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ABSTRACT 

Segmentation of medical images is challenging due to poor image 

contrast and artifacts that result in missing or diffuse organ/tissue 

boundaries. Consequently, this task involves incorporating as 

much prior information as possible (e.g., texture, shape, and 

spatial location of organs) into a single framework. In this paper, 

we present a genetic algorithm for automating the segmentation of 

the prostate on two-dimensional slices of pelvic computed 

tomography (CT) images. In this approach the segmenting curve 

is represented using a level set function, which is evolved using a 

genetic algorithm (GA). Shape and textural priors derived from 

manually segmented images are used to constrain the evolution of 

the segmenting curve over successive generations. 

We review some of the existing medical image segmentation 

techniques. We also compare the results of our algorithm with 

those of a simple texture extraction algorithm (Laws’ texture 

measures) as well as with another GA-based segmentation tool 

called GENIE. Our preliminary tests on a small population of 

segmenting contours show promise by converging on the prostate 

region. We expect that further improvements can be achieved by 

incorporating spatial relationships between anatomical landmarks, 

and extending the methodology to three dimensions.   

Categories and Subject Descriptors 

I.4 [Image Processing and Computer Vision]: Segmentation – 

pixel classification, edge and feature detection.  

General Terms: Algorithms, Experimentation. 

Keywords 

Level Set Methods, Texture Segmentation, Genetic Algorithms. 

1. INTRODUCTION  
Identifying specific organs or other features in medical images 

requires a considerable amount of expertise concerning the shapes 

and locations of anatomical features. Such segmentation is 

typically performed manually by expert physicians as part of 

treatment planning and diagnosis. Due to the increasing amount of 

available data and the complexity of features of interest, it is 

becoming essential to develop automated segmentation methods 

to assist and speed-up image-understanding tasks. 

Medical imaging is performed in various modalities, such as 

magnetic resonance imaging (MRI), computed tomography (CT), 

ultrasound, etc. Several automated methods have been developed 

to process the acquired images and identify features of interest, 

including intensity-based methods, region-growing methods and 

deformable contour models [17]. Intensity-based methods identify 

local features such as edges and texture in order to extract regions 

of interest. Region-growing methods start from a seed-point 

(usually placed manually) on the image and perform the 

segmentation task by clustering neighborhood pixels using a 

similarity criterion. Deformable contour models are shape-based 

feature search procedures in which a closed contour deforms until 

a balance is reached between its internal energy (smoothness of 

the curve) and external energy (local region statistics such as first 

and second order moments of pixel intensity).   Such methods are 

typically based on only one image feature, such as texture, shape, 

pixel intensity, etc. However, due to the low contrast information 

in medical images, an effective segmentation often requires 

extraction of a combination of features such as shape and texture 

or pixel intensity and shape. This paper describes our attempts to 

develop a segmentation algorithm that incorporates both shape 

and textural information to delineate a desired object in an image. 

In particular, motivated by the work of Harvey et al. [7] and Tsai 

et al. [20][21], we developed a genetic algorithm for medical 

image segmentation. The genetic algorithm framework [14] 

brings considerable flexibility into the segmentation procedure by 

incorporating both shape and texture information. In the following 

sections we describe our algorithm in depth and relate our 

methodology to previous work in this area. We start by reviewing 

the active shape modeling approach for image segmentation, 

specifically the level set method of shape characterization. We 

then describe texture-based segmentation methods such as Laws’ 

textural feature extraction method. We also describe our studies 

of the GENIE system for multi-spectral feature extraction. 

Finally, we present the results of our method on segmenting the 

prostate based on a small training set of pelvic CT images. We 

compare these results with those from similar runs on GENIE. 

1.1 Active Shape Modeling 
Since the pioneering work by Kass et al. [9], much work has been 

done on active-contour approaches for image segmentation 

[2][4][12]. Active-contour segmentation algorithms automatically 

construct one or more contours that segment a particular structure 
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or a set of structures in the image. These algorithms associate the 

segmenting contour with an energy (cost) function usually 

defined by curvature or image gradient. The curve representing 

the segmenting contour is deformed by minimizing the internal 

and external energy of the curve. The internal energy is defined as 

an intrinsic property of the curve itself, such as the smoothness of 

the curve (a curve segment is defined as smooth if the derivative 

of the function defining the curve exists, and is nonzero at all 

points on that segment of the curve). The external energy is 

defined using extrinsic properties (i.e., properties of the image 

and not the curve) such as the image gradient or pixel intensity. 

