector machine (SVM). SVM is a widely used ML technique 

that shows promising results in solving different classification problems. The main obstacle 

is that SVM assumes that input data instances are independent and identically distributed 

(i.i.d.), which may not be appropriate for cartilage segmentation from MR images if single-

voxel intensity is used as a feature for classification. Zhang et al. [51] proposed a strategy 

aimed to incorporate contextual information, such as normalized intensity, local image 

structures and geometrical features in a multi-contrast schema. One of the most interesting 

characteristics of machine learning-based approaches is the ability to build feature vectors 

composed of heterogeneous information, allowing for the simultaneous use of multiple 

images to solve the segmentation problem. In this specific work, T1-weighted, FS SPGR, 

T2/T1-weighted fast imaging employing steady-state acquisition (FIESTA) and T2/T1-

weighted iterative decomposition of water and fat with echo asymmetry and least-squares 

estimation (IDEAL)-gradient echo (GRE) water and fat images are simultaneously used to 

Pedoia et al. Page 9

MAGMA. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accomplish the cartilage segmentation task. The same group also previously presented a 

multi-contrast approach combined with a discriminative random field approach [52]. Despite 

the promising results from both of these studies, the testing sample size was relatively small 

(11 knees) and the algorithms were tested exclusively on healthy subjects. Pang et al. [53] 

recently proposed a method based on a pattern recognition approach by using gradient 

information for the knee articular cartilage segmentation, and reported a mean Dice 

coefficient equal to 0.76.

Generally, defining the best set of features for segmentation is a difficult task. Several 

attempts were made in the past to define a perfect features vector, which included intensity, 

texture, gradients, etc. Recently, the direction of ML research is to utilize the learning 

procedure to define a better transformation of raw data into a representation that can 

effectively accomplish the assigned task. Deep learning is a relatively new branch of ML, 

aimed at avoiding any a priori feature definitions and at better classifying patterns in the 

analyses of big datasets. To the best of our knowledge, to date, only one application of deep 

learning to solve the knee segmentation task has been published [54].

Due to the multitude of ML approaches, comparing the main features and results of each is a 

difficult task. However, it is worth mentioning the extreme importance of the training set, the 

proper number of training examples, and coverage of the possible data variability. An 

improperly balanced training set could create bias in the learning process of the machine, 

which could be translated into dangerous and inaccurate drifts of the measured biomarker.

In general for all the neural networks, but even more for the novel deep learning 

convolutional neural network, training is well known to be a highly intensive and 

computationally demanding process. On the other hand, training on big datasets has 

demonstrated how these techniques have overcome the most powerful state-of-the-art 

methods in solving extremely complex segmentation tasks [55, 56]. These applications 

clearly highlight how such a system with high performance can allow for proper training, 

exploiting the real power of the techniques. After the training phase, the application on the 

test set is generally a fast process, suitable for real-time application.

In this section, the four main classes of algorithms used to automatically solve knee 

segmentation were presented: model-based, atlas-based, graph-based and machine learning-

based. Due to the complementary strengths and weaknesses of these methods, several 

attempts have been made to hybridize the approaches and combine strategies from different 

classes [57–61].

Hip cartilage segmentation

Several of the biomarkers used to assess knee cartilage, such as volume, thickness, and 

compositional imaging quantification, can also apply to hip cartilage. In assessment of hip 

MR images, perhaps the most interesting and difficult segmentation challenge is to 

automatically identify the femoral and acetabular cartilage borders. Compared with the knee 

joint, hip cartilage is much thinner, with an average thickness of 1.4 and 1.2 mm for the 

femoral and acetabular plates, respectively [62]. Moreover, due to the high curvature of the 

cartilage, the large majority of the voxels that compose the cartilage are severely affected by 
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partial volume effect. The distinction between the individual cartilage plates (femoral and 

acetabular) is particularly challenging in weight-bearing areas without the use of leg traction 

devices or contrast agents [63, 64].

Semiautomatic edge-based methods

Semi-automatic methods have been proposed to accomplish hip cartilage segmentation, 

several of which employ edge-based algorithms. These strategies primarily use image 

gradient information mediated by feasibility constraints, such as smoothing or a priori 

knowledge about the expected shape of the structure to be segmented.

