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�e prevalence of melanoma skin cancer disease is rapidly increasing as recorded death cases of its patients continue to annually
escalate. Reliable segmentation of skin lesion is one essential requirement of an e	cient noninvasive computer aided diagnosis tool
for accelerating the identi
cation process of melanoma. �is paper presents a new algorithm based on perceptual color di�erence
saliency along with binary morphological analysis for segmentation of melanoma skin lesion in dermoscopic images. �e new
algorithm is compared with existing image segmentation algorithms on benchmark dermoscopic images acquired from public
corpora. Results of both qualitative and quantitative evaluations of the new algorithm are encouraging as the algorithm performs
excellently in comparison with the existing image segmentation algorithms.

1. Introduction

�e purpose of this study is to test the performance of per-
ceptual color di�erence saliency algorithm for segmentation
of melanoma skin lesion in dermoscopic images. Melanoma
is a cancer of pigment that produces melanocytes and is one
of the most serious, complex, aggressive, and fatal forms of
all skin cancer related diseases [1]. It is a cancerous skin
disease that typically results from environmental factors such
as exposure to sunlight [2]. It originates from the parts of
the body such as skin, eyes, brain, spinal cord, and mucous
membrane containing melanocytes. �e ability to spread
widely to other parts of the body is a unique characteristic that
makes melanoma one of the deadliest skin cancer diseases.
Its prevalence is rapidly increasing across the world, as
recorded death cases of its patients continue to annually
escalate [1, 3, 4]. Prevention which is better than cure and
early detection are recommended as the best strategies for
improving outcomes in melanoma and to reduce the induced
mortality rate of the disease because treatment at later stages
can be hard [1, 4–6].

Digital dermoscopy is a widely used noninvasive tool
that combines optical magni
cation and special illumination

techniques to render an improved dermoscopic image for
clinical diagnosis of melanoma. Dermatologists have reg-
ularly applied this tool for several decades to analyze the
surface structure of human skin that is invisible to the
naked eyes [7, 8]. However, this diagnostic process is time-
consuming and highly subjective and it requires a great
deal of experience from a dermatologist [4, 8]. Due to the
complexity ofmelanoma treatment at later stages, researchers
are attempting to develop an e	cient noninvasive automated
computer aided system to make its diagnosis faster and
easily accessible to nonexpert practitioners [4, 8–11]. Such
an automated system relies heavily on reliable segmentation
of skin lesion, pertinent extraction of skin lesion features,
and e�ective classi
cation of skin lesion using the extracted
features [11].

�is study focuses on segmentation of melanoma skin
lesion in dermoscopic images because other subsequent
diagnostic stages heavily depend on its output [7, 8, 12].
Moreover, segmentation is one of the central stages for
computer aided diagnosis of melanoma with dermoscopic
images [13]. �e automatic segmentation of skin lesion is
particularly challenging because of the possible presence
of undesirable factors in the form of skin hairs, specular
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re�ections, variegated coloring, weak edges, low contrast,
irregular and fuzzy borders, marker ink, color chart, ruler
marks, dark corners, skin lines, blood vessels, and air or oil
bubbles [10, 14–16].

�e method of saliency based segmentation has emerged
as an important tool for medical image analysis because
of its capability to identify salient objects in images [17,
18]. Its application in computer vision is largely inspired
by the 
ndings that human vision perception has a higher
probability to focus on the part of an image that carries
useful information [17, 19]. �e cognitive properties of visual
saliency incorporated into the conventional saliency segmen-
tation methods are based upon local or global visual rarity
such as contrast prior, color prior, brightness prior, and center
prior. Contrast prior is one of the frequently used visual
rarities which assumes that color contrast between object
and background is usually high to detect visual saliency.
Color prior assumes that backgroundhas uniformcolorwhile
salient object colors are variegated. Brightness prior assumes
that the brightness of background is higher than that of
the salient object [13]. However, while methods based on
these cognitive properties have performed well on certain
images, they can fail to accurately detect salient objects that
share uniform homogeneity with the background and for
salient objects that touch the image border slightly [20].
�e center prior assumes that images are acquired such
that a salient object is o�en framed near the image center
while background is distributed in the borders. However,
salient objects in many images o�en appear o� the image
centers which makes the center prior map incorrectly sup-
press salient objects far o� the image centers and high-
light certain background regions near the image center [21,
22].

�e methodology of the perceptual color di�erence
saliency segmentation algorithm reported in this paper con-
sists of four essential stages.�ey are color image transforma-
tion, luminance image enhancement, salient pixel computa-
tion, and image artifact 
ltering. �e main contributions of
this paper are as follows:

(a) �e new saliency algorithm e�ectively segment mela-
noma skin lesion in dermoscopic images through the
aggregation of color feature of a background pixel and
color feature of an object pixel.

(b) �e new saliency algorithm uses a simple decision
rule that does not follow the conventional threshold-
ing methods for binary segmentation of melanoma
skin lesion in grayscale dermoscopic saliency map.

(c) �e outputs computed by the new saliency algorithm
are qualitatively evaluated using test images acquired
from public medical corpora and quantitatively eval-
uated in terms of precision, recall, accuracy, and
dice which are widely used statistical metrics for
evaluating binary segmentation results.

(d) A detailed evaluation against other existing saliency
and nonsaliency benchmark algorithms is performed
that provided a fair comparison to demonstrate the
performance of the new saliency algorithm.

2. Related Study

�e discussion of related studies is organized in four dimen-
sions in order to show currency, originality, relevance, and
relatedness of this study to the previous research and to justify
the suitability of the study methodology. �ese dimensions
are nonsaliency based segmentation, saliency based segmen-
tation, color image models, and perceptual color di�erence.

2.1. Nonsaliency Based Segmentation. Many image segmenta-
tion algorithms have been developed to deal with the complex
problem of segmenting skin lesion from the healthy skin.
�ey can be appositely categorized into region, edge, and
pixel based methods [8, 23]. Region based methods such
as the modi
ed JSEG [12], region growing [24], modi
ed
watershed [25], and statistical region merging [26] group
image pixels into clusters and maintain connectivity between
cluster pixels. Edge based methods such as zero-crossing
of Laplacian-of-Gaussian [27] and geodesic active contour
[28] are aimed at detecting discontinuities in image pixel
intensity values [29]. Pixel based methods group similar
pixels as belonging to a homogenous cluster that corresponds
to an object or part of an object [30] and are widely applied
because of their inherent simplicity and robustness [31, 32].
�resholding and clustering algorithms are archetypes of the
pixel based methods that have been applied for segmentation
of skin lesion [9, 33]. Research has revealed that existing
segmentation algorithms achieve good results when dermo-
scopic images exhibit good contrast and in the absence of
undesirable factors. However, they o�en lack robustness for
low contrast images and may not perform well on complex
images that exhibit signi
cant volume of undesirable artifacts
[4, 7].

2.2. Saliency Based Segmentation. Saliency based methods
have received a great deal of attention in cognitive science,
computer vision, and image processing [34] and they have
been applied to image segmentation [34–36]. However, the
application of saliency methods for segmentation of skin
lesion is relatively new [13, 17, 37]. Saliency segmentation
computes the most informative region in an image based on
human vision perception such that salient and nonsalient
parts become foreground region (skin lesion) and back-
ground region (healthy skin), respectively. It has been alluded
that a good saliency segmentation model should satisfy three
essential criteria of good segmentation, high resolution, and
computational e	ciency [38]. Good segmentation means
that the probability of missing real salient regions and
falsely marking background regions as salient regions should
be low. High resolution means that saliency maps should
possess high resolution to accurately locate salient objects and
retain original image information. Computational e	ciency
means that saliency based segmentation methods should
rapidly detect salient regions with less complexity.�is paper
reports a less complicated saliency based image segmentation
algorithm that achieves good performance and generates a
high resolution saliency map containing much salient pixels.

Many saliency based segmentation algorithms reported
in literature are based on color feature of an input image,
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but they signi
cantly di�er in their computational strategies.
Color is one of the most important cues that people use
extensively to identify real world objects. It is widely used
in medical image analysis for screening dermoscopic images
in order to discriminate between healthy skin and unhealthy
skin regions [39]. �e basic assumption in most cases of
dermoscopic image analysis is that the lighter shade of color
corresponds to healthy skin, while unhealthy skin possesses
di�erent color distribution that di�ers from the healthy skin
[40]. Itti et al. [41] introduced a computational saliency
segmentation model based on color, intensity, and texture
features for rapid scene analysis. A method to segment
salient regions in video sequences based on the application
of luminance information has been discussed by Zhai and
Shah [42]. �e spectral residual approach based on Fourier
transform has been reported [43] with several improvements
to segment salient objects in images [34, 44]. However, many
of the improved saliency segmentation algorithms still face
di	culty when salient objects share similar color features
with the background pixels. �ese algorithms o�en lack
the ability to e�ectively handle complicated images with
low contrast [18, 20, 37]. Complementing the methods of
saliency computation with other useful analysis methods
such as the morphological analysis can signi
cantly improve
image segmentation results. �e hybrid segmentation of skin
lesion in dermoscopic images using wavelet transform along
with morphological analysis has been reported [1], while
segmentation using saliency combined with Otsu threshold
has been discussed [13].