The energy function is a weighted sum of internal and external 

energy terms.  Minimizing this energy function attracts the 

contour towards the object.  

The level set approach for active contour modeling was proposed 

by Malladi et al. [13]. This methodology became very popular 

due to its ability to automatically represent changes in the 

topology of dynamic curves, such as the boundaries of soap 

bubbles, flames and other physical phenomena whose shape 

changes with time. In this approach the evolving boundary 

(interface) is built into a surface by adding another dimension to 

the curve evolution coordinate system. This level set function is 

defined in terms of the signed distance function. The signed 

distance function takes any pixel in the image and returns as its 

output the Euclidean distance between the pixel and the closest 

point on the interface. Pixels outside the interface have positive 

distance while pixels inside have negative distance values 

assigned to them. The “zero” level set is defined as the interface 

itself, i.e., the set of all points whose distance to the interface is 

zero. Figure 1 shows a square-shaped object in a binary image 

and illustrates how the signed distance map is computed from its 

pixel values. 

 

 

 

The level set approach is a powerful and general technique for 

image segmentation.  In this framework, a three-dimensional 

surface is created from the signed distance representation of the 

contour with negative values representing regions deeper than or 

below the zero level and positive values representing regions 

protruding above the zero level. As the contour deforms, the zero-

valued pixels of the signed distance map move along this three 

dimensional surface. Thus, this third dimension depicts the time 

dimension of the contour deformation. This representation of 

shape is tolerant to slight misalignments of object features and 

does not require finding correspondences between the pixel 

coordinates of the original and the deformed contours. Shape 

statistics such as mean shape and variance can computed directly 

from the signed distance maps instead of averaging over pixel 

coordinates of different contours.  

Level set methods have been used by Leventon et al. [12], and 

Chan and Vese [3] for medical image segmentation. Leventon et 

al. introduced the concept of shape representation by principal 

component analysis (PCA) on signed distance functions. They 

also incorporated statistical shape priors (i.e., shape information 

from training examples) into their geodesic active contour model 

in order to generate a posteriori estimates of pose and shape. 

(Pose is defined as a representation of the position, size, and 

orientation of an object in an image). Vese and Chan [22] 

introduced a region-based energy function in order to detect 

features with diffuse boundaries.  

A shape-based level set function was derived by Tsai et al. 

[20][21] and has been incorporated in this paper. Tsai et al.'s goal 

was to find the parameters of the level set function that produce a 

good model of the object shape based on priors from the training 

data. Tsai et al. derived these parameters via an optimization 

procedure that used statistics based on the pixel intensities of 

local regions in a set of training images.   

1.2 Texture-Based Segmentation 
Texture is defined as a quantitative measure of the variation in 

intensity of a surface. Texture-based segmentation algorithms are 

aimed at finding similarity measures to group image pixels. 

Various approaches for textural feature extraction have been 

developed to date [19] including co-occurrence matrices, wavelet-

based methods, Fourier transform methods, and intensity 

histogram methods, to name a few.  

For this project we compared our system with a simple texture 

feature extraction method called Laws’ texture energy measures 

[10]. The basic 1-D convolution kernels derived by Laws stand 

for level (L), edge (E), spot (S), wave (W) and ripple (R) texture 

types respectively. Justification for the convolution kernels can be 

found in [11]. Two-dimensional masks are generated from these 

kernel vectors by convolving each vector with the transpose of the 

other. The textural energy features are obtained by convolving an 

image with these two-dimensional integer coefficient masks 

(usually 5x5) followed by a non-linear windowing operation.  

1.3 GENIE 
Genetic algorithms have been applied to many image processing 

problems, such as edge detection [6], image segmentation [18], 

image compression [15], and feature extraction from remotely 

sensed and medical images [5]. A general-purpose image-

segmentation system called GENIE (“Genetic Imagery 

Exploration”) [7][8][16] was developed at the Los Alamos 

National Laboratory. GENIE uses a genetic algorithm to evolve 

image-processing “pipelines”:  sequences of elementary image 

processing operations, including morphological, arithmetic and 

Figure 1.  A square shaped object in a binary image.  The 

signed distance values are computed using the Euclidean 

distance of each pixel from the closest point on the contour. 
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point operators, and filters and edge detectors, among others.        

Each pipeline performs a segmentation of the image by 

classifying each pixel as being a positive or negative instance of a 

desired “feature” such as water, clouds, snow, etc.  

