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Segmentation of Kidney From Ultrasound Images
Based on Texture and Shape Priors

Jun Xie, Yifeng Jiang, and Hung-tat Tsui, Member, IEEE

Abstract—This paper presents a novel texture and shape priors
based method for kidney segmentation in ultrasound (US) images.
Texture features are extracted by applying a bank of Gabor filters
on test images through a two-sided convolution strategy. The tex-
ture model is constructed via estimating the parameters of a set
of mixtures of half-planed Gaussians using the expectation-max-
imization method. Through this texture model, the texture simi-
larities of areas around the segmenting curve are measured in the
inside and outside regions, respectively. We also present an itera-
tive segmentation framework to combine the texture measures into
the parametric shape model proposed by Leventon and Faugeras.
Segmentation is implemented by calculating the parameters of the
shape model to minimize a novel energy function. The goal of this
energy function is to partition the test image into two regions, the
inside one with high texture similarity and low texture variance,
and the outside one with high texture variance. The effectiveness
of this method is demonstrated through experimental results on
both natural images and US data compared with other image seg-
mentation methods and manual segmentation.

Index Terms—Image segmentation, kidney segmentation, tex-
ture and shape prior, ultrasound image processing.

I. INTRODUCTION

I
MAGE segmentation is often the first step for image analysis
and is a key basis of many higher-level activities such as vi-

sualization, compression, medical diagnosis and other imaging
applications. The driving problem discussed in this paper is the
segmentation of kidney from medical ultrasound (US) images.
US imaging allows faster and more accurate procedures due to
its realtime capabilities. Moreover, it is inexpensive and easy
to use. The accurate detection of organs or objects from US
images plays a key role in many applications. However, com-
pared with other medical imaging modalities [e.g., computed
tomography (CT) and magnetic resonance imaging (MRI)], US
is particularly difficult to segment since the quality of the im-
ages is relatively low [1]. For instance, the speckle fluctuations
in the signal are proportional in magnitude to the signal strength.
This property leaves US images with significant noise even in
very bright regions. Moreover, because of attenuation of the
probing sound wave by sound absorbing tissues, the appear-
ance of most tissues change greatly such as the intensity value
varies and the boundary is not always complete and prominent.
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Bouma et al. [2] performed a study of quantitative evaluation of
(semi)-automated segmentation of US images and showed that
even manual segmentation of noisy US images is not straight
forward. On the other hand, reliable semi-automatic segmenta-
tion methods offer the potential advantage of making the mea-
surement process more consistent [3]. Therefore, in this paper,
we direct our research to develop a semi-automatic segmenta-
tion framework, using both texture and shape priors, for kidney
segmentation from noisy US images.

Most image segmentation methods focus on region growing
or active contours. However, the interference of speckle noise
makes region growing methods [4] unreliable to classify image
pixels. The active contour methods have been applied to auto-
matically segment the boundaries in US images for the cortex
of the brain [5], ovarian follicles [6], and for left-ventricular
boundaries in echo-cardiograms [7]. Unfortunately, the basic
active contour method is not adequate for our application
of kidney segmentation since the tissue-tissue boundaries of
kidney are relatively more difficult to localize in US images.
In this paper, we present a texture and shape priors based seg-
mentation framework for kidney US segmentation because we
believe that a prior model of the expected anatomical structure
is a significant advantage for segmenting them from US images.

One of the most used methods to model shape priors is
statistical modeling. Cootes et al. [8], [9] proposed the active
shape models (ASM) which relies on the statistics of an object’s
shape and gray-level appearances gathered from a training set
of manually land-marked instances of the object. They devel-
oped a parametric point distribution model for describing the
segmenting curve by using linear combinations of the eigen-
vectors that reflect variations from the mean shape. However,
this representation does not contain any explicit information
about the point connectivity. Moreover, because the techniques
of automatic placement of landmarks are currently still under
development (e.g., [10], [11]), landmarks are most frequently
obtained manually and it is a time-consuming, error-prone and
subjective work.

In [12], Chen et al. represented shapes using a collection of
points. They applied clustering methods instead of statistical
methods to get the shape prior model which is the average shape
of given curves with similar shape, but different size, orien-
tation and translation. However, the similarity of shapes in this
method is measured by area information which makes it highly
time-consuming. Based on global-to-local registration [13] and
prior region statistical properties, Rousson and Paragious [14]
showed a method to recover a segmentation map in accordance
with the shape prior model as well as a rigid registration between
the map and the model. This method is good at accounting for
local degrees of variability and local shape variations, but it con-
sists of variables and, thus, is unstable. Using the Gabor
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filter bank to characterize the prostate boundaries in a multi-

scale and multiorientation fashion, Shen et al. [15] proposed a

statistical shape model for the automatic prostate segmentation

in transrectal US images.

