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Segmentation of moving objects by long term
video analysis

Peter Ochs, Jitendra Malik,Thomas Brox

Abstract—Motion is a strong cue for unsupervised object-level grouping. In this paper, we demonstrate that motion will be exploited

most effectively, if it is regarded over larger time windows. Opposed to classical two-frame optical flow, point trajectories that span

hundreds of frames are less susceptible to short term variations that hinder separating different objects. As a positive side effect, the

resulting groupings are temporally consistent over a whole video shot, a property that requires tedious post-processing in the vast

majority of existing approaches. We suggest working with a paradigm that starts with semi-dense motion cues first and that fills up

textureless areas afterwards based on color. This paper also contributes the Freiburg-Berkeley motion segmentation (FBMS) dataset,

a large, heterogeneous benchmark with 59 sequences and pixel-accurate ground truth annotation of moving objects.

Index Terms—motion segmentation, point trajectories, variational methods

✦

1 INTRODUCTION

I T has been shown that bottom-up segmentation based on

color can successfully provide so-called superpixels – small,

homogenous regions, which are actively used in many vision

applications [4]. But what about the segmentation of whole

objects or meaningful parts of objects? A person could wear

clothes of very different color; see Fig. 1. How can a bottom-

up approach decide which of these regions must be grouped

together? Top-down object priors can resolve such ambiguities,

but based on which data can these priors be learned in the first

place?

In this paper, we reemphasize the value of motion and

the Gestalt principle of “common fate” [34]. Motion vectors

are typically more homogeneous within an object region than

color and texture. Consequently, ambiguities in color based

segmentation disappear as soon as objects move. Studies with

formerly blind people indeed show that learning from moving

objects is easier than learning from static ones [49].

However, most objects do not move permanently. There

can be long periods during which an animal is as static

as a pillar. Moreover, articulated objects do not move ho-

mogeneously. Arms and legs of a walking person move in

opposite directions. All this causes severe problems in typical

motion segmentation approaches based on two-frame optical

flow. Tracking the interplay of the articulated parts over

longer periods yields the missing information about the overall

motion. Hence, in this paper, we argue that motion should

be analyzed over longer periods. Such long term analysis

decreases the motion’s intra-object variance relative to the
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Fig. 1. Top: Two images from a video shot. Color based

segmentation would not provide object regions. Center:

Clustering of point trajectories indicates regions with

similar motion. Bottom: Segmentation based on these

clusters provides object regions.

inter-object variance. Moreover, motion information can be

propagated to frames in which the object is mainly static.

Clearly, some kind of tracking is necessary for such long

term analysis. We found that pursuing a “sparse to dense”

strategy works best. Point tracking is more reliable than

attempts to track superpixels, as stable features are located on
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edges and corners rather than in flat areas. Between frames,

superpixels can split or merge and significantly vary in shape.

This is especially true near occlusion and disocclusion areas.

We propose the use of a semi-dense point tracker based on

optical flow that yields reliable trajectories for hundreds of

frames with only little drift and that ensures a wide coverage

of the video shot.

Trajectories are usually asynchronous, i.e., they start and

end in different frames. This effect is mainly due to occlusion

and disocclusion. Most existing trajectory clustering methods

cannot deal with this problem. We define distances between

all pairs of trajectories that share some common frames, which

allows to deal with general scenes independent of how much

occlusion is to be expected. The sparsity of the point trajec-

tories is advantageous for the computational efficiency of the

approach. It enables running spectral clustering [57] globally

on all trajectories extracted from a video shot. Only after this

powerful long term motion information has been exploited, we

make use of the complementary color information to propagate

object labels to the remaining homogenous areas in the video.

This is achieved with a variational method.

The field of video segmentation, and motion segmentation

in particular, has been lacking a dataset that is large enough

to allow for credible quantitative evaluation. In our earlier

conference publication a public benchmark dataset with pixel-

accurate ground truth segmentation of moving objects was

presented [17]. Here we extend this dataset with several

new videos. These are a combination of short and long

sequences at various resolutions. The dataset covers many

typical challenges in motion segmentation, such as multiple

objects, various types of motion, occlusion, and changing

lighting conditions. The benchmark dataset comes with a

tool for standardized evaluation in the motion segmentation

scenario. We modified the original evaluation metric in [17]

such that results with different granularities of over- and under-

segmentation can be compared based on a single criterion, the

F-measure.

2 RELATED WORK

The classical approach to motion segmentation is based on

two-frame optical flow. While early approaches estimate the

optical flow and the segmentation independently [69], [56],

optical flow estimation and segmentation were later considered

as a joint optimization problem [25], [3], [15], [63]. Obviously,

object segmentation is only possible with such an approach,

if the object motion is distinct and different from the back-

ground motion in all frames. Moreover, as pairs of frames are

considered independently, the resulting segmentations are not

consistent over time. [71], [50] approach these problems by

combining motion analysis with a learned appearance model.