Naish et al. [65] proposed the use of livewire for segmenting hip articular cartilage, with the 

intention to study weight-bearing effects in asymptomatic young volunteers. Livewire is a 

commonly used method for interactive image segmentation. The image is described as a 

weighted graph where nodes represent the image pixels and the arcs between nodes 

represent the relationships between neighboring pixels. A weight is assigned to each 

connection, typically a function of the edge strength between two pixels. The user defines 

the first and last node of the boundary. A graph searching strategy, such as Dikstra or A* 

algorithm, is used to find the best path that connects the two user-defined ends points. A 

path is considered best if it minimizes the weight of the visited arcs. This technique was 

tested on the global femoral and acetabular cartilage of six volunteers imaged on a 1.5T 

Philips scanner using a T2-weighted 3D gradient-echo sequence: pixel spacing (0.78 × 0.78 

mm) slice thickness 1.6 mm. TR/ TE = 15.4/5.9 ms. This study reported a global CV in 

computing the global thickness equal to 2.5 %.

In 2008, Li et al. [66] proposed a possible solution for the distinct segmentation of the two 

hip cartilage plates. Segmentation was performed semi-automatically using active contour. 

In this technique, the segmentation was initialized by an edge manually estimated by the 

user. The final boundary for the object of interest was then identified through the 

optimization of an energy function, modeled as a force and defined by balancing the 

attraction of the image gradients and the meet of constraints on border features, such as 

smoothness. In this study, a 2-D multiple-echo data image combination (MEDIC) sequence 

was used for the hip cartilage segmentation with an in-plane spatial resolution of 0.5 × 0.5 

mm and a slice thickness of 3 mm TR/TE 432/20 ms. Nine subjects were tested and retested, 

and the algorithm reported a global volume repeatability measure RMSCV% equal to 3.6 

and 5.6 % for the femoral head and the acetabulum, respectively.

Also in 2008, Carballido-Gamio et al. [67] proposed the use of a technique previously used 

to semi-automatically segment knee cartilage in order to analyze cartilage thickness, 

volume, and relaxometry parameters, such as T1ρ and T2 in the hip [68]. The proposed 

strategy is based on edge detection and Bezier splines with spatial contrast, and edge 

enhancement based on anisotropic diffusion filtering. In this study, five healthy subjects 

were imaged twice to assess the reproducibility of the strategy. The femoral and acetabular 

cartilages were segmented in a single slice chosen by the user. The MRI sequence used in 

this study was a 3D water excitation spoiled gradient-echo (WE-SPGR) with an in-plane 

resolution of 0.312 × 0.312 mm and 1.5-mm slice thickness TE/TR of 8.2/16.3 ms. Scan/

rescan reproducibility was reported equal to: CVs 2.19 and 3.50 % for the cartilage 
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thickness and volume, respectively. T1ρ and T2 CVs were reported as 2.03 and 5.89 %, 

respectively.

The semiautomatic nature of these algorithms allows for achieving a high level of accuracy, 

comparable to manual segmentation. Furthermore, the execution times for these techniques 

are typically fast. However, the human interaction introduces inter-and intrauser variability. 

Careful user training and cross-calibration of different individuals should always be 

considered in the usage of these techniques, particularly in longitudinal studies.

Fully automatic hip cartilage segmentation

Most of the methods presented for accomplishing the fully automatic knee cartilage 

segmentation have the necessary features to translate well to hip segmentation, if correctly 

parameterized or trained. Siversson et al. [69] proposed a multi-atlas approach for the fully 

automatic segmentation of hip cartilage. The aim of this study was to assess morphological 

TrueFISP and biochemical dGEMRIC hip images in 15 symptomatic subjects with mild or 

no radiographic osteoarthritis. Specific attention was given to the choice of label fusion 

strategy, testing a more conventional majority voting technique versus a local map STAPLE 

method. The global performances were presented as a function of the number of the 

templates used in the multi-atlas approach. As expected, STAPLE generally outperformed 

the majority-voting rule. Interestingly, the segmentation performance showed a logarithmic 

trend varying with the number of atlas templates, thereby justifying the choice of a relatively 

small number of atlas templates in favor of better time performances.