The genetic algorithm, starting with a population of random 

pipelines, evaluates the fitness of pipelines in the population, 

selects the fittest to produce the next generation, using crossover 

and mutation to produce offspring.  The fitness of each pipeline in 

the population is computed by comparing its final classification 

output with a set of training images, in which positive and 

negative examples of the desired feature have been manually 

highlighted.  At the end of a run of GENIE, the “fittest” pipeline 

in the population is used in conjunction with a linear classifier to 

segment the desired feature in new images by labeling each pixel 

as positive or negative.  

Harvey et al. [7] applied GENIE to a medical feature-extraction 

problem using multi-spectral histopathology images. Their 

specific aim was to identify cancerous cells on images of breast 

cancer tissue. Their method was able to discriminate between 

benign and malignant cells from a variety of samples.      

1.4 Overview of Our Work 
In this paper we describe our method to combine high-level 

textural and shape information for image segmentation. Our 

system uses a set of training images in each of which a 

segmenting contour surrounding a particular object (e.g., the 

prostate in a two-dimensional CT image) is drawn by hand.  In 

our system a segmenting contour is represented by a level set 

function. Each segmenting contour has a unique shape and pose 

(i.e., size, position, and orientation).    

We also have a set of "test images", not included in the training 

set, for which a human has provided segmenting contours. Given 

a new image containing an object of the desired class, the goal 

here is to evolve a contour that segments that object in the new 

image, such that the contour obeys shape constraints learned in 

the training images and also encloses a region whose texture is a 

good match for textures learned in the training images.   Several 

candidate contours form the individuals of a GA population. The 

GA is iterated until a fitness value greater than a certain threshold 

is achieved or the number of generations equals 1000.  

Earlier work on segmentation based on level set methods typically 

derived a curve evolution equation or used gradient descent 

procedures to search for a contour that minimizes internal and 

external energy. However, only first and second order statistics 

such as pixel intensity or variance have been used in these 

methods because they can be easily incorporated in an implicit 

representation of the curve. The derived gradient for this implicit 

function determines the direction of curve evolution.  

Cagnoni et al. [1] used a GA for segmenting medical images. The 

GA optimized the parameters of an elastic contour model using 

edge information (first-order statistics) from the images. In 

contrast, the GA framework here allows the use of any kind of 

high-level textural features for performing segmentation. The 

fitness function based on textural priors gives a fitness score that 

is used to rank good candidate solutions and propagate them to 

future generations. This eliminates the need to derive gradients of 

energy functions unlike other active shape contour model based 

segmentation algorithms.  

2. PROCEDURE 
A two-stage approach is proposed here for image segmentation 

using a genetic algorithm: the training stage and the segmentation 

stage. The data for the training stage is obtained from a set of n 

training images on which a human has outlined the object to be 

segmented by drawing a contour around it (e.g., the prostate in a 

2D slice of a pelvic CT image). The “shape prior” of a training set 

is defined as a representation of the mean shape over all these 

manually drawn contours, together with the average deviations 

from that mean. The textural properties of the object of interest 

are also derived from the same set of training data. The 

segmentation phase consists of the genetic algorithm evolving 

candidate solutions (i.e., candidate contours for segmenting the 

desired object in a new image), iterating over successive 

generations until a stopping criterion is satisfied.  

To summarize, the steps in this procedure are as follows:  

1. From a set of n manually segmented training images, derive a 

representation of the shape prior, that is, the mean shape and 

variability of the n segmenting contours.  

2. From the same training images, derive a representation of the 

mean texture of the segmented objects.   

3. Given a new image not in the training set, use the GA to evolve 

a segmenting contour for delineating the desired object in this 

image, as follows:  

(i) Start with an initial population of randomly generated shapes, 

constrained by the shape prior from step (1).  

(ii) The fitness of a given shape is determined by the match 

between the texture of its enclosed region and the mean texture 

from step (2).   

(iii) Perform selection, crossover, and mutation, as will be 

described below, to form a new population. 

(iv) Repeat until a fitness score above a certain threshold is 

achieved or the number of iterations exceeds 1000. 

4.  Calculate the "goodness of fit" of the fittest individual from the 

final generation, as described below.   

2.1 The Training Phase 
2.1.1 Deriving Shape Priors 
To derive the shape prior, each contour from the training data is 

represented as the zero level set of the signed distance function ψi 
(x,y) (where (x,y) are  the pixel coordinates and i =1 to n, the 

number of training contours used to find the shape variability). 