Above problems also disappear when the motion is analyzed

over longer periods. There are many works that produce over-

segmentations and connect the emerging superpixels over time

using optical flow and/or clustering methods [12], [33], [67],

[39]. This yields dense, temporally consistent segmentations,

but usually they remain over-segmentations. It is not trivial

to retrieve object regions from these results. Interactive video

segmentation methods can avoid over-segmentation, but they

require significant user input [6], [52].

While most of the above methods include some sort of

region tracking, we rely on point tracking. The most popular

point tracker is the Kanade-Lucas-Tomasi (KLT) tracker [58].

In the meantime, this tracker has been improved [73] and

fast GPU versions are available [59], [73]. Other trackers are

proposed in [9], [54]. We present a tracker that makes use

of the dense motion field obtained with one of today’s high

quality variational optical flow methods [64]. We use large

displacement optical flow [18], but it can be replaced by any

other optical flow method. Compared to other trackers, the

video can be covered densely, and fast motion of, e.g., body

limbs does not lead to immediate tracking failure.

A dominant paradigm for clustering point trajectories has

emerged from the technique of multi-body factorization. It

decomposes the data matrix of the tracked point coordinates

into a 3D rigid body motion and a structure matrix based on

an affine camera model [23], [31], [10]. More recent methods

model the (linear) dependency of the data samples [72], [26],

i.e., motion segmentation is cast as the problem of segmenting

samples drawn from a union of linear (or affine) subspaces.

This allows definition of affinities between trajectories and

the use of spectral clustering, as in the present work. For

instance in [26] the dependency is modeled as an optimiza-

tion program where data points express themselves as linear

combinations with a sparsity prior on the representatives.

In [37] the dimensionality of the ambient space is explored

and affinities are defined using angular information. A few

works also explored the projective dependency among the data

samples [40], [55]. While initially all these techniques were

very sensitive to noise, more recent models have solved this

problem [26], [68], [41], [53], [42], [74]. However, the main

limitation remains the requirement of a dominant subset of

complete trajectories. Consequently, the methodology cannot

deal with strong occlusion and disocclusion, which hampers

sincere long term motion analysis.

There are few works which analyze point trajectories with-

out the need to have a dominant subset of trajectories covering

the full time line [61], [13], [22], [27]. Apart from [13], which

analyzes trajectories but runs the clustering on a single frame

basis, these methods provide temporally consistent clusters.

The general idea of defining affinities between trajectories has

been used in traffic scenarios already in 1997 [8]. Techni-

cally, however, all these methods are very different from our

approach with regard to the density of trajectories, how the

distance between trajectories is defined, and the algorithms

used for clustering.

In some works, motion segmentation is not the primary

goal but a way to achieve a higher level goal. Ommer et

al. [48] couple motion segmentation with a recognition task,

in [70] tracking and detection is combined with geometric

information for 3D scene modeling, [14] focus on road scene

understanding, and [62] reconstruct 3D point clouds for se-

mantic segmentation and object recognition.

The part that converts the sparse trajectory clusters into

dense spatio-temporal regions is related to interactive seg-

mentation, where the user draws a few scribbles into the
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image and the approach propagates these labels to the non-

marked areas. Several techniques based on graph cuts [11],

random walks [32], and intermediate methods [60] have been

proposed. The latest techniques are built upon variational

convex relaxation methods [66], [19], [38], [45], which avoid

the typical discretization artifacts of graph based formulations.

The variational technique we propose here is in line with these

methods.

The present paper builds upon three earlier conference

papers. In [64] we proposed a dense point tracker based on

variational optical flow. The clustering of such point trajecto-

ries was introduced in [17]. In [46] we presented a variational

method that fills the empty gaps between the trajectories

based on color and texture. These papers have led to several

follow-up works by us [47] and other groups [39], [28], [29],

[30], [75]. For the present paper we have consolidated the

overall technique, particularly the MRF optimization on top

of the eigenvectors of the affinity matrix in Section 5 and

the variational model in Section 6. Moreover, we extend the

benchmark dataset that came with [17]. Apart from adding

more diverse sequences and providing a split into training and

test set, we have improved the evaluation metric.

3 POINT TRACKING WITH VARIATIONAL OPTI-
CAL FLOW

The most important part of the presented object segmentation

strategy is the long term aspect: we consider motion not

independently for each frame but regard the whole motion

history of a point to make a grouping decision. This requires

point trajectories rather than just motion vectors. At the same

time, we must avoid suffering from typical drawbacks of

classical point tracking methods, such as the widely used KLT

tracker [58]. Usually these trackers cover the image only very

sparsely, have limited accuracy, and cannot deal with large

motion of small, independently moving parts, such as arms

and legs.