Despite the good results generally achieved by this strategy, the major limitation of this 

method was that the algorithm was not applied on a single cartilage plate, but on the global 

hip cartilage. Figure 2 shows an example of a 3D thickness map automatically computed 

using this method.

Xia et al. [63] proposed a combined use of ASM and graph-searching to solve automatic 

hipbone and cartilage segmentation. The proposed segmentation scheme included two 

phases: bone pre-segmentation and bone-cartilage interphase extraction, which was based on 

3D ASM and a multilayer arc-weighted graph-based cartilage segmentation for the 

identification of the articular border and the division between the two cartilage plates. The 

main feature of this algorithm was that the femoral and acetabular cartilage plates were 

simultaneously segmented. Multiple surface feasibility constraints were considered in the 

graph construction (e.g., surface smoothness, inter-surface distance and inter-object 

separation). The goal of the method was to then co-optimize the inner and outer interfaces 

for both the femoral and acetabular cartilage plates. A training process on 26 manually 

segmented cases was used to extract local statistics on the cartilage morphology, such as the 

cartilage presence probability for each bone voxel, cartilage thickness (considering the 

mean, standard deviation, and ranges), and joint spacing, which was used to define the 

separation constraints. The difference in thickness between pairs of neighboring vertices was 

also computed from the training set and used as a smoothness constraint. The energy 

function designed for this model included a boundary term, smoothed prior penalty term, 

inter-surface prior penalty term and inter-object prior penalty term. The Bojkov Min-cut 

method was used to find the best surfaces. The algorithm demonstrated an excellent 

Pedoia et al. Page 12

MAGMA. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation performance when tested on 52 healthy subjects. Automatic quantification of 

cartilage thickness and volume were highly correlated with manually derived values (R > 

0.8), despite a general trend of overestimating the cartilage size.

Wrist segmentation

MRI evaluation of the wrist is particularly relevant in the study of RA. According to the 

Outcome Measures in Rheumatology Clinical Trials (OMERACT) MRI working group, 

which developed an MRI-based scoring system (RAMRIS), synovitis, bone marrow edema, 

and bone erosions are the three main signs of RA shown on MRI [70]. In particular, bone 

edemas and synovitis are abnormalities that precede irreversible joint destruction. Although 

shown to be sensitive and reproducible, RAMRIS is time consuming, thus making more 

quantitative assessments of the wrist joint highly desirable. From a technical point of view, 

analysis of the wrist is extremely challenging due to the small joint sizes and the many 

bones. Furthermore, the limited mobility and pain of RA patients make acquisition difficult, 

and motion artifacts often affect the MR images. To date, limited research has focused on 

developing automatic or semi-automatic procedures for wrist joint analysis.

Segmentation of the wrist bones

Koch et al. [71] proposed a strategy for the automatic segmentation of the single carpal 

bones. In this study, a random forest classifier was used to identify a bounding box for each 

bone. This detection phase was refined within an energy-based framework, and solved using 

a graph optimization strategy. This algorithm was evaluated on 59 T1 weighted images and 

51 T2-weighted coronal MR images with a resolution of 0.365 × 0.365 in plane and 0.734 

mm in slice thickness. The automatic results were compared with manually traced 

segmentations and the ROC Area Under the Curve (AUC) was reported for validation 

metrics. The performances achieved were 88.0 ± 10.6 % for the T data sets and 88.1 ± 9.2 % 

for the T2 data sets. Unfortunately, this study does not report any information about the 

subjects analyzed. Moreover, it is not possible to assess the actual performance of the 

algorithm in correctly defining the bone border in the presence of erosion, synovitis or 

pannus tissue from these results.