The mean shape and shape variability of the contours, obtained 

from the training images, are computed, using the methodology 

described in [20]. The mean level set function is defined (for n 

contours) as: 

                           ∑
=

=
n

i

i yx
n

yx
1

),(
1

),( ψΦ                     (1)                    

Mean offset functions are then derived by subtracting the mean 

from the signed distance representations of the training contours 

( Φ−= ii ψψ~ ). Assume the image is of size N = N1 x N2.  Let βi 

be the size N x 1 column vector consisting of the N2 columns of 

mean offset image 
iψ~  stacked to make a single column vector.  A 
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new matrix S (size N x n), called the shape variability matrix, is 

formed from n such column vectors, one for each training image 

   S = [β1,β2, …,βn]                                         (2) 

The variance in shape is then computed by the eigenvalue 

decomposition of this shape variability matrix.       

              TT UUSS
n

Σ=
1

                                      (3) 

Here U is an N x n matrix whose columns represent n orthogonal 

modes of shape variation and Σ is an n x n diagonal matrix of 

eigenvalues. By rearranging the columns of U to form an N1 x N2 

structure, the n different eigenshapes can be obtained {Φ1, 

Φ2,…, Φn }.  (Details for this procedure can be found in [20].) 

2.1.2 Deriving Textural Priors 
We define textural priors as the high-level feature vectors derived 

for each pixel in the training image.  Two approaches to deriving 

high-level texture features are Laws’ textural measures and 

GENIE. We acquired an open source release version of the 

GENIE software from Los Alamos National Laboratory and 

tested it using our training images to obtain the high-level textural 

features.   In section 3 we compare the results of our GA using 

these textural features with the results of GENIE alone as well as 

Laws’ textural measures alone, as applied to the pelvic CT 

images. 

2.2 The Segmentation Phase 
Each individual in the GA population consists of a fixed-length 

string of real-valued “genes”.  Each such string represents a 

vector of shape and pose parameters defined as follows. Pose 

parameters are incorporated into this framework using an affine 

transform. The affine transform is the product of three matrices 

(equation 4): the translation matrix, the scaling matrix and the 

rotation matrix respectively. If x and y are the pixel coordinates of 

the input image then yx ~,~  are the pixel coordinates of the affine-

transformed image given by equation (4). 
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Here a, b are translation parameters, h is the scaling factor, and θ 

is the degree of rotation of an object. Following the lead of [20], 

the mean shape and shape variability derived from the training 

phase are used to define a level set function (equation 5) that 

implicitly represents the segmenting curve. 

∑
=

+=
k

i

ii yxwyxyx
1

),(),(],[ ΦΦΦ                 (5) 

Each individual I in the population, represents a segmenting curve 

defined by the weighted eigenshapes and pose parameters: 

I=[W, P]                                                      (6) 

where, W=[w1, w2,…, wk], and P=[a, b, h, θ ]. Thus the number of 

real-valued genes on a GA chromosome is k+4, where k is the 

number of principal eigenshapes.  For the experiments reported 

here, we set k to 6.  To form an initial population of individuals 

for the GA, the weights for the k principal eigenshapes (wi) are 

chosen randomly from the space of [0, σi] (where σi
2
 are the 

eigenvalues corresponding to the k eigenshapes). The pose 

parameters, P are chosen randomly from the range of values 

specified in Table 1.  

The segmenting contour represented by the GA individual can be 

expressed as: 

)~,~()~,~()~,~(
1

yxwyxyx
k

i

ii∑
=

+= ΦΦΦ                      (7) 

The fitness of each individual is measured by comparing the 

textural properties of the region segmented by that individual to 

the desired texture derived from the training images. First, the 

textural feature planes (formed from the textural feature vectors 

generated for each pixel of a image) are generated for the test 

image (a new image not in the training set). Each pixel of the test 

image is then classified as “True” (desired texture) or “False” 

(otherwise) by using a Fisher linear discriminant. A Fisher linear 

discriminant finds an optimal linear combination of the feature 

planes and maximizes the separation between the desired and 

undesired texture features (i.e., maximizes the fitness). The fitness 

function is similar to the one used in GENIE [7][16]: 

          F = 500(A+(1-B))                                              (8) 

Here, A denotes the detection rate: i.e., the fraction of pixels 

inside the segmenting contour that are labeled “True” (i.e., 

texturally similar to the prostate). B denotes the false alarm rate: 

the fraction of pixels outside the segmenting contour that are 

labeled “True”. An increase in fitness means that more pixels 

inside (and fewer pixels outside) the contour are labeled as 

“True”. A fitness score of 1000, therefore, represents a perfect 

segmentation result.  