We obtain high quality point trajectories by using a very

simple, but also very successful idea: we track points based

on a current state-of-the-art optical flow method; here we use

large displacement optical flow from [18]. This way, we benefit

from all the progress made on optical flow estimation in the

30 years since the Lucas-Kanade method [43] was presented,

which is the basis for the KLT tracker. In the following,

we coarsely describe the most important aspects of the point

tracker. For details we refer to [64]. The source code of the

tracker is available at [1].

Initial points. Like in every tracker, a set of points is

initialized in the first frame of a video. As we build on a dense

optical flow method, in principle, we could initialize with

every pixel. However, homogeneous areas can be problematic

also for variational optical flow. To put more emphasis on

points that can be tracked more reliably, we remove points

that do not show any structure in their vicinity based on the

smaller eigenvalue of the structure tensor.

As we will see in Section 5, the computational complexity

of the motion segmentation method is quadratic in the num-

ber of point trajectories. For efficiency reasons, we spatially

Fig. 2. Two visualizations of the trajectories. Left: Cur-

rent position of the tracked points together with their

trajectories. The subsampling factor was 16. Right: Only

the current position of the tracked points is shown. The

subsampling factor was 4. In both cases color shows for

how long the points have been tracked as a percentage

of the length of the shot (see color bar). Occlusion and

disocclusion prohibit permanent tracking.

subsample the initial points. Fig. 2 shows a subsampling by

factor 4 on the right and 16 on the left side. Factors larger than

12 lose details as there are not enough points to cover small

object parts. On the other hand, factors smaller than 4 waste

computation time, as smaller objects tend to be smoothed away

by the optical flow anyway.

Tracking. Each of the points can be tracked to the next

frame t + 1 by using the optical flow field wt at frame t.
In principle, any optical flow method can be used here, yet

many of the problems we find in motion segmentation are due

to shortcomings of the optical flow, e.g., large displacements,

sharp discontinuities, and accuracy for the occlusion detection.

Hence, it is important to use a strong method. The approach

from [18] combines the subpixel accuracy of variational ap-

proaches with combinatorial feature matching, which allows

to capture large displacements. Moreover, an efficient GPU

implementation [64] computes the optical flow between two

640×480 frames in less than 2 seconds. This enables tracking

also in long, high resolution sequences in reasonable time.

Occlusion detection. Tracking has to be stopped as soon

as a point gets occluded. This is very important, as otherwise

the point trajectory will share the motion of two different

objects. Occlusion detection is a common problem, considered

especially in disparity estimation, but recently has appeared

also more often in conjunction with optical flow. We refer

to a recent work [5] and the references therein. In tracking,

occlusion is usually detected by comparing the appearance

of the local neighborhood of the tracked point over time. In

contrast, we detect occlusions by verifying the consistency of

the forward and the backward flow, as illustrated in Fig. 3. In

a non-occlusion case, the backward flow vector points in the

inverse direction of the forward flow vector. If this consistency

requirement is not satisfied, the point is either getting occluded

at t+1 or the flow was not correctly estimated. Both are good

reasons to stop tracking this point at t. Since there are always

some small estimation errors in the optical flow, we grant a

tolerance interval.

Occlusion comes together with the opposite phenomenon:

disocclusion or scaling. To fill these areas not covered by a

trajectory yet, new trajectories are initialized in empty areas in
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Fig. 3. Forward-backward matching criterion. Each pixel

in frame t is mapped to frame t + 1 via the optical flow

vector wt. The backward map ŵt at the subpixel position

is determined by bilinear interpolation. Concatenating the

two mappings should result in approximately the original

position.

each new frame using the same strategy as for the first frame.

A tracking example is shown in Fig. 2. Some points on

the man are tracked across all 75 frames. However, most

trajectories are newer due to disocclusion.

4 AFFINITIES BETWEEN TRAJECTORIES

Clearly, trajectories of longer video shots are asynchronous,

i.e., they cover different temporal windows in a shot. The

set of points that are tracked across the whole scene is small

or empty due to occlusion and disocclusion. A measurement

matrix that takes the coordinates of the tracked points in all

frames, as used by all multi-body factorization and linear

subspace methods, will have many missing entries. We avoid

a measurement matrix and rather set up pairwise affinities

between trajectories. This only requires some trajectories to

have some temporal overlap.

We define affinities between all pairs of trajectories that

share at least one frame. They define the edge weights of a

graph with trajectories as vertices. Trajectory pairs without

overlap are assigned zero affinity. The emerging weighted

graph is the basis for a grouping with spectral clustering.

This way, even trajectories that do not share frames can get

transitively connected via other trajectories.