2.3. Color Image Models. �e importance of selecting a
suitable color model for color image segmentation has been
emphasized in the literature [43–45]. Since the appearance of
skin in an image is illumination dependent, di�erent color
models are widely used for skin lesion analysis with the
objective of 
nding a color model where the color of skin
lesion is invariant to illumination conditions. Researchers
have attempted to identify the most discriminating and
e�ective color models for processing skin lesion in dermo-
scopic images. �e decomposition of a color image into
constituent components is a good analysis technique for
medical diagnosis because essential information is conveyed
in the color of an image [46].

�e segmentation of skin lesion in dermoscopic images
using wavelet networks considers the �, �, and � channels
of the ��� color model as the network inputs and network
structure formation [47]. �e segmentation of skin lesion in
dermoscopic images based on wavelet transform along with
morphological analysis found the � channel of the ��� color
model to give better performance than grayscale conversion
[1]. �e segmentation of skin lesion based on the ���, nor-
malized���, YIQ, and �1�2�3 colormodels has been reported
to give good results for � channel of YIQ and �3 channel of�1�2�3 [48]. It has been found by experimental comparison
of HSI, CMY, YCbCr, and CIE �∗�∗	∗ color models that the
“
” channel of the HSI and “�∗” channel of CIE �∗�∗	∗ gave
good results for segmentation of skin lesion [49].

�is study applies the CIE �∗�∗	∗ color model instead
of the widely used ��� color model for segmentation of

melanoma skin lesion. �e color model is perceptually uni-
form; it separates luminance and chrominance information
and comes with di�erent intrinsic human visual perception
based color di�erence formulae that are useful for saliency
computation [11]. However, the ��� color model is not
perceptually uniform and it does not separate luminance
and chrominance information because of the high correlated
nature of its channels [50].�e information in all the channels
of the color image is utilized in this study to ensure that no
useful color information is otherwise discarded.

2.4. Perceptual Color Di�erence. Color analysis is an impor-
tant topic in di�erent studies such as prosthodontics, aesthet-
ics, and dental materials science where color quanti
cation
is used to gain the understanding of scienti
c data [51].
�e clinical relevance of these studies is highly dependent
on how much color change is considered perceptible. �e
determination of color di�erence has been proposed in the
literature to improve the correlation between color measure-
ment and human vision perception. �e measurement of
color di�erence is considered an important problem for color
analysis.�epractical application of color di�erence ismostly
found in clinical dentistry, where the ability to reproduce
the exact shade of natural teeth using restorative dental
material is considered a challenging problem [51–56]. �e
other useful applications of color di�erence include content-
based retrieval [57], quality inspection of food [58, 59], and
video compression [60], but it has not been well explored
for saliency based segmentation of melanoma skin lesion in
dermoscopic images.

�ere are diverse color di�erence formulae which are
designed to provide a quanti
cation of the correlation
between the computed and perceived color di�erences. �e
most widely used formula of them includes the CIELAB and
CIELUV recommended by the Commission Internationale
de l’Eclairage (CIE). �e CIEDE2000 color di�erence for-
mula is applied in this study because it is the recent CIE
recommendation with more consistent trends in lightness
and hue angle dependencies [54]. It was designed to improve
the earlier color di�erence formulae and correction between
the computed and perceived color di�erences. It incorporates
a term that accounts for the interaction between Chroma and
hue di�erences, a modi
cation of the coordinate that a�ects
colors with low Chroma and parameters that account for
the in�uence of illumination and vision conditions in color
di�erence [54]. In addition, it re�ects the color di�erences
perceived by the human eye and is generally recommended
for evaluating color di�erence thresholds in dental research
and in vivo instrumental color analysis [56].

3. Material and Methods

�e discussion of the experimental images, perceptual color
di�erence saliency, and algorithm implementation are pre-
sented in this section.

3.1. Experimental Images. Dermoscopic images used for
experimentation in this study are acquired from the Inter-
national Symposium on Biomedical Imaging (ISBI 2016)
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challenge [61] and Pedro Hispano Hospital (PH2) corpora
[62].�ese corpora particularly inspired us because they con-
tain numerous challenging dermoscopic images and support
the development of automated algorithms for the analysis
of skin lesion. A dermoscopic image is considered to be
“challenging” if one or more undesirable factors are present
in the image. �ese challenging images are usually excluded
from test images in the previous research in order to ensure
accurate border segmentation [12, 63].

3.2. Perceptual Color Di�erence Saliency. �e essential stages
of themethodology of perceptual color di�erence saliency are
color image transformation, luminance image enhancement,
salient pixel computation, and image artifact 
ltering.

3.2.1. Color Image Transformation. �e input RGB color
image of � × � × 3 dimensions has values in the range[0, 1], where � and � are the number of rows and columns,
respectively. �e ��� image is transformed into CIE �∗�∗	∗
color image to achieve perceptual color image for saliency
computation. �e process of transforming an Adobe ���
color image to CIE �∗�∗	∗ color image is usually performed
in two steps.�e
rst step converts theAdobe��� image into
CIE
�� image according to the following equation [64, 65]:

[[[

��

]]] = [[[
0.5767 0.2973 0.02700.1855 0.6273 0.07060.1882 0.0752 0.9912

]]]
[[[

��	
]]] , (1)

where �, �, and 	 are de
ned in terms of the constant gamma
value which in this study is �� = 2.4. �e parameters�1 = 0.055 and �2 = 1.055 in (2) are added to correct the��� values obtained from digital cameras to obtain the best
possible calibration of the transformation model [64–66]:

� = (� + �1�2 )�� ,
� = (� + �1�2 )�� ,
	 = (� + �1�2 )�� .

(2)

In the second step of the transformation process, the CIE
�� image is transformed to the CIE �∗�∗	∗ image fol-
lowing the ITU-R BT.709 recommendation.�e transformed
image serves as input to the luminance image enhancement
function. �e D65 illuminant is used in this study where
� = 0.95047, �� = 1.00000, and �� = 1.08255 are the CIE
�� tristimulus values of standard light source [64, 67]:

�∗ = 116 ∗ [�( ���) − 16116] ,
�∗ = 500 ∗ [�( 

�) − �( ���)] ,
	∗ = 200 ∗ [�( ���) − �( ���)] ,

(3)

where

� ( ) = {{{{{{{
 1/3, if  > ( 629)3
(841108) ∗  + 429 , if  ≤ ( 629)3 . (4)

3.2.2. Luminance Image Enhancement. �e transformation
of ��� color image alone does not alleviate the adverse
e�ect of illumination or low contrast. �is is because an
absolute separation between luminance and chrominance
channels is not achievable due to high correlation between
the image channels [68, 69]. It is therefore desirable to
enhance luminance channel of the input image which does
not change the original color of a pixel [69]. �e adaptive
gamma correction function has been recommended for
this purpose because a 
xed gamma correction function is
not always desirable for all types of images. �e following
adaptive gamma correction function is applied in this study
to enhance the luminance channel of the transformed input
image [69]:

�out = ���in1 + 
 (0.5 − -) (-�� − 1) (1 − ���in) . (5)

�e images � in and �out are input luminance and output
luminance, respectively, and �� is the adaptive gamma cor-
rection value that controls the slope of the transformation
function. �e Heaviside function 
(<) returns a value of
1 if its argument is greater than 0; otherwise it returns a
value of 0. Rahman et al. [69] gave logarithm and expo-
nential adaptive gamma correction functions to, respectively,
enhance low contrast and high contrast images.�e functions
gave impressive segmentation results for a number of images.
However, for some high contrast images such as an image
with a mean value of 0.7097, standard deviation of 0.1513, and
gamma value of 1.0720, the image enhancement needs further
improvement as shown in Figure 1(c). �e segmentation
result can be seen to improve as shown in Figure 1(d)
with an increase in the gamma value from 1.0720 to 2.9212
using the product of logarithm and exponential functions
introduced by Rahman et al. [69] as the gamma correction
function:

�� = −log2 (?) exp((1 − - − ?)2 ) , (6)

where ? and - are the global standard deviation and
global mean of the luminance image, respectively. �e
enhanced luminance image together with the chrominance
images serve as input to the salient pixel computation
function.

3.2.3. Salient Pixel Computation. Pixel saliency can be com-
puted in terms of the di�erence of color feature with the
global mean of this color feature [35, 38]. However, this
method has di	culty indistinguishing similar color feature
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(a) (b) (c) (d)

Figure 1: Enhancement of luminance channel using adaptive gamma correction. (a) Original image, (b) ground truth, (c) exponential gamma
function enhanced image, and (d) product of logarithmic and exponential gamma functions enhanced image.