In [16], Leventon et al. proposed a segmentation method in-

cluding two steps: initial segmentation and its correction based

on a shape prior model. The model is obtained through a prin-

ciple component analysis (PCA) operation on a collection of

signed distance maps of the training shapes. In this framework,

the boundaries are represented as the zero level set of a 2-D

scalar function [17]. This representation is intrinsic (indepen-

dent of parameterizations) and is topologically flexible since

different topologies of the curve are represented by the scalar

function’s constant topology. This ability is valuable for real-

istic image-guided diagnosis. Moreover, this scheme can gener-

ally provide smooth surfaces with good local dependence. This

property results in a reasonable representative shape model of

the training shapes. The same scheme was successfully applied

in [18] where segmentation was implemented by calculating pa-

rameters of the implicit model that optimize the region-based

energy functionals proposed in [19] and [20]. Most recently,

Pons et al. [21] show a method to overcome the lack of point

correspondences in the level set framework. The explicit back-

ward correspondences from the evolving interface to the initial

one are maintained by advecting the initial point coordinates

with the same speed as the level set function. This makes it pos-

sible for the level set scheme to give a more substantial solution

to point correspondences. Therefore, we also employ this repre-

sentation of the segmenting curve in our approach and combine

a texture prior into the constructed deformable shape model.

There have been some studies to incorporate texture prior

knowledge into the active contour method [22] or the level set

scheme [17]. Zhu and Yuille [23] proposed a statistical varia-

tional approach for texture image segmentation which combines

the geometrical features of a snake/balloon model and the sta-

tistical techniques of region growing. However, in this method,

orientation information is ignored and the change of topology

is handled in an unnatural manner. Chakraborty et al. [24] pro-

posed a method incorporating the intensity gradient, region fea-

tures and shape prior information within a deformable boundary

framework. The region information is expressed through the in-

tensity homogeneity which limits this method’s applicability to

texture images. Based on [25], there are several approaches for

supervised bi-modal segmentation (e.g., [19], [26], and [27])

or three-modal segmentation (e.g., [20] and [28]). However, in

those statistical approaches, the important boundary informa-

tion is ignored.

Paragios and Deriche [29] proposed a supervised texture seg-

mentation method based on Geodesic Active Regions [30] and

level set method. In this method, the segmentation is imple-

mented by finding the best minimal length geodesic curve that

consists of image pixels with high boundary probabilities. But

this method needs to model each of the main texture patterns

in the input image. This indicates that, for each image to be

segmented, a long individual learning phase is indispensable

which obstructs its success in real-time applications such as

US diagnosis.

In this paper, we present a supervised image segmenta-

tion framework for extracting the organs of interest from US

images. The texture model is constructed by estimating the

Fig. 1. Summary of the proposed texture and shape priors based segmentation
method. �� is the mean shape and � (m = 1; 2; . . . ;M) are the major M
variability of the training shapes.x andx are the response vectors obtained by
applying the filters bank in the outside and inside half planes, respectively.W =
fw g are mixing weights and T = (s; �; T ; T ) are parameters of a similarity
transformation. J and J are the texture similarity measures calculated as (26).
FunctionE is the energy function define in (27). Parameters [W;T ] are updated
as described in Section III-B.

parameters of a set of mixtures of half-planed Gaussians for

different training directions. Building on the region-based

information through the prior texture model, the segmentation

is implemented by calculating the parameters of an implicit

representation of the shape model [16] to minimize a novel

texture-based energy function. A gradient descent algorithm is

employed to improve the efficiency of the optimization process.

Fig. 1 shows a summary of the proposed segmentation

method. In the training phase, a shape model is constructed

through the dataset of training shapes. This shape model

includes a mean shape and a set of eigenshapes . Mean-

while, through a proposed two-sided convolution strategy, the

training texture patterns are convoluted by a bank of Gabor

filters and the respondences are modeled as a texture model

including the upper half plane models and the lower half

plane models . In the segmentation phase, the segmenting

curve is represented by the mean shape and the eigen-

shapes with the mixing weights and the

parameters of a similarity transformation.
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The same bank of filters are then applied on two sides of the

curve through the two-sided convolution strategy. This process

provides the texture features and for the outside and

inside region, respectively. Based on the texture prior models

and , texture measures and of two independent

regions are calculated. The novel texture-based energy function

is minimized using the optimization algorithm introduced in

Section III-B. Finally the iteratively updated results

in the deformation of the segmenting curve , until the stop

criteria is satisfied.