According to the Gestalt principle of common fate [34],

we should assign high affinities to pairs of points that move

together. Clearly, there are many situations where this principle

fails to segment objects. Two persons walking next to each

other share the same motion although they are different

objects. A person sitting in a chair shares the same motion as

objects in the background. The Gestalt principle tells us that

these situations should be treated conservatively and objects

should not be separated. In motion segmentation based on

two-frame optical flow, objects indeed cannot be separated in

most frames as long as they do not show different motion

permanently. At this point, the long term aspect of trajectories

is important: as we are not forced any longer to make decisions

for each frame independently, we can pick for each pair of

trajectories the time instant where the motion is maximally

different. According to the Gestalt principle, this instant pro-

vides maximum evidence that the two points do not belong to

the same object. A man can sit in his chair for 1000 frames, but

Fig. 5. Sequence with dominant scaling motion that

cannot be captured well enough by a local translational

model. These situations lead to an over-segmentation of

the object.

as he stands up, the motion difference provides the evidence

that he is not part of the chair (Fig. 4).

Let A and B be two trajectories with coordinates (xA
t , y

A
t )

and (xB
t , y

B
t ), respectively, at frame t. According to the

previous discussion, we define distances d(A,B) for each pair

of trajectories A and B exploiting their maximal dissimilarity,

i.e., the maximal motion difference among all frames of

common visibility

d2(A,B) = max
t

dt(A,B), (1)

and turn them into affinities via

w(A,B) = exp
(

−λd2(A,B)
)

. (2)

We fix the scale parameter λ = 0.1. This parameter brings us

to another important issue, namely proper normalization. So

far the affinity model is based on the two assumptions that

the motion estimates are noise-free and all object motion is

translational. Of course, both assumptions are not satisfied in

real sequences, so we face the problematic question: when is

a motion difference just due to noise and when is it significant

enough to indicate different objects?

As this question is easier to answer if there is less noise,

the first objective is to limit the noise that should be expected.

On the side of the optical flow, we can add some more

accuracy by averaging the motion over time. This is done by

approximating the derivatives ∂tA and ∂tB of two continuous

spatially temporal curves, defined by trajectories A and B, at

time t with forward-differences over T = 5 frames:

∂tA =
1

T
(xA

t+T − xA
t , y

A
t+T − yAt )

⊤ (3)

The same for B. If less than T common frames are available

between A and B, then T is set to the number of common

frames for this pair. The exact choice of T is not critical. If T
is chosen too large, we might lose relevant motion differences,

e.g., due to a swinging arm. At frame rates of 30fps, T = 5
corresponds to just 160ms, and it is unlikely that this will

smooth out some significant motion detail. We tested also

values of T = 10 and T = 15 without any consistent positive

or negative effect on the results1.

1. It is worth noting that temporal smoothing of the optical flow for the
purpose of computing motion differences between trajectories is uncritical,
whereas such smoothing can have very negative effects on the optical
estimation process in case of camera jitter. The reason is that temporal
smoothing during optical flow estimation hampers the correct matching of
pixels. Such a problem does not exist when analyzing motion differences.
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Fig. 4. Frames 0, 30, 50, 80, 93 of a shot from Miss Marple: Murder at the vicarage. Up to frame 30, there is hardly

any motion as the person is sitting. Most information is provided when the person is standing up. This is exploited in

the present approach. Due to long term tracking, the grouping information is also available at the first frames.

A second source of noise is model noise due to the assump-

tion that all object motion is translational. Clearly, objects can

undergo more complex motion. Fig. 5 shows a failure case,

where motion is dominated by scaling. Pairwise distances only

allow for verification of a translational model, whereas an

affine motion model would require distances computed for at

least 4 trajectories at a time to verify if they belong to the same

group. This leads to a hypergraph and has been considered

in [47]. Here we rather make use of the dense coverage of

the image by trajectories and the fact that locally a higher

order motion model can be approximated by a translational

model. Consequently, we can limit the effect of model noise by

damping the motion distance with the average spatial distance

dsp(A,B) between trajectories A and B.

The distance at frame t between two trajectories A and B
is defined as

d2t (A,B) = dsp(A,B)
|∂tA− ∂tB|2

σ2
t

, (4)

where σ2
t is a locally adaptive normalization factor that deals

with the fact that despite the above measures there is still some

noise to be expected. The magnitude of the noise depends on

the variation of the motion in the image. A larger variation

indicates fast higher order motion and hence more model

noise. Consequently, the distance should be normalized by

the variance of the optical flow in the considered image. The

intuition behind this normalization is that a motion difference

of two pixels is a lot when there is hardly any motion in a

scene, whereas the same motion difference is negligible in a

scene with fast motion.