(a) (b) (c) (d)

Figure 2: Estimation of background and object pixels. (a) Input image. (b) Yellow ellipsoidal patch predominantly contains background pixels
and red rectangular patch predominantly contains object pixels. (c) Input image. (d) Yellow ellipsoidal patch contains all background pixels
and red rectangular patch contains all object pixels.

in background and object regions in an input image [70]. In
this study, the mean of background color feature and mean
of object color feature are computed instead of the global
mean to correct this de
ciency. �e mean of background
color feature can be estimated by the mean of pixel values on
an ellipsoidal patch drawn close to image borders. Similarly,
themean of object color feature can be estimated by themean
of pixel values within a rectangular patch drawn close to the
image center.�is design principle follows the assumption of
center prior [6, 10, 21, 33, 71]. However, this study applies a
di�erent computational strategy to cater for the identi
cation
of skin lesion pixels not necessarily framed near the image
center.

�e applied computational strategy is compactly
described as follows. �e background mean (B��, B��, andB��) and background standard deviation (?��, ?��, and ?��)
are computed from values of pixels on an ellipsoidal
patch traced by the midpoint ellipse algorithm to achieve
computational e	ciency [72, 73]. Moreover, the object
mean (B	�, B	�, and B	�) is computed from values of
pixels within a rectangular patch whenever the inequalitiesC(<, D) < B�
 − F?�
 and C(<, D) > B�
 + F?�
 are concom-
itantly satis
ed, where G = H, �, 	 are the image channels,C(<, D) is a given pixel value, < ∈ [1, �], D ∈ [1, �],� × � is the image dimension, and F = 1.0 standard
deviation is used in this study. In addition, other values ofF ∈ [0.5, 2.0] can be used, but the value of F = 1.0 has been

experimentally found to give good segmentation results in
this study. Figure 2 shows the diagrammatic illustration of
image patches used for the computation of mean values.
�e yellow ellipse represents a set of color pixels that is
used for the computation of background mean. �e red
solid rectangle represents a set of pixels that is used for
the computation of object mean. It is important to note
the di�erence between Figures 2(b) and 2(d) from the
rectangular shapes. �e segmentation algorithm computes
object mean for those pixels within the rectangular patch
that di�er from background pixels following the assumption
of color prior [13, 40]. In Figure 2(b), not all pixels in the
rectangular patch are object pixels, but in Figure 2(d) all
pixels in the rectangular patch are object pixels, hence
the principal reason for the observed di�erence in the
rectangular shapes.

�e color di�erence of background color feature with
mean of this color feature, Δ	(<, D), and color di�erence of
object color feature with mean of this color feature, ΔK(<, D),
are computed for each pixel to preserve spatial information.
�ese two measures are then aggregated to create a grayscale
saliency map, L = { (<, D)}, whose entry  (<, D) can be
determined as follows:

 (<, D) = 255 × Δ	 (<, D)Δ	 (<, D) + ΔK (<, D) + 1 . (7)
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�e resolution of a salient pixel is determined by the
degree to which every value  (<, D) of the salient pixel tends
to the maximum grayscale value of 255. Salient pixels are
those pixels of a dermoscopic image that contain useful
information for diagnosis purpose. �e binary saliency map,� = {	(<, D)}, is constructed to provide high resolution and
good segmentation [38]. �e value 	(<, D) tends to 255 for
a salient pixel and 0 for a nonsalient pixel according to the
following simple decision rule:

	 (<, D) = {{{
255, if ΔK (<, D) < Δ	 (<, D)0, if ΔK (<, D) ≥ Δ	 (<, D) . (8)

In fact, (7) and (8) can be combined into one equation such
that nonsalient pixels are assigned the value of 0 to realize a
high resolution grayscale saliency map as follows:

 (<, D)
= {{{{{

255 × Δ	 (<, D)Δ	 (<, D) + ΔK (<, D) , if ΔK (<, D) < Δ	 (<, D)0, if ΔK (<, D) ≥ Δ	 (<, D) .
(9)

�e saliency of a pixel asmeasured by (7)–(9) is controlled
by the value of the color di�erence between the object color
feature and mean of this feature. Large value of ΔK(<, D)
corresponds to week saliency and low value of ΔK(<, D)
corresponds to strong saliency. �e parameters Δ	(<, D) andΔK(<, D) can be computed using the accurate CIEDE2000
color di�erence formula which is symbolically denoted in
this paper by ΔN2000(C1, C2). �e color di�erence between
two given color values C1(�1, �1, 	1) (pixel color feature) andC2(�2, �2, 	2) (mean color feature) in the CIE �∗�∗	∗ color
model is de
ned as [54, 74, 75]

ΔN2000 (C1, C2) = √( Δ��P�L�)
2 + ( ΔQ�P
L
)

2 + ( Δ
�P�L�)2 + �� ( ΔQ�P
L
)( Δ
�P�L�). (10)

�e parametric weighting factors P�, P
, and P� are cor-
rection terms for experimental conditions, where the di�er-
ential color vector components that represent the di�erences
in lightness, Chroma, and hue areΔ�� = �2 − �1,ΔQ� = Q2� − Q1�,

Δ
� = 2√Q1� ∗ Q2� ∗ sin[Δℎ�2 ]0 ,
(11)

where

Δℎ� = {{{{{{{{{
ℎ2� − ℎ1� − 360, if ℎ2� − ℎ1� > 180ℎ2� − ℎ1� + 360, if ℎ2� − ℎ1� < −180ℎ2� − ℎ1�, else. (12)

�e rotation function �� that accounts for the interaction
between Chroma and hue di�erences in the blue region is
mathematically expressed as

�� = −2 sin[60 exp{− (ℎpa − 27525 )2}]�

∗ √ Q7paQ7pa + 257 .
(13)

�e parametric weighting functions that adjust the total color
di�erence for variation in the location of the color di�erence
pair in the coordinates of the color model are

L� = 1 + 0.015 (�pa − 50)2
√20 + (�pa − 50)2 ,

L
 = 1 + 0.045 ∗ Qpa,
L� = 1 + 0.015 ∗ Qpa ∗ (1 − 0.17 ∗ cos [ℎpa − 30]�

+ 0.24 ∗ cos [2 ∗ ℎpa]� + 0.32 ∗ cos [3 ∗ ℎpa + 6]�
− 0.20 ∗ cos [4 ∗ ℎpa − 63]�) .

(14)

�e symbols used in the rotation and parametric weighting
functions are de
ned in terms of the hue angle for a pair of
color samples as follows:

�pa = �1 + �22 ,
Qpa = Q1� + Q2�2 ,

ℎpa =
{{{{{{{{{{{{{{{{{{{{{{{

ℎ1� + ℎ2�, if Q1� ∗ Q2� = 0ℎ1� + ℎ2�2 , if
_____ℎ2� − ℎ1�_____ ≤ 180ℎ1� + ℎ2� + 3602 , if ℎ2� + ℎ1� < 360ℎ1� + ℎ2� − 3602 , else,

(15)

where

ℎ1� = {{{{{{{
0, if �1� = 	1 = 0
tan−1 [ 	1�1�]

∘ + 360∘, else
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ℎ2� = {{{{{{{
0, if �2� = 	2 = 0
tan−1 [ 	2�2�]

∘ + 360∘, else.

(16)

�e expression [<]0 in (11) and (16)means that “<” in radian is
to be expressed in degree and the expression [<]� in (13) and
(14) indicates that “<” in degree is to be expressed in radian.
�e other symbols appearing in the color di�erence equation
are de
ned as follows:

Q1� = √�21� + 	21 ,
Q2� = √�22� + 	22 ,�1� = (1 + �) �1,�2� = (1 + �) �2,

� = 0.5(1 − √ Q7paQ7pa + 257),
Q1 = √�21 + 	21 ,
Q2 = √�22 + 	22 ,
Qpa = Q1 + Q22 .

(17)

3.2.4. Image Artifact Filtering. �e computed binary saliency
map is the input to the artifact 
ltering function, so any
desirable algorithm can be used to 
lter the saliencymap.�e
prime objective of the artifact 
ltering is to remove any extra
element that might be remaining a�er segmentation and
select a single connected region that is more likely to be the
actual skin lesion. �e two approaches for removing artifacts
from images are preprocessing and postprocessing. �is
study implements the postprocessing approach to achieve
computational e	ciency because not all the three channels
of the image are processed to remove artifacts.