We evaluate our method using experiments on both natural

images and clinical data. We also show the application of our

method on kidney segmentation in US images. The experi-

mental results are promising and show that our approach can

segment the kidney from US images efficiently and accurately,

compared with other image segmentation methods and manual

segmentation.

The rest of the paper is organized as follows. In Section II,

we briefly review the previous work on filtering theory and

present the definition of our two-sided texture model. The

shape modeling method of [16] is also introduced as it is a part

of our segmentation scheme. In Section III, we describe the

proposed texture and shape prior based segmentation method.

A novel texture-based energy function and the details of the

optimization are presented as well. Experimental results are

demonstrated and discussed in Section IV. Our conclusions are

presented in Section V.

II. TEXTURE AND SHAPE MODELING

A. Texture Feature Extraction

The first crucial step for texture analysis is to extract proper

texture features that have good discrimination properties over a

wide range of textures [31]. During the last twenty years, the

filtering theory has been successfully applied for texture image

processing. In this framework, texture features are extracted

by applying the input image with a bank of filters of various

orientations and spatial frequencies. Different filters have been

proposed including Gabor filters [32], Gaussian derivatives

[33] and wavelet transform [34]. Among those different se-

lections of filters, Gabor filters are often used for their good

performance in many texture analysis applications including

texture classification, texture segmentation, image registration

and image retrieval. Daugman [35] found that Gabor filters

are closely related to the function of simple cells in the pri-

mary visual cortex of primates. Manjunath and Ma [31] have

shown that the Gabor decomposition features are optimal in the

sense of minimizing the joint two-dimensional uncertainty in

space and frequency. Moreover, for US image processing, the

Gaussian factor in Gabor filters can smooth the speckle noise

in US images.

Because of those good properties, we adopt Gabor filters as

the extractor of texture features. Filtered with a bank of Gabor

filters, the input image is decomposed into multiple oriented

spatial frequency channels, and the channel envelopes (ampli-

tude and phase) are used to form the feature maps. The family

of two-dimensional Gabor functions is defined as

(1)

Fig. 2. Schematic explanation of the two-sided texture features extraction. For
each step of the deformation of the segmenting curve C , the texture features
of inside region and outside region are extracted respectively, using a bank of
Gabor filters with different orientations and scales.

where

(2)

Parameter specifies the orientation and is a phase offset.

Parameter pair specifies the center of a receptive field

in image coordinates and determines the size of the

receptive field. Term is the preferred spatial frequency of

function .

In our experiments, following the method in [36], we used

the Gabor filters with eight equidistant preferred orientations

and three spatial frequencies

, resulting in 24–D feature vectors.

The size of the receptive field is determined by the standard

deviation as proposed in [37].

When using the above Gabor filter bank to extract texture

features, we choose a two-sided convolution strategy. Given a

straight line in the 2-D image plane, the space is bisected into

two half planes and the convolution is performed on each of

them, respectively as illustrated in Fig. 2. This approach has

three advantages. First, it is more robust to deform the seg-

menting curve based on separated texture measures than on that

of the integrated region across the segmenting curve. Second,

it enables the construction of a texture-based energy function,

which depends on the properties of two individual regions inside

and outside the curve. Third, it allows the segmenting curve to

reach the points near the boundaries of objects of interest more

easily.

In our case, we apply the above filter bank on training im-

ages in six even-spaced directions. Let denote a straight

line along the th direction through point , where

. The image plane is then bisected by into two

half planes, the upper half plane denoted by and the lower

half plane denoted by . We compute the responses and

by applying the Gabor bank on both sides of as

(3)

(4)
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Fig. 3. Texture similarity maps of a synthetic texture image. In those maps,
high intensity indicates high difference. (a) The original synthetic texture
image. (b) The training texture pattern. (c) The similarity map of the full-region
convolution scheme. (d)–(i) The similarity maps of each upper half-plane for
six different training directions.

where and are the outputs of the symmetric

and antisymmetric filters in the upper half plane defined as

(5)

(6)

The responds in the lower half plane are similarly defined as

(7)

(8)

where

if

otherwise
(9)

if

otherwise
(10)

After the convolution process, there are 12 half plane feature

vectors and , for each point in the

training image. The dimension of each feature vector is 24.