If there is just one object and the background, normalization

by the global flow variance is sufficient, yet consider a scenario

with one fast object and one slowly moving object. For the

fast object, σ should be large, otherwise the object might be

split into multiple regions. For the slow object, σ should be

smaller to avoid that the object is merged with the background.

This dilemma can be avoided by using a spatially adaptive

variance estimate that is computed for each point individually

in a local neighborhood. For an efficient computation of such

local statistics we refer to [16].

5 SPECTRAL CLUSTERING WITH SPATIAL

REGULARITY

The pairwise affinities for n trajectories result in an n × n
affinity matrix W . An (approximately) optimal partitioning of

the underlying graph is obtained via spectral clustering [57],

[44]. Let D = diag (dA|A = 1, . . . , n) be the n× n diagonal

matrix with entries dA =
∑

B w(A,B). The eigendecomposi-

tion of the normalized graph Laplacian reads

V ⊤ΛV = D− 1

2 (D −W )D− 1

2 . (5)

We keep the eigenvectors v0,v1, . . . ,vm corresponding to

the m + 1 smallest eigenvalues λ0, λ1, . . . , λm according to

the threshold maxi λi < 0.2. The trivial solution λ0 = 0
with the constant eigenvector v0 is omitted. Since the number

of objects is expected to be significantly smaller than the

number of trajectories, i.e., m ≪ n, the eigenvectors and

eigenvalues can be efficiently computed using the Lanczos

method in O(n2). For further computation we normalize the

eigenvectors’ range to [0, 1].
We also determine the number of clusters automatically

(model selection). In the ideal case, i.e., clearly distinguished

translational motion and very few tracking errors, we obtain

m piecewise constant eigenvectors and clusters are easily

obtained with k-means clustering. There is a large number of

model selection criteria in the literature, such as BiC or AiC,

to automatically choose K in k-means clustering. As long as

sufficiently many eigenvectors are computed, which is usually

guaranteed with our conservative threshold on λ, such model

selection will find a good number of clusters.

However, often the eigenvectors are not piecewise constant,

as shown in Fig. 6. Standard k-means clustering is not suited

for this setting as smooth transitions in the eigenvectors get

approximated by multiple constant functions and, thus, leads

to over-segmentation. This has a strong negative effect on the

correct choice of the number of clusters K.

As a remedy, we suggest minimizing an energy function

that comprises a spatial regularity term. This regularity term
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Fig. 6. From left to right, top to bottom: Input frame

from a video shot and the first 3 eigenvectors with range

of values represented by the colorbar. Clearly, the eigen-

vectors are not piecewise constant but show smooth tran-

sitions within the object regions. However, discontinuities

in the eigenvectors correspond to object boundaries very

well. This information needs to be exploited in the final

clustering procedure.

not only prefers spatially compact clusters, it also acts as a

criterion for model selection. Moreover, it takes edges in the

eigenvectors into account. Let vAi denote the Ath component

of the ith eigenvector and v
A the vector composed of the

Ath components of all m eigenvectors. Index A corresponds

to a distinct trajectory. Let N (A) be the symmetrized set of

the 12 neighboring trajectories based on the average spatial

distance of trajectories. We seek to choose the total number

of clusters K and the assignments πA ∈ {1, ...,K} such that

the following energy is minimized:

E(π,K) :=
∑

A

K
∑

k=1

δπA,k|v
A − µk|

2
λ

+ ν
∑

A

∑

B∈N (A)

1− δπA,πB

|vA − v
B |

.

(6)

The first term is the unary cost, where µk denotes the centroid

of cluster k. The norm | · |λ is defined as

|vA − µ|λ :=
∑

i

(vAi − µi)
2/λi, (7)

i.e., each eigenvector is weighted by the inverse of the square

root of its corresponding eigenvalue. This weighting is com-

mon in spectral clustering as eigenvectors that separate more

distinct clusters correspond to smaller eigenvalues [7].

Clearly, if we do not add a penalty for additional clusters,

each trajectory will be assigned its own cluster. The second

term in (6) serves as a regularizer penalizing the spatial

boundaries between clusters. The δπA,πB is the Kronecker

delta, which is 1 if the trajectories A and B are assigned

to the same cluster, and 0, else. The penalty is weighted

by the inverse differences of the eigenvectors along these

boundaries. Consequently, cutting a smooth transition in the

eigenvectors will induce much higher cost than cutting along a

strong discontinuity. This avoids splitting clusters at arbitrary

locations due to smooth transitions in the eigenvectors. The

parameter ν steers the tradeoff between the two terms. We

obtain good results in various scenes by fixing ν = 60.

Minimizing (6) is problematic due to many local minima.

Fixing K, it becomes a multi-label MRF problem with un-

known centroids. We start with an equidistant initial label-

ing, i.e., for k ∈ {1, . . . ,K} all trajectories Ai with index

(k − 1) n
K

≤ i ≤ k n
K

are initially assigned πAi = k.