�is study applies the morphological analysis as the
artifact 
ltering tool to remove undesired elements in the
binary map while maintaining the structural properties of
skin lesion. Morphological analysis is important in digital
image processing because it can preserve structural prop-
erties of skin lesion and rigorously quantify many aspects
of the geometrical structure of images in agreement with
the human perception [16, 25]. �e relationship between
each part of an image can be identi
ed when processing
with morphological theory [25, 33]. �e structural character
of an image in a morphological approach is analyzed in
terms of some predetermined geometric shapes such as
disk, diamond, and squared shapes which are known as
structuring elements [33]. �e MATLAB median 
lter, clear
border function, and morphological operations of opening
and closing are used in this study. �e median 
lter with

structuring element of size 11 × 11 is 
rst used to eliminate
hairs and smooths against noise because of its capability to
reduce bubble intensity and prevent fuzzy edges [16, 28]. It is
widely used in digital image processing because it preserves
edge information under certain conditions while removing
oversegmentation.�e 
lter considers each pixel in the input
image in turn and looks at its nearby neighbors to decide
whether or not it is a representative of its surroundings. It
is usually evaluated by ordering all pixel values from the
surrounding neighborhood and the pixel being considered is
replaced with the middle pixel [76].

�e opening operation smooths object contours, breaks
thin connections, removes thin protrusions, and eliminates
those objects smaller than the structuring element using
morphological erosion followed by morphological dilation.
�e disk structural element is created to preserve the circular
nature of lesion when performing morphological opening
operation. �e radius of the structural element is speci
ed
in this study to be 11 pixels so that large gaps can be 
lled
adequately. �e resulting binary image is then closed using
the morphological closing operation by performing dilation
followed by erosion. �e same disk structural element that
is created in the opening operation is used for the closing
operation. �e closing operation smooths object contours,
joins narrow breaks, and 
lls long thin gulfs and holes smaller
than the structuring element. �e “clear border” function
is 
nally used to remove vignette and disconnected objects
touching the image borders. However, for nondisconnected
objects touching the image borders, we recommend the use
of a more e�ective border processing algorithm to avoid
the inherent limitation of the MATLAB “imclearborder”
function.

3.3. Algorithm Implementation. �e algorithmic implemen-
tation of the method of perceptual color di�erence saliency
(PCDS) is succinctly outlined based on mathematical equa-
tions (1)–(17). �e asymptotic time complexity of the PCDS
algorithm is b(� × � × 3) for an input color image of
dimensions�×�×3.�e PCDS algorithm is described step
by step in Algorithm 1.

4. Discussion of Experimental Results

�e experimental results obtained by the PCDS algorithm
are discussed in this section. �e PCDS algorithm is
qualitatively and quantitatively compared to the spatially
weighted dissimilarity (SWD) [77], principal component
analysis (PCA) [78], Markov chain (MC) [79], and saliency
based skin lesion segmentation (SSLS) [17] which are bench-
mark saliency segmentation algorithms. In addition, we
establish comparison with the Otsu algorithm [71], P-
means clustering [80], fuzzy Q-means (FCM) clustering
[81], and modi
ed JSEG [12] which are benchmark non-
saliency segmentation algorithms. �e source code for the
SSLS algorithm with default parameter settings has been
provided by the author whereas the source codes for the
SWD, PCA, and MC algorithms are readily available at
the following website: https://github.com/MingMingCheng/
SalBenchmark/tree/master/Code/matlab.

https://github.com/MingMingCheng/SalBenchmark/tree/master/Code/matlab
https://github.com/MingMingCheng/SalBenchmark/tree/master/Code/matlab
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Input:� × � × 3 ��� color image.
Output:� × � grayscale saliency map, � × � silhouette saliency map.
It is assumed that the standard color di�erence formula described by equations (10) to (17)
has been implemented to be invoked in the computation of a saliency map in step (12)
of this algorithm.
(1) for all < = 0, 1, . . . ,� − 1 do
(2) for all D = 0, 1, . . . , � − 1 do
(3) transform the Adobe ��� image to CIE 
�� image using equations (1) and (2).
(4) transform the CIE 
�� image to CIE Lab image using equations (3) and (4).
(5) end for
(6) end for

(7) enhance the luminance channel of CIE Lab image using equations (5) and (6).
(8) compute mean of representative background pixels on an ellipsoidal patch.
(9) compute mean of representative object pixels within a rectangular patch.
(10) for all < = 0, 1, . . . ,� − 1 do

(11) for all D = 0, 1, . . . , � − 1 do
(12) compute grayscale saliency map using equation (7) or equation (9).
(13) compute binary saliency map using equation (8).
(14) end for
(15) end for
(16) 
lter binary saliency map using morphological analysis or any desirable method.
(17) stop

Algorithm 1

4.1. Qualitative Evaluation of Segmentation Results. �e pur-
pose of the qualitative evaluation is to test the performance
of the PCDS algorithm through qualitative comparison with
existing saliency and nonsaliency based benchmark algo-
rithms.

4.1.1. Comparison with Saliency Algorithms on ISBI 2016
Images. �e segmentation results obtained by the PCDS
algorithm is qualitatively compared with the results obtained
by the existing benchmark saliency segmentation algorithms
using test images acquired from the ISBI 2016 challenge
corpus. Figure 3 shows a few examples of the original and
ground truth images under varying conditions such as the
presence of air bubbles (Im1 and Im2), presence of thick hair
(Im3), low contrast (Im4, Im5, and Im6), and thin hair (Im7).
In Figure 3, it can be seen that most of the skin lesions are
correctly and consistently highlighted by the PCDS algorithm
across all test images. However, when dermoscopic images
possess air bubbles and illumination variation as in Im1, a
situation whereby the skin lesion color distribution appears
uneven, the other four benchmark saliency algorithms do not
e�ectively and consistently highlight the skin lesion as our
PCDS algorithm.

�e PCDS algorithm generates an improved saliency
map with more de
ned image boundaries when compared
to the four other benchmark saliency algorithms. �is is
evidence in the case of Im2 that exhibits air bubbles and
simultaneously presents similar color intensity between skin
lesion and background skin. It is worth mentioning from an
observation that virtually, for all images shown in Figure 3,
the SWD algorithm has the poorest performance because
it generates saliency maps with low resolution, blurry, and
poorly de
ned borders. Moreover, it can be observed that

all the saliency algorithms are able to achieve satisfactory
results for dermoscopic images with high contrast as in Im3.
However, for low contrast images such as Im4, Im5, and Im6,
the PCA and SSLS algorithms do not uniformly highlight
the salient objects. In fact, these algorithms could only
highlight certain parts of the lesions while some parts share
similar intensities with background color and salient lesions
smaller in size when compared to the ground truth lesion.
Although the MC algorithm has performed better than
PCA and SSLS algorithms, it can be observed that saliency
maps generated by the MC algorithm possess heterogeneous
regions and fuzzy boundaries not uniformly highlighted.
Contrarily, the PCDS algorithm outperforms the others in
completely and uniformly highlighting the lesion objectswith
no varying colors. �is indicates that the PCDS algorithm
assigns uniform saliency values to the pixels within the salient
objects.

In addition, another interesting observation from Fig-
ure 3 can be seen in Im7 that other benchmark algorithms
highlight only the visible part of the skin lesion when a skin
lesion possesses thin hair and low contrast. Interestingly, only
the PCDS algorithm has detected the tail end of the lesion as
seen in the ground truth lesion which can lead to diagnostic
error. �e impressive performance of the PCDS algorithm in
segmenting all images considered can be attributed to the
e�ective measurement of color di�erence between uneven
lesion color distributions using the accurate CIEDE2000
formula.

4.1.2. Comparison with Saliency Algorithms on PH2 Images.
�e segmentation results obtained by the PCDS algorithm is
qualitatively comparedwith the results of existing benchmark
saliency algorithms using test images acquired from the PH2
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S/N Original image SWD PCA MC SSLS PCDS
Ground truth

image

Im1

Im2

Im3

Im4

Im5

Im6

Im7

Figure 3: Qualitative illustration of saliency segmentation results obtained by benchmark saliency algorithms and PCDS algorithm on ISBI
2016 images.

corpus. Figure 4 shows some saliency maps produced by
the PCDS algorithm along with those of other algorithms.
Moreover, we have noted that the PCDS algorithm achieves
good segmentation against the other algorithms. �is is
because the PCDS algorithm has the advantage of uniformly
highlighting the whole salient object with high resolution as
seen across the entire dermoscopic images.

�e SWD algorithm has the least performance on PH2
images as seen in the segmentation results depicted in
Figure 4. Moreover, it can be observed that saliency maps
generated by the SWD algorithm are blurry and do not
convey much useful information with respect to identifying
the skin lesion. Although the PCA algorithm can correctly
locate the skin lesion in the images, usually the algorithm
highlights certain parts of the salient lesion boundaries as
seen in Im6 and Im7 which can lead to diagnostic error. In
addition, it can be observed further that the PCA algorithm
fails at detecting the precise location of the skin lesion. It
can be observed, for example, in Im1 and Im2, that the PCA

algorithm detects skin lesion in such a way that it touches the
image border which is oversegmentation.