Fig. 3 shows the texture similarity maps of a synthetic tex-

ture image. In these similarity maps, the high intensity indi-

cates high difference between the corresponding region and the

training texture patterns. Because the full-region convolution

scheme considers the similarity of a given location on the

integrated patch around it, there are several obvious gaps on the

desired boundary in its similarity map [e.g., the regions high-

lighted by arrows in Fig. 3(c)]. This problem is overcome by

the half-planed convolution scheme where the similarity of the

given patch is measured separately on two sides. This leads to

the disappearance of the gaps in some maps of the half-planed

convolution scheme, as indicated in Fig. 3(g), (h). Fig. 4 is an-

other case on a natural image. The full-region convolution re-

sult is shown in Fig. 4(c) in which the water region obtained a

very high similarity indicated by the low intensity. This makes it

hard to archive a good segmentation of the tiger hide without the

background of water. Oppositely, the similarity of water is very

low in Fig. 4(d), (e) which makes it possible for the segmenting

curve to stop on the boundary of the water region. These two

experiments show that the two-sided convolution strategy can

increase the accuracy of texture feature extraction on texture’s
edge areas.

B. Two-Sided Texture Model

After texture features extraction, a good similarity measure is

necessary for discriminating different textures. The windowed

histogram model is one of the most common models in fil-

tering theory. But it is hard to choose the proper size and the

cell number of the histogram. Another common model is the

finite mixture (FM) model which has a number of elegant fea-

tures and is mathematically simple. It has been successfully em-

ployed to segment natural images [38] and medical images [39].

In our method, we model the training textures in the feature

vector space as a mixture of Gaussians. Parameter K should

be chosen large enough to be able to capture the prominent tex-

ture variations present in the training dataset, but not too large

that the texture model is too complex and unstable. In our ex-

periments, we set empirically and it can increase when

the texture patterns become more complex.

For point in the image, its texture similarity probability

density in the upper half plane for the th direction is defined as

(11)

where is a feature vector

and in our case. ’s are mixing weights

and refers to the collection of parameters

. Function is a multivariate

Gaussian density defined in the following form

(12)

In order to determine the maximum-likelihood (ML) param-

eters of this model, we make use of the expectation-maximiza-

tion (EM) algorithm proposed in [40]. Given an initialization

of the mean vectors and covariance matrices

, the update equations are

(13)

(14)
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Fig. 4. Texture similarity maps of a real world image. In those maps, high intensity indicates high difference. (a) The original image. (b) The training texture
pattern. (c) The similarity map of the full-region convolution scheme. (d–i) The similarity maps of each upper half-plane for six different training directions.

(15)

where is the number of pixels in the training image and

is the probability that the th Gaussian fits with

the given

(16)

these update processes are repeated until the log likelihood

(17)

reaches the maximum value. Similarly, we define the probability

density for the lower half plane and estimate param-

eters via the same procedure.

Once we get the ML parameters and , and

are powerful models to describe the training texture

for the given directions and half planes. In our case, there are

totally 12 such mixture of half-planes Gaussians and

, where .

C. Shape Modeling

To model the shape prior, we apply a similar shape model con-

struction method to that in [16] and [18]. Suppose the training

set consists of gray images . Let

be a Lipchitz function that refers to a level set representa-

tion for a given shape . This shape defines a region in the

image plane . Given these definitions the following shape rep-

resentation is considered

where refers to the minimum Euclidean distance

between grid location and shape . The images are

aligned by minimizing the difference between any pair of im-

ages in the training set through the following similarity trans-

formation

where is the rotation angle, is the scale factor, and ( ,

) are the translation parameters in X and Y directions. Let

denote the level set functions of the

aligned training images. The mean shape function is defined as

(18)

Then the mean-offset functions

are used to capture the variabilities of the training shapes by
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decomposing the covariance matrix . In partic-

ular, the Singular Value Decomposition (SVD) is employed to

factor as

(19)

Next, the eigenvector matrix of the covariance matrix

is calculated as . The vectors of

are arranged back into the rectangular image grid to yield the

principal modes or eigenshapes . Finally, the shape prior

model is constructed as

(20)

with

(21)

where ’s are mixing weights and is the selected number

of modes to consider. This shape model can deform to be an

object’s shape with different orientation, scale or location by

changing parameters and .