In each iteration we update the centroids µk and optimize

the label assignments using FastPD [35], [36]. We run at

most 50 iterations and stop earlier as the energy decrease

becomes less than 10−4. We restrict the maximum number

of objects per video shot to 20 and run this optimization for

all K ∈ {1, ...,min{20, 2m}}. Among all models we pick the

one with the minimum energy.

Finally, we run a postprocessing step that merges clusters

according to the mutual fit of their affine motion models

estimated via least squares in each frame. We consider the

average fit per frame and merge greedily until a threshold is

reached for the average fitting error. This postprocessing step is

not absolutely necessary, but corrects a few over-segmentation

errors.

6 DENSE SEGMENTATION

The above clustering of point trajectories yields compact

clusters of points that are by construction consistent over

time. However, the approach so far does not yield a classical

dense object segmentation, where each point is assigned to

a region. In this section, we correct this shortcoming. While

the trajectory clustering is focused on motion cues, the dense

labeling brings in the complementary cues of color and texture

and allows to decide on homogenous areas, where motion

cues are not reliable. Our starting point is a labeled set of

sparse trajectories, such as in Fig. 7b, where approximately

3% of the pixels are labeled. Depending on the trajectory

sampling in the tracking even less pixels are labeled. We first

present an approach that considers each frame independently.

In Section 6.2 we introduce a model that enforces temporal

regularity.

6.1 Variational label approximation

We cast the problem of making the sparse set of labels dense

as optimization of a Potts model. The objective is to find a

partitioning of the image domain Ω ⊂ R
2 into disjoint regions

E1, . . . , EK ⊂ Ω, such that the region interface length Per
and the cost for a weighting function f = (f1, . . . , fK) : Ω →
R

K becomes minimal. The generic Potts energy reads

min
E1,...,EK

1

2

K
∑

k=1

Per(Ek; Ω) +

K
∑

k=1

∫

Ek

fk(x) dx

s.t.

K
⋃

k=1

Ek = Ω, Ek ∩ Ek′ = ∅, ∀k 6= k′.

(8)

In our case, the weighting function f in the data term is

determined by the semi-sparse set of given labels. Defining
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Fig. 7. Labels given by trajectories are penalized by a cer-

tain weight, and, thus, can be corrected in the variational

optimization. Left: (a) Input image. Center: (b) Sparse

point trajectory labels. Right: (c) Dense segmentation via

minimization of a Potts model.

the set Lk of coordinates x ∈ Ω occupied by a trajectory with

label k, let fk(x) = 0 if x ∈ Lk and fk(x) = α otherwise.

Thereby α ∈ R
+ is a positive weight, penalizing region Ek′

to contain x ∈ Lk, where k 6= k′. If α → ∞, regions are

forced to enclose only points of a single label. As we can

expect some erroneous trajectory labels smaller values for α
are used and labels can be corrected, as demonstrated in Fig. 7.

The α values may depend on the confidence in correctness of

trajectory labels and on the cardinality of
⋃K

k=1 Lk, i.e., the

tracking subsampling factors 4, 8, or 16. Accordingly we set

α to 200, 500, or 1000.

In order to practically minimize the Potts energy we rewrite

it in terms of a convex total variation (TV) optimization

problem [19]. The objective of finding a minimal partition

is replaced by the minimization

min
u

E(u) = min
u

TV (u) +

K
∑

k=1

∫

Ω

uk(x)fk(x) dx

s.t. uk(x) ≥ 0, ∀k,
K
∑

k=1

uk(x) = 1, ∀x ∈ Ω

(9)

with respect to a label function u = (u1, . . . , uK) : Ω →
[0, 1]K , where TV (u) substitutes the measure for the region

interface length. The value uk(x) can be though of as the

probability of coordinate x taking label k.

Ideally, jumps in the label function should be located at

image edges, i.e., where the image gradient |∇I| is high.

Therefore, we use image-driven weighted TV regularization

TVg(u) =
1

2

K
∑

k=1

∫

Ω

g(x)|∇uk(x)| dx, (10)

where g(x) = 1/
√

|∇I|2 + ε2. The parameter ε = 10−3

serves as a stabilizing parameter for homogeneous areas.

This regularizer can be interpreted as ordinary total variation

measure in the metric induced by the image as a Riemannian

manifold.

In order to obtain the desired image partitioning, the mini-

mizer u∗ of the convex energy (9) has to be reprojected to the

discrete label space {0, 1}K . We perform the projection by

uk(x) =

{

1, if k = argmaxk′{u∗
k′(x)|k′ = 1, ...,K}

0, otherwise.