Our GA uses rank selection, single-point crossover, and mutation.  

Rank selection is implemented by assigning a numerical rank to 

each individual, based on its fitness value, and by making higher 

ranked individuals more likely to be selected to produce 

offspring. Fixed-length individuals are used here, and single-point 

crossover is implemented (here, with probability 1 per pair of 

parents) by swapping same length segments of genes between two 

individuals. For each pair, a single crossover point is chosen 

randomly with uniform probability over genes in the 

chromosome.  Mutation is performed by randomly changing the 

value of a gene (one of the wi or one of the a, b, h, θ values that 

make up an individual) based on the ranges specified in Table 1. 

 

Table 1. GA Parameters 

Population Size 25 

Mutation Probability 0.02 per gene 

Crossover Probability 1.0, Single Point 

Selection Criteria Rank Selection 

k, No. of principal eigenshapes 6 

Pose parameters a, b Integer (0-10) 

Pose parameter θ 0°-360° 

Pose parameter h (0.5-2.0) 
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The GA is iterated until the optimum fitness is attained or after a 

specified number of generations has been produced. Following 

[8], we define the goodness of fit, G, as a means to evaluate the 

closeness of a candidate segmenting contour to the human-drawn 

contour for a given test image. The fitness function defined in 

equation (8) is not used as a goodness of fit because it is defined 

based on the textural prior obtained from the training images.   

To calculate G, we generate two binary images corresponding to 

the human-drawn contour and the contour derived from an 

evolved individual: in each, the pixels inside the segmenting 

contour are set to 1 and outside are set to 0.  Define H as the 

Hamming distance between these two binary images⎯that is, the 

number of pixels that are classified differently (wrongly) in the 

evolved individual's segmentation from corresponding pixels in 

the manually segmented binary image. The goodness of fit is 

numerically defined as:  

       G = (1 – (H/N)) x 1000           (9) 

where N is the total number of pixels in the image. A score of 

1000 represents a perfect match with the training data.  

3. RESULTS 

 

 

 

 

 

 

 

We tested our system on images taken from a database of 2700 

pelvic CT scans, acquired through collaborations with radiologists 

at Oregon Health & Science University (OHSU). About 100 CT 

scans from this database have been manually segmented by 

Arthur Hung, M.D. (Dept of Radiation Oncology, OHSU).  

A 3D CT scan for each patient consists of 15-20 slices of 2D 

images stacked together. The prostate is visible in about 10-12 of 

these slices; the rest display other organs in the pelvic region such 

as the bladder and the rectum. The prostate is located between the 

bladder and the rectum and is about 3 cm in size along the height 

of the body. The bladder and the rectum are more texturally 

prominent on the CT scans and are used by the radiologist to help 

locate the prostate on these images. The prostate has been 

manually delineated three times on the same set of images by the 

radiologist. This provides a database for intra-operator variability.  

Figure 2 shows a typical pelvic CT scan and Figure 3 shows the 

same image with a manually placed contour depicting the prostate 

area. Figure 4 shows a different slice of the same patient's CT 

scan. Figure 5 shows the manually placed prostate contour on this 

new slice. Note how the shape of the prostate changes from slice 

to slice.  

Figure 3. The 2D pelvic CT scan of Figure 2 manually 

segmented by a radiologist. The white contour labeled 

“prostate” was drawn by hand. 

Figure 4. A different slice from the CT scan of the 

same patient. 

Figure 2. A typical 2D pelvic CT scan before manual 

segmentation by a radiologist. 

Figure 5. The prostate region marked the CT scan for 

the same patient. The white contour was marked by a 

radiologist. 
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The manually segmented contours derived from the CT scans of 

one patient (10 x 3= 30 images) have been used as the training 

data for this analysis. A set of 10 2D CT scan slices from another 

patient has been used as test images. Figure 6 shows a test image 

used for experiments here. 