III. TEXTURE AND SHAPE PRIORS BASED SEGMENTATION

A. Energy Function

Let curve be the zero level set of a Lipschitz function

such that

(22)

After the initial contour is manually positioned on the test

image, the image is partitioned into two regions:

(23)

(24)

We calculate the parameters

of the shape model to update curve . During the deformation

process, for point on the segmenting curve, the tangent line

at bisects the image plane into two half planes. Assume the

slope of the tangent line is and

(25)

The half plane containing is called the inside plane and

the another plane is called the outside plane. Let de-

note the response vector obtained by applying the filter bank in

the outside plane and denote the inside response vector

as shown in Fig. 2. The inside and outside texture similarities

and are defined as

(26)

Then, the energy function for our segmentation method is

(27)

where and are the sample variances in and ,

respectively. is the inside average texture similarity of the

segmenting curve . The objective of this energy function is

to partition the image into two regions, the inside region with

high average texture similarity and low texture variance, and

the outside region with high texture variance. The two sample

variances and the inside average texture similarity are defined

as

(28)

(29)

(30)

where and

(31)

(32)

(33)

(34)

and is the one-dimensional Dirac measure defined as

if

else
(35)

B. Optimization

Many iterative optimization algorithms for minimizing -di-

mensional functions have been suggested such as the simplex,

steepest descent and Newton–Raphson methods. In the case of

a least squares function such as (27), the steps involved in the

latter two methods may be simplified somewhat by defining a

matrix given by

(36)

where is the number of parameters in the function. By differ-

entiating (27), the elements of the gradient vector necessary for

the application of steepest descent are given by

(37)

so that the gradient vector

...
... (38)

that is

(39)

Now differentiating (37) with respect to we get

(40)
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Fig. 5. The training set of maple leaf shapes. Top row shows the original maple leaf images and bottom row shows the aligned edition of the training shapes.

If we assume that the second term in (40) may be negligible we

have

(41)

These are the elements of the Hessian matrix which may,

therefore, be written in the form

(42)

Then, the update equation for our optimization is given by

(43)

where is a scalar which may be adjusted to control the se-

quence of iterations and is the identity matrix. In gen-

eral is positive definite so the procedure should converge.

We use to control the iterative procedure at different situa-

tions. When the energy function is still far from the minimum,

is set to a large value to take advantage of the reliable improve-

ment given by steepest descent. After the searching is close to

the minimum, is assigned a small value such that our method

has the rapid convergence of the Newton–Raphson method.

The matrix for (27) can be derived as

(44)

(45)

where

(46)

(47)

IV. EXPERIMENTS AND DISCUSSIONS

A. Maple Leaf Segmentation

Before applying the algorithm to clinical data, we first applied

it to natural images to identify its characteristics. The training

dataset of this experiment consists of nine maple leaves of dif-

ferent shapes and sizes as shown in the top row of Fig. 5. To cap-

ture the shape prior knowledge, nine interactive segmentations

of the maple leaves were aligned using the method described in

Section II-C. The bottom row of Fig. 5 shows the aligned ver-

sion of the shapes. Fig. 6(a) is the mean shape and Fig. 6(b) is the

shape overlap map of the aligned shapes. Fig. 6(c)–(n) shows the

effects of varying the first three modes with values in the range

of 2 standard deviations. Although the shape representation

introduced in Section II-C is not inconsistent framework since

the convex linear combination of different distance functions is

not a distance function, we notice that both the mean shape and

primary modes in Fig. 6 still appear to be reasonable represen-

tative shapes of the training shapes, despite the shapes at two

standard deviations away from the mean which are a little unfa-

miliar compared with the training shapes. This observation con-

sists with the description of Leventon [16] and indicates that in a

limited distance from the mean shape, this shape representation

method can generally construct shapes consistent with the orig-

inal training shapes. For comparison, we derived another shape

model for the maple dataset using the ASM sahpe modeling ap-

proach in [9] and the resulting shapes (appearances) are shown

in Fig. 7. For each leaf, 23 marks were annotated manually on

the leaf boundary, to describe the corresponding parts across

the training leaves. From Fig. 6 and 7, we can observe that the

changes of shapes constructed by the two shape modeling ap-

proaches, at the same distance away from the mean shape, are

comparable with each other and acceptable compared with the

training set.

To segment the maple leaf from the test image in Fig. 8(a),

two different texture patterns [Fig. 8(b) and (c)] were extracted

from the maple leaf in the test image as shown in Fig. 8(d).