(11)

For the two-label case, the thresholding theorem [21] ensures

global optimality of the solution with respect of the original

Potts energy. In the general multi-label case, the integer solu-

tion usually is not a global optimum, but there is a computable

tight upper bound [24].

The energy in (9) is minimized using Algorithm 1 from

[20], a first order primal-dual algorithm. The algorithm is

implemented on the GPU with CUDA. On a GeForce GTX

580 it runs at about 1 frame per second for 680×480 images

and 2 labels. The computation time scales linearly with the

number of labels.

6.2 Temporal regularity

So far in this section, we treated each frame of the video

independently. While the coarse result is consistent over time,

thanks to the point trajectories, details near object boundaries

may flicker. This can be avoided by extending the spatial total

variation regularization to a spatio-temporal one

TVtemp(u) :=β

∫

Ω

c(t)
w
(x)

K
∑

k=1

(

|u
(t)
k (x)− u

(t+1)
k (x+wt)|

2

+ |u
(t)
k (x+ ŵt)− u

(t+1)
k (x)|2

)

dx.

(12)

Function u
(t)
k (x) indicates label k at time frame t at coordinate

x, and wt and ŵt refer to the forward and backward flow from

frame t to t+ 1 and from t+ 1 to t, respectively. The binary

function c
(t)
w (x) indicates whether the flow is reliable accord-

ing to the consistency check of forward-backward matching

as described in Section 3 (see Fig. 3). There is no need for a

color based weighting, since optical flow links only pixels of

similar color. The parameter β weights spatial against temporal

regularization and can be chosen according to the desired

amount of temporal smoothness.

7 EXPERIMENTAL EVALUATION

7.1 Dataset

The field of motion segmentation lacks a sufficiently large

and realistic benchmark dataset. There is the Hopkins 155

benchmark [65], but it focuses on short sequences with little

occlusion and allows evaluation only of sparse, complete

trajectories. The trajectories do not comprise outliers. In our

previous work [17], we presented a dataset composed of 26

video sequences, among them shots from detective stories and

12 sequences from Hopkins 155. Several frames of each shot

come with pixel-accurate ground truth segmentation of moving

objects. The ground truth annotation is consistent over time.

We extended this dataset by adding 33 sequences. The

new sequences show more variation in image resolution and

comprise more non-translational motion than the previous

sequences. Every 20th frame comes with ground truth, adding

a total of 516 annotated frames to the benchmark. The full

dataset with 59 sequences and 720 annotated frames is publicly

available at [2].
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Fig. 8. Illustration of the evaluation metric for (left to

right) an under-segmentation, an unprecise segmen-

tation, and an over-segmentation. The ground truth is

shown in the bottom row. The black lines show the cluster-

region assignments and crosses indicates clusters or

regions that have not been assigned. Average preci-

sion, recall, and F-measure are (93.68%, 66.67%, 77.9%),
(98.22%, 80.31%, 88.36%), and (100.0%, 56.02%, 71.81%).

7.2 Evaluation method

Compared to [17] we also improved the evaluation methodol-

ogy. The size of the new dataset allows to split it into a training

set and a test set. We provide a fixed split into a roughly equal

number of sequences in both sets. The split was chosen such

that typical challenges appear in both sets.

We introduce an average region density, which is the

average percentage coverage over all ground truth regions by

labels. For a dense method as described in Section 6 the

density is 100%; sparse trajectory clustering leads to lower

densities depending on the spacing of the trajectories. By

averaging over region densities rather than on a per-pixel basis,

we penalize uneven spatial coverage.

To compare segmentations with different numbers of output

regions, a metric must reflect the tradeoff between accuracy

(usually maximized by increasing the number of regions)

and a good coverage of the ground truth. In detection tasks,

precision and recall have proven valuable to capture a similar

tradeoff between false positives and misses. Here we provide

a definition of precision and recall for segmentation. Let C
be the set of pixels2 labeled by the computer algorithm and

ci ⊂ C the subset assigned to cluster i; gj ⊂ C be the

corresponding subset of a ground truth region j, and let | · |
denote the size of the set. The sets gj only contain those

pixels of a ground truth region that have been labeled by the

evaluated computer algorithm. This allows the comparison of

sparse and dense results on the basis of accuracy, whereas the

density is measured by above density measure. Precision is

defined as

Pi,j :=
|ci ∩ gj |

|ci|
, (13)

the ground truth fraction of a cluster, and recall as

Ri,j :=
|ci ∩ gj |

|gj |
, (14)

2. The set of pixels includes all frames with ground truth annotation.
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Fig. 9. Justification for the F-measure threshold of 75%.

Results are obtained with the sparse method and trajec-

tory sampling 8 for the training set (left) and the test set

(right). With a larger threshold, only very few objects pass

the criterion, with a smaller threshold, regions are allowed

to be too inaccurate for being considered a meaningful

object region; see also Fig. 10.

the fraction of a ground truth region covered by the cluster.