�e MC algorithm highlights skin lesion boundaries and
detects skin lesion. However, it can be seen that boundaries
of the saliency map are imprecise and fuzzy across the test
images. �is can result in the segmentation of healthy skin as
skin lesion if fuzzy based thresholding algorithms such as the
Huang andWang [82] are applied for binary segmentation of
the saliency map. Furthermore, it can be observed that the
SSLS algorithm is able to highlight skin lesion boundaries,
but still it cannot assign uniform salient pixel values in
the inner part as in Im3, Im4, and Im6. In addition, it
can be observed that the skin lesion produced by the SSLS
algorithm in Im7 is smaller than ground truth skin lesion.
In sharp contrast, it can be seen that the PCDS algorithm,
to a greater extent, uniformly highlights the skin lesion,
predicts precise location of the skin lesion, and produces well
de
ned skin lesion borders. �is clearly indicates that the
PCDS algorithm shows a good performance and desirable
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S/N

Im1

Im2

Im3

Im4

Im5

Im6

Im7

Original image SWD PCA MC SSLS PCDS
Ground truth

image

Figure 4: Qualitative illustration of saliency segmentation results obtained by benchmark saliency algorithms and PCDS algorithm on PH2
images.

saliency segmentation with reference to the ground truth
dermoscopic images.

4.1.3. Comparison with Nonsaliency Algorithms on ISBI 2016
Images. �e binary segmentation results obtained using the
default thresholding method of the PCDS algorithm on ISBI
2016 images are presented in this section. �e image artifact

ltering method is not performed in this particular case in
order to test the performance of the PCDS default threshold-
ing without being aided. Figure 5 shows some examples of
binary segmentation results produced by the PCDS default
thresholding with other nonsaliency benchmark algorithms.
�e lesion images for the qualitative comparison are the same
ISBI 2016 images presented in Figure 3, but in the absence
of artifact 
ltering. However, it is worth mentioning that the
implementation of themodi
ed JSEG algorithm is inherently
embedded with preprocessing and postprocessing methods
to deal with artifacts which we do not have control over.

�e results in Figure 5 show that, despite the absence of
image artifact 
ltering, it is easy to note that binary segmenta-
tion results produced by the default PCDS thresholding show
performance improvement. Speci
cally, one can see that

PCDS algorithm gives a better segmentation result for Im1.
It is observed that Otsu,P-means, and FCM algorithms pro-
duced incomplete binary segmented lesions smaller in size
than ground truth lesions. �is problem can be attributed to
the illumination variation in the original dermoscopic image
in Im1 that the algorithms cannot deal with intelligently. In
addition, there is a considerable amount of border irregular-
ities in the lesion borders of the binary segmented images
produced by the modi
ed JSEG algorithm.�is is a conspic-
uous demerit as border irregularities caused by inaccurate
segmentation can mislead the automatic diagnosis process.

Moreover, Im2 reveals that Otsu, P-means, and FCM
algorithms exhibit poor performances when the input image
has low contrast between the skin lesion and healthy skin.
It is also noticeable that, apart from the presence of image
artifacts in the binary segmented images produced by Otsu
thresholding, P-means, and fuzzy Q-means, some parts of
the healthy skin share similar color intensities as the lesion.
�is is an indication that Im2 contains heterogeneous regions
with di�erent visual properties. Most especially when the
healthy skin intensity is similar to the lesion as it can be
seen that the healthy skin in the segmented binary images
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S/N Otsu K-means FCM Modi�ed JSEG PCDS Ground truth
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Figure 5:Qualitative illustration of the binary segmentation results obtained using four benchmark nonsaliency algorithms and default PCDS
thresholding on ISBI 2016 images.

produced by these three algorithms share similar color
intensities like skin lesion as seen in Im5. Still, on Im2, there
is an indication that the modi
ed JSEG algorithm failed to
produce a binary segmented image because the algorithm is
unsuccessful at segmenting Im2 as shown with white block
written FAILED. �e unsuccessful cases recorded by the
modi
ed JSEG algorithm as reported in this study is not the

rst of its kind.�e original authors of the algorithm reported
similar unsuccessful cases produced by the algorithm during
experimentation [12]. Moreover, Norton et al. [83] reported
an unsuccessful case of the modi
ed JSEG for failing to seg-
ment fourteen test images in the most challenging situations.
On the other hand, despite the absence of image artifact 
lter-
ing, Im2 produced by the PCDS algorithm does not contain
oil bubbles as seen in the original image. It is evident that
the PCDS algorithm gives good binary segmentation results
when compared to other benchmark nonsaliency algorithms.

In Im3, aside from the presence of thick hair, all the four
nonsaliency algorithms produce binary segmented images

similar to the ground truth images. �is happens when there
is a good contrast between the lesion and healthy skin; thus
the lesion boundaries are well de
ned. However, it can be
observed that the modi
ed JSEG algorithm segmented hair
trace to be part of the lesion which as stated earlier can
result in diagnostic error. In Im6, we can see that the binary
segmented image produced by the PCDSdefault thresholding
is almost comparable to the result of the modi
ed JSEG
algorithm. It can be observed that the appearance of the
PCDS default thresholding still produced well connected and
precise lesion border than those of Otsu,P-means, and FCM
algorithms as seen in Im6. Eventually, Im7 shows that the
PCDS default thresholding produced a full representation of
the skin lesion when compared to four other nonsaliency
algorithms.

4.1.4. Comparison with Nonsaliency Algorithms on PH2
Images. �e binary segmentation results obtained using the
default thresholding method of the PCDS algorithm on PH2
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images are presented in this section. Figure 6 shows some
examples of the binary segmentation results in the absence
of artifact 
ltering. �ere is no apparent di�erential between
results produced by all the algorithms. However, the PCDS
algorithm shows slight improvement when compared to
the Otsu, P-means, and FCM for low contrast images as
in Im5. Slight improvement in border irregularities can be
seen in Im3, Im6, and Im7 produced by the modi
ed JSEG
algorithm when compared to the ground truth images. �e
less apparent di�erential is because the acquired PH2 images
are not in varying imaging conditions as those of the ISBI
2016 images. However, many of the acquired PH2 test images
exhibit vignette e�ect which is mainly due to the challenge
of using round circular lens designed for a smaller sensor in
dermatoscope [1].

In summary, the PCDS algorithm performs favorably
against the benchmark algorithms as shown in Figures 3–6.
�e algorithm produces more stable discriminating saliency
maps with high resolution and it uniformly highlights salient
objects across the test images. Moreover, the algorithm
extracts lesion borders in challenging conditions and it han-
dles the problems of illumination variation and low contrast
more e�ectively. �ese results validate the performance of
the PCDS algorithm in handling challenging images and they
demonstrate that implementation steps of the algorithm are
relevant for its overall performance.

4.2. Quantitative Evaluation of Segmentation Results. �e
purpose of the quantitative evaluation is to test the perfor-
mance of the PCDS algorithm through quantitative com-
parison of binary segmentation results with the existing
benchmark saliency and nonsaliency algorithms on der-
moscopic images acquired from the ISBI 2016 and PH2
corpora. �e quantitative evaluation allows generalization
to a large set of test images that cannot easily be achieved
by qualitative evaluation because of few test samples. �is
study applies the precision (c), recall (�), accuracy (d),
and dice (e) evaluation metrics to quantitatively score the
binary segmentation results computed by the comparative
algorithms. �ese evaluation metrics are widely used for
judging the performance of binary segmentation algorithms
[8, 13, 19, 20, 47, 48, 61, 83–85]. A binary segmentation
algorithm with satisfactory performance has high precision,
recall, accuracy, and dice values.

Precision is the ratio of the number of skin lesion pixels
correctly identi
ed to the total number of pixels in the
saliency map. Recall is the ratio of the number of skin lesion
pixels correctly identi
ed to the total number of skin lesion
pixels in the saliency map. Accuracy is the total number of
pixels correctly identi
ed to the total number of pixels in the
saliency map. Dice coe	cient measures agreement between
the ground truth and result of automated segmentation
method. �e formal de
nitions of these evaluation metrics
are based on the following parameters. True positive (Tp)
is the count of skin lesion pixels correctly identi
ed as
skin lesion pixels. False negative (Fn) is the count of skin
lesion pixels incorrectly identi
ed as healthy skin pixels. False
positive (Fp) is the count of healthy skin pixels incorrectly
identi
ed as skin lesion pixels. True negative (Tn) is the

count of healthy skin pixels correctly identi
ed as healthy
skin. �ese measures are mathematically de
ned as follows
[13, 47]:

c = Tp

Tp + Fp
,

� = Tp

Tp + Fn
,

d = Tp + Tn

Tp + Tn + Fp + Fn
,

e = 2Tp2Tp + Fn + Fp
.

(18)

�e performance of binary segmentation using the PCDS
algorithm is compared with the widely used Otsu threshold-
ing algorithm [86] because thresholding algorithms are con-
ventionally applied for binary segmentation of salient objects
from grayscale maps [17, 87]. Table 1 shows ten comparative
image segmentation algorithms compared in this study to
establish the performance of binary segmentation using the
PCDS algorithm.