Prostate segmentation is challenging because the shape and size 

of the prostate varies considerably across patients. Also there are 

neither significant edges nor distinct textural differences to make 

the prostate visible in these images. Thus the interface between 

the prostate and the bladder or the rectum is typically not clearly 

defined. An expert radiologist uses prior knowledge of organ 

shapes and the relative positions of various anatomical landmarks 

to approximately and intelligently “guess” the location of the 

prostate on these images. A longer-term goal of our project is to 

simulate this procedure accurately by incorporating prior 

information about the relative spatial locations of organs. 

We compared our system with other methods for segmenting the 

prostate on the pelvic CT images. First, we tried to segment the 

images using Laws’ textural priors alone. The textural energy 

measures were derived for every pixel on the training images to 

produce texture feature planes [10]. An optimal linear 

combination of these feature planes was then derived such that the 

separation between feature pixels (pixels in the prostate region) 

and non-feature pixels was maximized. This Fisher linear 

discriminant was used on test images to classify pixels as feature 

or non-feature based on the computed texture energy planes for 

the test images. We found that Laws’ textural priors could only 

differentiate soft-tissue (regions marked white on Figure 7) from 

body cavity (regions marked black on Figure 7) due to the 

relatively low contrast information in the images. 

We then trained GENIE to generate an image processing pipeline 

to discriminate the prostate region on the same set of training 

images. This image processing pipeline was applied to the test 

images to derive regions on the pelvic CT scans with high-level 

texture similar to the prostate region. A sample segmentation 

result of a GENIE run on a test image is shown in Figure 8. The 

pixels classified by GENIE as texturally similar to the prostate are 

marked white and the other pixels are marked black. Not 

surprisingly, because GENIE does not create contour shape 

descriptions, it was not successful in identifying the prostate.  

In our next experiment we implemented our genetic algorithm 

with the parameters specified in Table 1. The initial contour was 

generated using mean shape and shape variability information 

derived from the training images and was placed randomly on a 

test image. The evolution of the curve (selection after cross-over 

and mutation) was guided by the fitness function derived from 

textural priors evolved by GENIE.  We found that the curve 

evolution process was able to converge on the approximate area 

of the prostate. Also, the shape priors constrained the growth of 

the curve to within the expected shape of the prostate. Figure 9 

shows the segmentation result of our algorithm on a single slice of 

the pelvic CT image. It took about 20 generations for the GA to 

converge on a contour that gives a reasonably good segmentation 

of the prostate area. 

 

 

 

  

 

Figure 7. Segmentation result (on the test image) using Laws’ 

textural measures. The white regions marked are classified 

texturally similar to prostate (positive). The black region is 

classified as negative. 

Figure 8. Segmentation result using GENIE: white regions 

(positive classifications), black regions (negative 

classifications) 

Figure 6. A slice from the CT scan of another patient 

(test image) 
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Not surprisingly, we found that our algorithm performed 

significantly better in segmenting the prostate on the images than 

the other methods that use textural information alone. Table 2 

shows the goodness of fit of the final segmentation results for 

each of the methods implemented here. The values given are 

averages of G over all the slices for the given patient (slices from 

one patient were used for the training data and slices from a 

second patient were used for the test data). 

 

Table 2. Goodness of fit of the final segmentation obtained 

from the three different methods.  The values given are 

averages of G over all the slices for the given patient. 

Classifier G: Training Data G: Test Data 

Our GA 985 991 

GENIE 950 708 

Laws’ Texture 

Measures 
850 580 

4.  CONCLUSIONS AND FUTURE WORK 
The algorithm developed here evolves a segmenting contour by 

incorporating both texture and shape information to extract 

objects without prominent edges, such as the prostate on pelvic 

CT images. Representing the shape of the contours as level sets 

and encoding candidate solutions of the GA as segmenting 

contours eliminates the need for deriving the gradients of energy 

functions for shape evolution and simplifies the optimization 

procedure. Our experiments using a small training set and a small 

population of candidate segmentation contours shows promise by 

converging on the prostate area.  

The following enhancements to the above framework are 

proposed for improving the segmentation results. 

1. Incorporating position information: The relative position of the 

various organs, if incorporated, can be used for initial placement 

of the segmenting curve (which is random at present). This has 

the potential to significantly improve the segmentation results 

2. Extension to 3-D: Following the lead of [20], the pose 

parameters can be extended to represent the 3D pose of an object. 

The above framework can be used to evolve a surface instead of a 

curve in a 3-D domain. Thus information from all the slices of a 

CT scan can be used simultaneously for 3-D segmentation. We 

would also like to compare our results with the shape-based 

segmentation procedure implemented by Tsai et al. 
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