Fig. 8(e) is the similarity map of Fig. 8(a) using the texture ex-

tractor introduced in [36]. The high intensity indicates high sim-

ilarity between the local texture and the training patterns. We
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Fig. 6. Shape variability of the maple leaves. (a) The mean shape. (b) The
shape overlap map. (c) �2� variation of the first principal mode. (d) �1�
variation of the first principal mode. (e) +1� variation of the first principal
mode. (f) +2� variation of the first principal mode. (g) �2� variation of
the second principal mode. (h) �1� variation of the second principal mode.
(i) +1� variation of the second principal mode. (j) +2� variation of the
second principal mode. (k)�2� variation of the third principal mode. (l)�1�
variation of the third principal mode. (m) +1� variation of the third principal
mode. (n) +2� variation of the third principal mode.

observe that although most parts of the leaf have higher simi-

larity than the background, the interior property of the leaf is

not homogenous and the boundary is not complete. It is difficult

to obtain a correct segmentation only using this texture feature

map.

In our method, we applied the Gabor filter bank on the

training patterns in 6 directions through the two-sided convolu-

tion strategy introduced in Section II-B. Their responses were

modeled as 12 mixtures of half-planed Gaussians. The class

number is chosen as three for each mixture. After the training

process, the mean shape [Fig. 6(a)] was applied as the initial-

ization contour manually positioned on the test image as shown

in Fig. 8(f). Then, the parameters of the model were updated to

minimize the energy function defined in (27). Fig. 8(g) shows

a middle step of the deformation process. The segmentation

result is shown in Fig. 8(h) and our interactive segmentation

is shown in Fig. 8(i). We can see that the boundary of the leaf

is extracted correctly in our automatic segmentation result, in

spite of the existence of the grassy textured background.

To obtain an accurate estimate for the generalization ability

of the proposed method, we conduct a leave-one-out test on this

maple dataset. We performed the segmentation on the test image

[Fig. 8(a)] nine times. For each time, we removed one maple

Fig. 7. Shape variability of the maple leaves using the active appearance
model proposed in [9]. (a) The mean shape�2� variation of the first principal
mode. (b) The mean shape. (c) The mean shape +2� variation of the first
principal mode. (d) The mean shape �2� variation of the second principal
mode. (e) The mean shape. (f) The mean shape +2� variation of the second
principal mode.

sample from the training set and measured the mean pixel dis-

tance (MPD) and area error (AE) between the manually seg-

mented and automatically generated boundary. MPD is defined

as the mean of the minimum Euclidean distances of all points

on the automatically generated curve to the manually segmented

boundary. AE is calculated as the percentage of the automati-

cally generated shape area that differs from the manually seg-

mented area.

Table I shows the estimate result where all leave-one-out seg-

mented curves had a mean distance of 1.36–2.43 pixels (av-

erage 1.744 pixels) and an AE of 1.2%–3.1% (average 2.08%).

The mean distance of the leave-all-in experiment is 1.42 pixels

and the corresponding AE is 1.8%. We notice that besides three

cases [Fig. 5(c), (d), (g)], where results are unsatisfying due to

large deviations, most of the training maple images could be seg-

mented in a leave-one-out test with a good quality. On the other

hand, the mean distance and AE of the leave-all-in experiment

are all lower than those of the leave-one-out tests. This indicates

that increasing the number of training data can improve the seg-

mentation results.

B. Left Kidney Segmentation

To segment kidney in US images, we have tried to derive the

shape prior model from US images directly. However, generally

the structures of kidney are not complete or prominent in US

images and it is very hard to segment these structures correctly

due to the speckle noise. Therefore, we chose to derive the shape

prior from 20 two-dimensional (2-D) left kidney CT images of

different patients. The interactively segmented kidneys formed

the shape training set. These kidney images were sliced from

the same spacial position from each patient so that the shapes

of these left kidneys were similar with some local differences.

We constructed the shape prior model through the same proce-

dure as done in the maple experiment. Fig. 9 shows the aligned

version of the training left kidney images and Fig. 10(a) is the

mean shape. Fig. 10(c)–(n) demonstrate the effects of varying
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Fig. 8. Experimental results on maple leaf segmentation. (a) The test image. (b) The first training texture pattern. (c) The second training texture pattern.
(d) Demonstration of the positions where the two training texture patterns are selected. (e) The texture similarity map using the texture extractor proposed in [36].
High intensity indicates high similarity. (f) The initialization of the segmentation process where the initial curve (black) is the mean shape of the training data.
(g) One step of the deformation of the segmenting curve. (h) The segmentation result of the proposed method. (i) The manual segmentation result.