4.2.1. Precision Scores. Table 2 lists the average precision
(AVEP) scores and corresponding standard deviation (STDP)
scores for each set of test images. It can be seen in Table 2 that
the PCDS algorithm consistently recorded the highest AVEP
score of 0.8911 and lowest STDP score of 0.1166 on ISBI 2016
test images. However, the SSLSOtsu algorithm recorded the
lowest AVEP score of 0.6439 (0.2154) on ISBI 2016 images.
Since the STDP score of 0.2154 for the SSLSOtsu algorithm is
lower than that of the modi
ed JSEG algorithm (0.2363) and
Otsu algorithm (0.2445), the SSLSOtsu algorithm has better
precision than modi
ed JSEG and Otsu algorithms on some
of the ISBI 2016 test images.

�e PCDSOtsu algorithm consistently recorded the high-
est AVEP score of 0.9617 and lowest STDP score of 0.0503
on PH2 test images. However, the Otsu algorithm recorded
the lowest AVEP score of 0.5557 and highest STDP score
of 0.3697 on PH2 test images. �e Otsu algorithm with the
highest STDP score did not give better precision than any of
the other algorithms on the PH2 test images. �ese results
generally indicate that the PCDS algorithm consistently
recorded good precision on ISBI 2016 test images, while
the PCDSOtsu algorithm consistently recorded excellent
precision on PH2 test images.

4.2.2. Recall Scores. Table 3 lists the average recall (AVER)
scores and corresponding standard deviation (STDR) scores
for each set of test images. It can be seen in Table 3 that
the SSLSOtsu algorithm consistently recorded the highest
AVER score of 0.9998 and lowest STDR score of 0.0012 on
ISBI 2016 test images. �e SWDOtsu algorithm recorded the
lowest AVER score of 0.8014 (0.1893) on ISBI 2016 images.
Since the STDR score of 0.1893 for the SWDOtsu algorithm
is lower than that of the modi
ed JSEG algorithm (0.2330),
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Figure 6: Qualitative illustration of binary segmentation results obtained using four benchmark nonsaliency algorithms and default PCDS
thresholding on PH2 images.

Table 1: Comparative algorithms with descriptions.

Algorithm Description

Otsu Conventional Otsu thresholding algorithm applied to skin lesion segmentation.P-means Conventional P-means clustering algorithm applied to skin lesion segmentation.

FCM Conventional fuzzy Q-means clustering algorithm applied to skin lesion segmentation.

Modi
ed
JSEG

�e modi
ed JSEG image segmentation algorithm applied to skin lesion segmentation.

SWDOtsu
�e conventional Otsu thresholding algorithm applied to threshold the saliency map computed by the spatially weighted
dissimilarity (SWD) algorithm.

PCAOtsu
�e conventional Otsu thresholding algorithm applied to threshold the saliency map computed by the principal
component analysis (PCA) algorithm.

MCOtsu
�e conventional Otsu thresholding algorithm applied to threshold the saliency map computed by the Markov chain (MC)
algorithm.

SSLSOtsu
�e conventional Otsu thresholding algorithm applied to threshold the saliency map computed by the saliency based skin
lesion segmentation (SSLS) algorithm.

PCDSOtsu
�e conventional Otsu thresholding algorithm applied to threshold the saliency map computed by the perceptual color
di�erence saliency (PCDS) algorithm.

PCDS
�e perceptual color di�erence saliency (PCDS) algorithm with a simple thresholding decision rule applied for binary
segmentation of the saliency map.
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Table 2: Precision scores of comparative algorithms on ISBI 2016
and PH2 images.

Algorithm
ISBI 2016 PH2

AVEP STDP AVEP STDP

Otsu 0.8134 0.2445 0.5557 0.3697P-means 0.8420 0.2000 0.7904 0.3031

FCM 0.8464 0.1979 0.7480 0.3261

Modi
ed JSEG 0.8681 0.2363 0.8984 0.2438

SWDOtsu 0.8437 0.1883 0.9118 0.2388

PCAOtsu 0.8593 0.1675 0.9141 0.2005

MCOtsu 0.8494 0.1227 0.8969 0.1556

SSLSOtsu 0.6439 0.2154 0.8318 0.2095

PCDSOtsu 0.8823 0.2012 0.9617 0.0503

PCDS 0.8911 0.1166 0.9499 0.0554

Table 3: Recall scores of comparative algorithms on ISBI 2016 and
PH2 images.

Algorithm
ISBI 2016 PH2

AVER STDR AVER STDR

Otsu 0.9705 0.1677 0.8383 0.3701P-means 0.9838 0.1196 0.9362 0.2392

FCM 0.9850 0.1195 0.9371 0.2393

Modi
ed JSEG 0.9291 0.2330 0.8759 0.2414

SWDOtsu 0.8014 0.1893 0.6569 0.2144

PCAOtsu 0.9848 0.0392 0.8482 0.1911

MCOtsu 0.9971 0.0099 0.9620 0.1420

SSLSOtsu 0.9998 0.0012 0.9509 0.1975

PCDSOtsu 0.9817 0.1199 0.9554 0.0766

PCDS 0.9927 0.0228 0.9586 0.0467

the SWDOtsu algorithm recorded better recall thanmodi
ed
JSEG on some of the ISBI 2016 test images.

�eMCOtsu algorithm recorded the highest AVER score
of 0.9620 on PH2 test images. However, the STDR score
of 0.1420 for the MCOtsu algorithm is higher than that
of the PCDSOtsu algorithm (0.0766) and PCDS algorithm
(0.0467). �e PCDSOtsu and PCDS algorithms recorded
better recall than MCOtsu algorithm on some PH2 test
images. �e SWDOtsu algorithm recorded the lowest AVER
score of 0.6569 on PH2 test images. However, the STDR
of 0.2144 for the SWDOtsu algorithm is lower than those
of the nonsaliency based algorithms which implies that the
SWDOtsu algorithm recorded better recall than nonsaliency
based algorithms on some of the PH2 test images. �ese
results generally indicate that the SSLSOtsu algorithm over-
segment ISBI 2016 test images because it achieves imbalance
precision (0.6439) and recall (0.9998) while the PCDS algo-
rithm consistently gave excellent recall on PH2 test images
because it achieves balance precision (0.9499) and recall
(0.9586).

4.2.3. Accuracy Scores. Table 4 lists the average accu-
racy (AVEA) scores and corresponding standard deviation
(STDA) scores for each set of test images. It can be seen

Table 4: Accuracy scores of comparative algorithms on ISBI 2016
and PH2 images.

Algorithm
ISBI 2016 PH2

AVEA STDA AVEA STDA

Otsu 0.9456 0.1204 0.9421 0.0638P-means 0.9572 0.0580 0.9735 0.0548

FCM 0.9577 0.0570 0.9745 0.0392

Modi
ed JSEG 0.9190 0.2297 0.9729 0.0433

SWDOtsu 0.8962 0.0732 0.9185 0.1172

PCAOtsu 0.9498 0.0626 0.9678 0.0353

MCOtsu 0.9564 0.0431 0.9861 0.0171

SSLSOtsu 0.8868 0.1086 0.9737 0.0382

PCDSOtsu 0.9622 0.1194 0.9888 0.0113

PCDS 0.9769 0.0303 0.9847 0.0114

Table 5: Dice scores of comparative algorithms on ISBI 2016 and
PH2 images.

Algorithm
ISBI 2016 PH2

AVED STDD AVED STDD

Otsu 0.8665 0.2312 0.6262 0.3815P-means 0.8949 0.1770 0.8336 0.2929

FCM 0.8977 0.1819 0.7962 0.3237

Modi
ed JSEG 0.8941 0.2301 0.8812 0.2330

SWDOtsu 0.8061 0.1584 0.7542 0.2100

PCAOtsu 0.9067 0.1244 0.8762 0.1886

MCOtsu 0.9120 0.0817 0.9291 0.1409

SSLSOtsu 0.7601 0.1820 0.8631 0.2316

PCDSOtsu 0.9166 0.1818 0.9360 0.1439

PCDS 0.9342 0.0709 0.9522 0.0287

in Table 4 that the PCDS algorithm consistently recorded
the highest AVEA score of 0.9769 and lowest STDA score
of 0.0303 on ISBI 2016 test images. �e SSLSOtsu algorithm
recorded the lowest AVEA score of 0.8868 (0.1086) on
ISBI 2016 images. Since the STDA score of 0.1086 for the
SSLSOtsu algorithm is lower than that of the PCDSOtsu
algorithm (0.1194), modi
ed JSEG algorithm (0.2297), and
Otsu algorithm (0.1204), the SSLSOtsu algorithm recorded
better accuracy than these algorithms on some of the ISBI
2016 test images.

�e PCDSOtsu algorithm consistently recorded the high-
est AVEA score of 0.9888 and lowest STDA score of 0.0113
on PH2 test images. However, the SWDOtsu algorithm
consistently recorded the lowest AVEA score of 0.9185 and
highest STDA score of 0.1172. �e SWDOtsu algorithm
with the highest STDA score did not give better accuracy
than any of the other algorithms on the PH2 test images.
�ese results generally indicate that the PCDS algorithm
consistently recorded excellent accuracy on ISBI 2016 test
images, while the PCDSOtsu algorithm consistently recorded
excellent accuracy on PH2 test images.