Recently Wlodarczyk et al. [72] presented an atlas-based strategy for the wrist bone 

segmentation for low-field-strength MR images. The registration to the atlas was approached 

piecewise, dividing the problem into three sub-problems: registration of the distal parts of 

ulna and radius, the metacarpal bases, and the carpals. The authors reported that this choice 

was due to the computational demand of the algorithm, but also noted that this piecewise 

strategy helped to better control deformations in the registration phase. The atlas was only 

used in this strategy for the automatic definition of seeds used to automatically initialize a 

Watershed strategy, employed to finalize the segmentation. Excellent results were reported 

when the strategy was tested on 37 RA patients acquired on a 0.2 T MRI scanner. The 

average distance between the automatically and manually defined bone boundaries was 

approximately one pixel. Despite the good performance generally achieved, the authors 

acknowledged the lack of accuracy in segmenting big erosions with the proposed algorithm.
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Bone marrow edema quantification

Bone marrow edema (BME) patterns are commonly seen in RA, corresponding to 

inflammation in subchondral bone and, possibly, angiogenesis. The MRI definition of BME 

is a region within trabecular bone demonstrating hyper intensity on T2-weighted fat-

suppressed images. Several studies have suggested BME as predictor of progression of 

erosion and joint damage in RA [73]. Li et al. [74, 75] proposed the use of a threshold-based 

method, previously adopted in the knee for the semiautomatic segmentation of BME in the 

wrists of patients with RA. In this study, 14 RA patients were analyzed, and images were 

acquired at 3T with an advanced water/fat separation fast spin-echo (FSE) sequence that 

used iterative decomposition of water and fat with echo asymmetry and least-squares 

estimation (IDEAL). This study showed how IDEAL sequences provide images with higher 

SNR than classical FSE. A better fat suppression in water images was also achieved using 

multi-frequency fat spectrum reconstruction.

For each case, the user traced five ROIs in the normal bone marrow regions to estimate the 

segmentation threshold, fixed at five times the standard deviation of the signal in the normal 

bone marrow ROIs. The user then traced another ROI, one that included the BME, and the 

threshold was applied. The technique repeatability was shown in the computation of the 

BME volume. Intra-observer ICC was reported to be 0.998 and RMS CV 2.3 %. The inter-

observer ICC was 0.993 and RMS CV was 5.2 %, and the Scan/Rescan RMS-CV was 6.9 

%. This method was then used for the analysis of perfusion parameters in the BMEL after 

multi-spectral registration. The same segmentation strategy was used in a subsequent study 

from the same group, aiming to assess the bone structure within the BME region using HR-

pQCT [76]. Figure 3 shows an example of the segmentation results obtained by this 

technique in presence of big and small erosions (a1 and b1) and in absence of erosion (c1). 

The segmentation overlaid onto the HR-pQCT image after multimodal registration is also 

shown in Fig. 3a2, b2, and c2.

The advantage of threshold-based methods is in the simple reproducibility of the technique 

between groups. On the other hand, results can be sensitive to MRI imaging settings, such as 

a fat suppression algorithm, which could lead to a systematic overestimation or 

underestimation of the BME volume. Caution should be used in mixing results coming from 

different protocols.

Conclusion

This paper covers automatic and semiautomatic techniques for joint and musculoskeletal 

tissue segmentation proposed in recent literature. A large body of work is available from the 

past decade, particularly for bone and cartilage segmentation in the knee and hip joints.

Table 1 summarizes the main classes of automatic segmentation techniques reviewed in this 

paper, highlighting the main strengths and drawbacks of each. Model- and atlas-based 

methods are the most widely used in the recent literature, and have been proven capable of 

obtaining the most successful results. However, with the growing availability of data, the 

increasing growth of computational power and data storage capability make machine 
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learning approaches the most promising algorithm class for future applications, especially 

when applied in a multidimensional fashion and using information from different sequences.