Fig. 9. The aligned version of the kidney training database.

the first three modes with values in the range of 2 standard

deviations and Fig. 11 are shapes derived using the ASM model

with 20 marks for each training kidney. We can see both the two

shape modeling approaches have constructed reasonable repre-

sentative shapes of the training data, with limited distances from

the mean shape.

After the shape prior model of left kidney was constructed, we

applied it to segment left kidneys in other patients’ US images.

The first test image [Fig. 12(a)] is an US image with a left kidney

which has a 2.5 1.8 ectogenic mass in the longitudinal view.

Fig. 12(c) is the texture similarity map using the texture feature

extractor in [36]. It shows that it is difficult to segment such US

images using only texture features. In our segmentation phase,

the mean shape was put on the test image as shown in Fig. 12(d)

and the texture similarity of regions inside and outside the curve

were measured. The result of our automatic method is shown in

Fig. 12(f). Compared with the manual segmentation result by

physicians [Fig. 12(g)], the automatic segmentation converges

to a satisfactory result and comes close to the manual expert

segmentation.

The second experiment on real medical US images is shown

in Fig. 13. Three segmentation results, including the manual

result by experts [Fig. 13(b)], the result using the basic level

set segmentation [Fig. 13(c)] and our algorithm segmentation

[Fig. 13(d)], are presented to assess the performance of the

two segmentation algorithms. From Fig. 13(c) we observe

that, at locations of missing or fuzzy boundaries, the level

set scheme failed to maintain global smoothness and leaked

through the gaps. This is because the propagation force of the

level set method is only opposed by strong gradient magni-

tude at image discontinuities. Thus, at the weak tissue-tissue

boundary in the noisy kidney US image, this method cannot

yield correct convergence and the evolution has to be halted

manually. Oppositely, using the shape prior model, our method

can guarantee a reasonable representative shape of the training

shapes. Meanwhile, by minimizing the novel texture-based

energy function, the proposed deformable model can converge

to the kidney’s boundary although the boundary did not lie on

points with high intensity gradient.

To evaluate our method quantitatively, we compared our

method’s results with manually segmented left kidneys in

terms of MPD and AE. Six visual results are shown in Fig. 14.

These images were captured in a HDI5000 manufactured by

ATL Ultrasound. The pixel sizes are 0.218 mm and 0.225

mm in X direction and Y direction, respectively. In each of

these images, the white contour is the manual segmentation

result and the black contour is the result of our method. From

the values in Table II, we observe that the MPD’s of the six

experiments vary from 0.501 mm to 1.692 mm with average

of 1.0182 mm. The AE’s are in the range from 6.1% to 1.8%
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Fig. 10. Shape variability of the kidney database. (a) The mean shape. (b) The
shape overlap map. (c) �2� variation of the first principal mode. (d) �1�
variation of the first principal mode. (e) +1� variation of the first principal
mode. (f) +2� variation of the first principal mode. (g) �2� variation of
the second principal mode. (h) �1� variation of the second principal mode.
(i) +1� variation of the second principal mode. (j) +2� variation of the
second principal mode. (k)�2� variation of the third principal mode. (l)�1�
variation of the third principal mode. (m) +1� variation of the third principal
mode. (n) +2� variation of the third principal mode.

TABLE I
THE RESULT OF LEAVE-ONE-OUT ANALYSIS OF MAPLE EXPERIMENT

with average of 3.61%. This evaluation shows that our method

can segment kidney in US images with a quality that is close to

satisfactory for image-guided diagnosis. Our experiments were

performed on a 1.7-GHz Pentium IV PC. The time required for

segmentation depends on the input images and the initialization

contours. After the initialization, the average time for curve

deformation is 40.3 s, including the time for the two-sided

texture feature extraction and that for parameters optimization.