4.2.4. Dice Scores. Table 5 lists the average dice (AVED)
scores and corresponding standard deviation (STDD) scores
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for each set of test images. �e PCDS algorithm can be seen
in Table 5 to consistently record the highest AVED score of
0.9342 and lowest STDD score of 0.0709 on ISBI 2016 test
images. �e SSLSOtsu algorithm recorded the lowest AVED
score of 0.7601 (0.1820) on ISBI 2016 test images. Since the
STDD score of 0.1820 for the SSLSOtsu algorithm is lower
than that of the modi
ed JSEG algorithm (0.2301) and Otsu
algorithm (0.2312), the SSLSOtsu algorithm performed better
thanmodi
ed JSEG andOtsu algorithms on some of the ISBI
2016 test images.

�e PCDS algorithm gave the highest AVED score of
0.9522 and lowest STDD score of 0.0287 on PH2 test images.
However, the Otsu algorithm recorded the lowest AVED
score of 0.62627 and highest STDD score of 0.3697 on PH2
test images. �e Otsu algorithm with the highest STDD
score did not compute segmentation outputs with better
agreement with the ground truth than any of the other
algorithms on the PH2 test images. �ese results generally
indicate that the PCDS algorithm consistently computed
segmentation outputs that have excellent agreement with
the ground truth images across the ISBI 2016 and PH2 test
images.

4.2.5. Performance Scores. �e coe	cient of variation (CV)
statistic is ultimately used in this study to determine the
algorithm that gives best performance across di�erent test
images. �e CV is a standardized dispersion measure of a
probability distribution that represents the ratio of standard
deviation to mean. �e weighted mean of coe	cient of
variations (MCV) uni
es the scores associated with a given
evaluation criterion across di�erent test images. �e MCV
value of 1 means low dispersion (excellent result) in the
evaluation criterion and a value of 0 means high dispersion
(inferior result) in the evaluation criterion. Given a set of
distributions with mean values of -1, -2, . . . , -� and standard
deviation values of ?1, ?2, . . . , ?�, the MCV is determined
with the largest weight given to the largest sample as follows:

MCV (-, ?, f, g) = �∑

=1

(f
 (-
 − ?
)-
 ) , (19)

where g is the total number of datasets and weight functionsf1, f2, . . . , f� sum up to unity:

�∑

=1

f
 = 1. (20)

�e main reason to use sample sizes as weight functions in
MCV calculation is that an algorithm that performs well on
a large set of test data is preferable to that which performs
well on a small set of test data. In this study, the sizes of
ISBI 2016 and PH2 test images are, respectively, 70 and 50. In
fact, we deliberately selected more test images from the ISBI
2016 corpus because it hasmore challenging images than PH2
corpus. �e PH2 contains 200 melanocytic lesions whereas
the ISBI 2016 contains 900 dermoscopic images with ground
truths of both sets of images available [13]. Consequently,

f1 = 7/12, f2 = 5/12, and g = 2. In the special case of g = 2
(19) reduces to the following equation:

MCVs (-, ?, f, 2)
= f1 (-1 − ?1) -2 + f2 (-2 − ?2) -1-1-2 . (21)

Table 6 shows the result of applying (21) to compute the
MCV for precision (Precision MCV), recall (Recall MCV),
accuracy (Accuracy MCV), and dice (Dice MCV).�e over-
all performance score for each comparative algorithm is
based on the utility function obtained by averaging the scores
for all evaluation criteria. �e result in Table 6 shows that,
ranking in terms of the utility function, the PCDS algorithm
recorded an excellent overall performance and is ranked
in the 
rst position while the Otsu algorithm is ranked
in the tenth position. �e ranking of each algorithm in
terms of individual criterion is also given with the PCDS
algorithm leading. Surprisingly, the PCDSOtsu algorithm
did not rank second following the PCDS algorithm which
means that the binary segmentation technique of the PCDS
algorithm is e�ective. In the literature, the Otsu algorithm
is acclaimed to be optimal for binary segmentation, but its
performance is poor for segmentation of melanoma skin
lesion in dermoscopic images as experienced in this study.
Finally, it is important to note that the low performance
scoring of the modi
ed JSEG algorithm is mainly due to its
inability to segment some of the test images.

5. Conclusion

�is paper reports a new image segmentation algorithm
based on perceptual color di�erence saliency (PCDS) that
integrates both background and foreground information
for segmentation of skin lesion in dermoscopic images.
�e PCDS algorithm has been tested on 120 challenging
dermoscopic images acquired from the ISBI 2016 challenge
and PH2 corpora. �e algorithm has been quantitatively
compared with a variety of saliency and nonsaliency bench-
mark algorithms using famous statistical evaluation metrics
of precision, recall, accuracy, and dice. �e experimental
results of this study show that PCDS algorithm achieves
excellent performance in segmenting skin lesion in der-
moscopic images with di�erent classes of challenges when
compared to benchmark algorithms investigated in this study.
Moreover, the PCDS algorithm tends to bemore robust to the
presence of air bubble, thick hair, and low contrast than other
comparative algorithms investigated in this study.

Future work will focus on the extraction of distinctive
skin lesion features for the classi
cation of melanoma skin
lesion in dermoscopic images using the PCDS algorithm
for segmentation. In addition, we plan to extend the PCDS
method to other existing color models and color di�erence
formulae for comparative purpose. In addition, it will be
prudent to look at other practical applications to test the
performance of the PCDS algorithm on images with other
challenges. �e one important aspect of the PCDS algorithm
that needs further investigation is the estimation of mean
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Table 6: Overall performance scores of comparative algorithms.

Algorithm Precision MCV Recall MCV Accuracy MCV Dice MCV Utility

Otsu 0.5475 (10) 0.7152 (10) 0.8975 (9) 0.5905 (10) 0.6877 (10)P-means 0.7017 (7) 0.8226 (6) 0.9412 (5) 0.7382 (8) 0.8009 (6)

FCM 0.6820 (9) 0.8228 (7) 0.9485 (4) 0.7124 (9) 0.7914 (7)

Modi
ed JSEG 0.7281 (6) 0.7389 (8) 0.8357 (10) 0.7397 (7) 0.7606 (9)

SWDOtsu 0.7607 (5) 0.7262 (9) 0.8992 (8) 0.7694 (5) 0.7889 (8)

PCAOtsu 0.7949 (4) 0.8829 (5) 0.9464 (3) 0.8303 (3) 0.8636 (4)

MCOtsu 0.8434 (3) 0.9327 (2) 0.9665 (2) 0.8846 (2) 0.9068 (2)

SSLSOtsu 0.6999 (8) 0.9128 (3) 0.9122 (7) 0.7485 (6) 0.8184 (5)

PCDSOtsu 0.8452 (2) 0.8953 (4) 0.9229 (6) 0.8202 (4) 0.8709 (3)

PCDS 0.8994 (1) 0.9663 (1) 0.9771 (1) 0.9432 (1) 0.9465 (1)

value of background color pixels and mean value of object
color pixels because e�ectiveness of the algorithm heavily
depends on accurate estimation of these statistics. It is also
essential to combine color cue with other cues such as texture
to further improve the performance of the PCDS algorithm.
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[14] D. D. Gómez, C. Butako�, B. K. Ersbøll, andW. Stoecker, “Inde-
pendent histogram pursuit for segmentation of skin lesions,”
IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp.
157–161, 2008.

[15] D. A. Okuboyejo, O. O. Olugbara, and S. A. Odunaike, “Unsu-
pervised restoration of hair-occluded lesion in dermoscopic
Images,” inMIUA, pp. 91–96, 2014.

[16] J. Premaladha and K. S. Ravichandran, “Novel Approaches for
Diagnosing Melanoma Skin Lesions �rough Supervised and
Deep Learning Algorithms,” Journal of Medical Systems, vol. 40,
no. 4, article no. 96, pp. 1–12, 2016.

[17] E. Ahn, L. Bi, Y. H. Jung et al., “Automated saliency-based lesion
segmentation in dermoscopic images,” in Proceedings of the
37th Annual International Conference of the IEEE Engineering in



Mathematical Problems in Engineering 17

Medicine and Biology Society, EMBC 2015, pp. 3009–3012, Italy,
August 2015.

[18] Y. Zhao, Y. Zheng, Y. Liu et al., “Intensity and Compactness
Enabled Saliency Estimation for Leakage Detection in Diabetic
andMalarial Retinopathy,” IEEE Transactions on Medical Imag-
ing, vol. 36, no. 1, pp. 51–63, 2017.

[19] A. Aksac, T. Ozyer, and R. Alhajj, “Complex networks driven
salient region detection based on superpixel segmentation,”
Pattern Recognition, vol. 66, pp. 268–279, 2017.