For the knee, the presence of a standard benchmark dataset (MICCAI 2010 Workshop 

Medical Image Analysis for the Clinic—A Grand Challenge (SKI0)) allows for more 

accurate comparisons of different algorithms. Despite this large step towards a 

standardization of post-processing pipelines for knee bone and cartilage segmentation, there 

is still a lack of commonly accepted and widely distributed methods to solve this task. Too 

often, these methods remain a computer vision exercise; and in clinical studies, manual or 

semi-automatic segmentations are still more frequently used. In the analysis of the hip, more 

extensive validation of datasets with severely osteoarthritic subjects is required to make 

these techniques more widely available. Although some progress was made in the more 

quantitative and automatic analyses of the wrist joint in rheumatoid arthritis patients, several 

issues still need to be addressed, such as the automatic quantification of erosions (volume 

and shape), synovitis segmentation and quantification, as well as a more sophisticated fully 

automatic BME segmentation and quantification method.

In comparing different musculoskeletal anatomy, it is important to comment on the extensive 

use of SSM and atlas-based methods in spine segmentation, particularly for the analysis of 

lumbar and thoracic intervertebral discs (IVDs) and vertebral bodies (VBs) [77], and 3D 

segmentations of healthy and herniated intervertebral discs [78]. SSM was also recently used 

to identify the bone cartilage interface in the shoulder joint [79]. A combined use of SSM 

and atlas-based approaches has been presented in the segmentation of the quadratus 

lumborum muscle [80]. In 2015, Karlsson et al. [81] proposed a multi-atlas-based method 

used to quantify the whole-body skeletal muscle volume, and the volume of separate muscle 

groups. Figure 4 shows an example of automatic labeling of the different muscle groups 

obtained using this technique on a 3T scanner.

Although this review gives an overview on the classes of algorithms proposed for automatic 

segmentation of joint and musculoskeletal tissue in the last few years, several promising 

methods are not covered. Approaches widely used in neighboring research fields, such as 

neuroimaging, could be adapted for use in musculoskeletal applications [82]. The most 

recent computer vision and machine learning methods [83, 84], despite excellent 

performances shown in the segmentation of natural images, are still not widely translated in 

medical imaging field.

The automatic segmentation of joint and musculoskeletal tissues is still a major challenge 

for medical image processing. With the standardization in MRI acquisition and biomarker 

identification, automatic segmentation is an inevitable step in order to move from analyzing 

small datasets where manual segmentation is a feasible solution, to larger datasets and 

multicenter trials, obtaining more standardized and reliable measures. Moreover, several 

promising quantitative MRI analyses could have a much smoother translation into clinical 

practices if automatic segmentation can be achieved. Automatic joint and musculoskeletal 

tissue segmentation can be applied to new statistical analyses of “big data”, such as 

topological data analysis or deep learning latent pattern exploitation, which would help 

clinicians to better understand disease pathophysiology and disease phenotyping. A major 
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multidisciplinary and collaborative effort is necessary from the entire musculoskeletal 

imaging community to collect public datasets, and manually create commonly accepted 

gold-standard segmentations and validation procedures. Researchers must expand from 

comparing quantification data between automatic and manual segmentations, begin to 

accurately translate segmentation performances of biomarker quantification, and relate these 

performances to the precision needed to detect, track, and predict disease progression.
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Fig. 1. 
Tibia and femur automatic segmentation results on the 3D dual-echo steady state (DESS) 

sequence for the Osteoarthritis Initiative dataset obtained with active appearance modeling 

(Image credit: Mike Bowes, Imorphics, UK)
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Fig. 2. 
Example of thickness map automatically obtained with multi-atlas approach and STAPLE 

label fusion (Image courtesy credit: Carl Siversson, Ph.D., Computational Radiology 

Laboratory, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, 

Boston, MA, USA; Department of Medical Radiation Physics, Lund University, Malmö, 

Sweden)
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Fig. 3. 
In the first row, an example is shown of bone marrow edema segmentation obtained with a 

semi-automatic threshold method applied on IDEAL FSE MRI imaging. The second row 

shows the segmented mask overlaid on the HR-pQCT after the application of multimodal 

registration (Image courtesy: Xiaojuan Li PhD, Department of Radiology and Biomedical 

Imaging, University of California, San Francisco, CA, USA)
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Fig. 4. 
Example of automated muscle segmentation performed with a multi-atlas approach and 

applied on an image acquired at 3T (Image courtesy: Karlsson Anette, Department of 

Biomedical Engineering (IMT), Linköping University, Linköping, Sweden)
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