V. CONCLUSION

We have presented a novel segmentation method based on

both texture and shape priors. One major novelty of the paper is

Fig. 11. Shape variability of the kidney database using the active appearance
model proposed in [9]. (a) The mean shape�2� variation of the first principal
mode. (b) The mean shape. (c) The mean shape +2� variation of the first
principal mode. (d) The mean shape �2� variation of the second principal
mode. (e) The mean shape. (f) The mean shape +2� variation of the second
principal mode.

the proposed segmentation framework which combines the tex-

ture priors into the shape prior segmentation scheme proposed

in [16]. This provides our method with the ability to deal with

textured objects with incomplete boundaries. Another impor-

tant contribution of this paper is the proposed two-sided con-

volution strategy through which the texture priors are modeled

as a set of mixtures of half-planed Gaussians. Texture features

are extracted by applying a bank of Gabor filters on test im-

ages through a two-sided convolution strategy. Texture simi-

larity analysis on both simulated and real images shows the pro-

posed texture feature is more robust to deform the segmenting

curve than that in [36]. Segmentation is implemented by up-

dating the parameters of an implicit representation of the seg-

menting curve to minimize a texture-based energy function. The

goal of the novel energy function is to partition the test image

into two regions, the region inside the curve with a high texture

similarity and a low variance of texture measure, and the outside

region with a high variance. The optimization is implemented

via an improved gradient descent algorithm which makes the

searching method faster and more robust. Compared with the

segmentation method in [29], our method has an obvious advan-

tage that it does not depend on the training for the background

in test images. Moreover, the shape constraint combined in our

framework makes the segmentation more correct and reasonable

for certain objects of interest.

We evaluated the proposed method via experiments on both

natural images and US images compared with manual raters and

other image segmentation methods (e.g., [17] and [36]). The ex-

periments on the maple leaf dataset shows the valid and effi-

ciency of the proposed segmentation framework. Additionally,

the experimental results on the medical US data are promising

and show that our approach can segment kidney in US images

accurately and efficiently.

For all experiments in the paper, the initial segmenting curves

were positioned manually. Ideally a fully automated technique

would be developed such that the prior model can be initialized

on the test medical image in some sense optimal. However, it

is a challenging perspective because it is hard to define what is

optimal and the speckle patterns in US images are too complex.
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Fig. 12. Experimental results on an US image. (a) The test image. (b) The training texture pattern. (c) The texture similarity map using the texture feature extractor
in [36]. (d) The initialization of the segmentation process where the initial curve (white) is the mean shape of the training data. (e) One step of the evolution of the
segmenting curve. (f) The segmentation result of the proposed method. (g) The manual segmentation result.

Fig. 13. Experimental results on an US kidney image. (a) The test image. (b) The manual segmentation by experts. (c) The segmentation result using the basic
level set segmentation method proposed in [17]. (d) The segmentation result using the proposed method.

Fig. 14. Comparison of segmentations of the proposed method and manual segmentations. The bright contour in each image is the manual segmentation and the
black contour is the segmentation of our method.

A possible solution for this limit is to use a larger respective

region of the Gabor filter bank because the texture similarity

is measured in the nearby region beside the segmenting curve.

However, this will result in an increase of the computation com-

plex of both the training and segmenting procedures. An alterna-

tive method is using a multiresolution deformation framework.

That is in the training procedure, a resolution pyramid of the

prior texture model is constructed. Then in the segmentation
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TABLE II
EVALUATION OF THE PROPOSED METHOD.

PIXEL SIZE IS 0.218 mm � 0.225 mm

procedure, the texture similarity is measured in different reso-

lutions. We believe this technique can enable our methodology

to adaptively focus on particular texture features in the various

deformation stages.

On the other hand, although the proposed method in this

paper stands on its performance in practice, the shape modeling

technique employed in this method is not an inconsistent frame-

work which may introduce shape degeneracy in the segmenta-

tion approach when the shapes are derived at a long distance

away from the mean shape. This deformation characteristic im-

plies that a good initial placement of the segmentation curve is

indispensable for a good segmentation. Thus, we are very in-

terested in developing a hybrid shape modeling technique using

both the distance function and the landmarks in the future, to

combine the attractive properties of these two shape modeling

methods.

To further improve our method for the particular application

of medical US image segmentation, we are interested in inves-

tigating a more stable texture prior model by including a local

speckle analysis in our texture feature extractor. Since B-mode

US is most sensitive to the surfaces of structures normal to the

beam, scattering shows obvious view-dependent property and

its appearances in the image for a certain patch of tissues, are

variant to the relative positions of the US transducer. The per-

formance of our algorithm with a removal of the view-depen-

dent speckle pattern will be tested in the future. Currently, our

work is focused on kidney US images only. The performance

of this method on other applications such as cardiac segmen-

tation will be studied in the future. In this paper we have only

dealt with 2-D images. However, this method can be easily ex-

panded to a three–dimensional one using a procedure similar

to that in [41]. This system is also under development in our

laboratory.
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