[20] Q. Zhang, J. Lin, Y. Tao, W. Li, and Y. Shi, “Salient object
detection via color and texture cues,” Neurocomputing, vol. 243,
pp. 35–48, 2017.

[21] C. Yang, L. Zhang, and H. Lu, “Graph-regularized saliency
detection with convex-hull-based center prior,” IEEE Signal
Processing Letters, vol. 20, no. 7, pp. 637–640, 2013.

[22] R.Dubey, A.Dave, andB.Ghanem, “Improving saliencymodels
by predicting human 
xation patches,” in Computer Vision, vol.
9005, pp. 330–345, 2015.

[23] M. Celebi, Q. Wen, H. Iyatomi, K. Shimizu, H. Zhou, and G.
Schaefer, “A State-of-the-Art Survey on Lesion Border Detec-
tion in Dermoscopy Images,” in Dermoscopy Image Analysis,
Digital Imaging and Computer Vision, pp. 97–129, CRC Press,
2015.

[24] D. A. Okuboyejo, O. O. Olugbara, and S. A. Odunaike, “CLAHE
inspired segmentation of dermoscopic images using mixture of
methods,” Transactions on Engineering Technologies, pp. 355–
365, 2014.

[25] H. Wang, R. H. Moss, X. Chen et al., “Modi
ed watershed
technique and post-processing for segmentation of skin lesions
in dermoscopy images,” Computerized Medical Imaging and
Graphics, vol. 35, no. 2, pp. 116–120, 2011.

[26] M. E. Celebi, H. A. Kingravi, H. Iyatomi et al., “Border detection
in dermoscopy images using statistical region merging,” Skin
Research and Technology, vol. 14, no. 3, pp. 347–353, 2008.

[27] P. Rubegni, A. Ferrari, G. Cevenini et al., “Di�erentiation
between pigmented Spitz naevus and melanoma by digi-
tal dermoscopy and stepwise logistic discriminant analysis,”
Melanoma Research, vol. 11, no. 1, pp. 37–44, 2001.

[28] R.Kasmi, K.Mokrani, R.K. Rader, J. G.Cole, andW.V. Stoecker,
“Biologically inspired skin lesion segmentation using a geodesic
active contour technique,” Skin Research andTechnology, vol. 22,
no. 2, pp. 208–222, 2016.

[29] M. Sadeghi, M. Razmara, T. K. Lee, and M. S. Atkins, “A
novel method for detection of pigment network in dermo-
scopic images using graphs,”ComputerizedMedical Imaging and
Graphics, vol. 35, no. 2, pp. 137–143, 2011.

[30] O. O. Olugbara, E. Adetiba, and S. A. Oyewole, “Pixel intensity
clustering algorithm for multilevel image segmentation,”Math-
ematical Problems in Engineering, vol. 2015, Article ID 649802,
19 pages, 2015.

[31] M. Emre Celebi, Q. Wen, S. Hwang, H. Iyatomi, and G.
Schaefer, “Lesion Border Detection in Dermoscopy Images
Using Ensembles of �resholding Methods,” Skin Research and
Technology, vol. 19, no. 1, pp. e252–e258, 2013.

[32] R. B. Oliveira, N. Marranghello, A. S. Pereira, and J. M. R. S.
Tavares, “A computational approach for detecting pigmented
skin lesions in macroscopic images,” Expert Systems with Appli-
cations, vol. 61, pp. 53–63, 2016.

[33] M. Zortea, E. Flores, and J. Scharcanski, “A simple weighted
thresholding method for the segmentation of pigmented skin
lesions in macroscopic images,” Pattern Recognition, vol. 64, pp.
92–104, 2017.

[34] P. Khuwuthyakorn, A. Robles-Kelly, and J. Zhou, “Object of
interest detection by saliency learning,” in Proceedings of the
European conference on Computer vision, vol. 6312, pp. 636–649,
2010.

[35] W.Yang,D. Li, S.Wang, S. Lu, and J. Yang, “Saliency-based color
image segmentation in foreign 
ber detection,” Mathematical
and Computer Modelling, vol. 58, no. 3-4, pp. 846–852, 2013.

[36] C. A. Hussain, D. V. Rao, and S. A. Masthani, “Robust Pre-
processing Technique Based on Saliency Detection for Content
Based ImageRetrieval Systems,”ProcediaComputer Science, vol.
85, pp. 571–580, 2016.

[37] E. Ahn, J. Kim, L. Bi et al., “Saliency-Based Lesion Segmentation
Via Background Detection in Dermoscopic Images,” IEEE
Journal of Biomedical and Health Informatics, vol. 21, no. 6, pp.
1685–1693, 2017.

[38] A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detec-
tion: a benchmark,” IEEE Transactions on Image Processing, vol.
24, no. 12, pp. 5706–5722, 2015.

[39] R. Garnavi, M. Aldeen, M. E. Celebi, A. Bhuiyan, C. Doliani-
tis, and G. Varigos, “Automatic segmentation of dermoscopy
images using histogram thresholding on optimal color chan-
nels,” International Journal of Medicine and Medical Sciences,
vol. 1, no. 2, pp. 126–134, 2011.

[40] M. Zortea, S. O. Skrøvseth, T. R. Schopf, H.M. Kirchesch, and F.
Godtliebsen, “Automatic segmentation of dermoscopic images
by iterative classi
cation,” International Journal of Biomedical
Imaging, vol. 2011, Article ID 972648, 19 pages, 2011.

[41] L. Itti, C. Koch, and E. Niebur, “Amodel of saliency-based visual
attention for rapid scene analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259,
1998.

[42] Y. Zhai and M. Shah, “Visual attention detection in video
sequences using spatiotemporal cues,” in Proceedings of the
14th Annual ACM International Conference on Multimedia
(MULTIMEDIA ’06), pp. 815–824, October 2006.

[43] X. Hou, J. Harel, and C. Koch, “Image signature: highlighting
sparse salient regions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 1, pp. 194–201, 2012.

[44] C. Guo, Q. Ma, and L. Zhang, “Spatio-temporal saliency detec-
tion using phase spectrum of quaternion fourier transform,” in
Proceedings of the 26th IEEEConference onComputer Vision and
Pattern Recognition, CVPR, USA, June 2008.

[45] B. Schauerte and R. Stiefelhagen, “Predicting human gaze using
quaternion DCT image signature saliency and face detection,”
in Proceedings of the 2012 IEEE Workshop on the Applications of
Computer Vision, WACV 2012, pp. 137–144, USA, January 2012.

[46] M. J. Ogorzalek, G. Surowak, L. Nowak, C. Merkwirth, and
M. J. Ogorzałek, “approaches for computer-assisted skin cancer
diagnosis,” Optimization and Systems Biology, pp. 20–22, 2009.

[47] A. R. Sadri, M. Zekri, S. Sadri, N. Gheissari, M. Mokhtari,
and F. Kolahdouzan, “Segmentation of dermoscopy images
using wavelet networks,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 4, pp. 1134–1141, 2013.

[48] J. Khan, A. S. Malik, N. Kamel, S. C. Dass, and A. M.
A�andi, “Segmentation of acne lesion using fuzzy C-means
technique with intelligent selection of the desired cluster,” in
Proceedings of the 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBC 2015,
pp. 3077–3080, Italy, August 2015.

[49] H. Nisar, Y. K. Ch’ng, T. Y. Chew, V. V. Yap, K. H. Yeap, and J.
J. Tang, “A color space study for skin lesion segmentation,” in



18 Mathematical Problems in Engineering

Proceedings of the 2013 IEEE International Conference onCircuits
and Systems: “Advanced Circuits and Systems for Sustainability”,
ICCAS 2013, pp. 172–176, Malaysia, September 2013.

[50] M. Schikora and A. Schikora, “Image-based Analysis to Study
Plant Infection with Human Pathogens,” Computational and
Structural Biotechnology Journal, vol. 12, no. 20-21, pp. 1–6, 2014.

[51] G. Khashayar, P. A. Bain, S. Salari, A. Dozic, C. J. Kleverlaan,
and A. J. Feilzer, “Perceptibility and acceptability thresholds for
colour di�erences in dentistry,” Journal of Dentistry, vol. 42, no.
6, pp. 637–644, 2014.

[52] N. Alghazali, G. Burnside, M. Moallem, P. Smith, A. Preston,
and F. D. Jarad, “Assessment of perceptibility and acceptability
of color di�erence of denture teeth,” Journal of Dentistry, vol. 40,
no. 1, pp. e10–e17, 2012.

[53] F. Bayindir, S. Kuo, W. M. Johnston, and A. G. Wee, “Coverage
error of three conceptually di�erent shade guide systems to vital
unrestored dentition,” Journal of Prosthetic Dentistry, vol. 98, no.
3, pp. 175–185, 2007.

[54] O. E. Pecho, R. Ghinea, R. Alessandretti, M. M. Pérez, and A.
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