They are defined for each pair of cluster i and ground truth

region j. The best assignment of clusters to ground truth

regions is found by the Hungarian method3, a one-to-one

matching algorithm, where we maximize the F-measure

Fi,j :=
2Pi,jRi,j

Pi,j +Ri,j

(15)

over all assignments. In case there are fewer clusters than

ground truth regions, we introduce empty clusters. According

to (14) their recall is R = 0, and we define P = 1. Unassigned

clusters are ignored. Like in a typical detection setting, pre-

cision measures the percentage of correctly assigned pixels,

and recall measures the covered fraction of the ground truth.

However, since regions in a segmentation are disjoint, a lower

recall usually does not increase precision, as in a typical

detection setting. Fig. 8 illustrates the effect of certain error

classes on the metrics. Both an under-segmentation (leftmost

example) and an over-segmentation (rightmost example) lead

to a reduction in recall. In the first case because one object

is missed and obtains R = 0, in the second case because the

assigned cluster covers only a small part of the ground truth

region. Recall is mainly affected by a bad model selection.

Precision is mostly affected by inaccurate clusters that overlap

with multiple ground truth regions. The F-measure combines

precision and recall and allows the comparison of approaches

that yield different numbers of clusters, whereas with the

evaluation metric in [17], it was unclear whether to prefer

a result with lower pixel error or one with lower over-

segmentation error. It is important to note that averages over

precision and recall values are computed on a per region basis

rather than on a per pixel basis. The latter would put too much

weight on large background regions. The average F-measure

always refers to the harmonic mean of the average precision

and average recall rather than the average of single region

F-measures.

Finally, we report the total number of extracted objects,

which we define as clusters with F-measure ≥ 75%. This

3. The complexity of the rectangular Hungarian method is O(mn
2). Since

the number of ground truth regions is fixed and limited, we take n as the
number of ground truth regions and m as the number of clusters.
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(96.4%, 90.2%, 93.2%)

(92.3%, 63.9%, 75.6%)

(99.3%, 36.6%, 53.5%) (99.2%, 28.1%, 43.8%)

Fig. 10. Qualitative justification for the F-measure thresh-

old of 75%. Result for the first 10 frames and evalua-

tion only on the first frame. From left to right, top to
bottom: Dense result based on a trajectory sampling of

4 overlayed to the first frame of the sequence goats01,

lion01, meerkats01, and cats02 with precision, recall, F-

measure of the yellow region assignment. The F-measure

for the lion is just above the threshold. Only the heads of

the meerkat and cat are covered. Consequently, their F-

measures are well below the threshold.

quantity is to indicate the number of objects that can be

extracted with a certain accuracy from a dataset. One region is

subtracted per sequence to account for the background, i.e., at

least two regions must satisfy the above criterion to increase

the counter. We refer to Fig. 9 and Fig. 10 to justify the

threshold of 75%, which is in any case disputable and could

be adapted to the quality requirements of an application.

7.3 Experimental setup

In order to demonstrate that there are challenges in the field of

motion segmentation that cannot be properly handled by any

previous methodology, we evaluated the proposed approach

together with the factorization method in [53], which can

deal with incomplete trajectories (ALC), the current state-of-

the-art among subspace clustering methods: sparse subspace

clustering [26] (SSC1 and SSC), and a naive baseline method

based on two-frame optical flow (Naive). SSC is the standard

SSC and SSC1 is an embedding of SSC into our motion

segmentation framework where the only difference to our

method is in the computation of the affinity matrix.

For ALC and SSC the correct number of labels is provided.

Whereas SSC yields a segmentation with exactly this number

of labels, ALC uses this number just as a prior. SSC1 uses the

model selection strategy from our framework. For all these

methods, the same trajectories with an 8 sampling were used

as input. In case of ALC, we randomly subsampled these

trajectories by another factor 8 because the method is very

slow. The trajectories for SSC1 and SSC consist of the subset

of complete trajectories only.

The baseline method was set up as follows: in the first

frame, K reference flow vectors are chosen randomly, where

K is set to the ground truth number of objects. All other flow

vectors are assigned to the closest reference vector based on

the Euclidean distance. In all further frames, the random flow

vectors are replaced by the mean flow vector from the previous

frame’s segmentation with some inertia to account for noise.

For ALC we used the default parameters that came with

the code. For all other methods we coarsely optimized the

parameters on the training set by manual search before running

the final version on the test set. Fig. 11 and Table 1 show

the results on both datasets. The performance on the test and

training set is quite similar. This shows that over-fitting is not

an issue for the evaluated methods. A separate training and

test set of reasonable size should avoid methods that over-fit

also in the long run. By using the dataset, researchers must

agree on running their method on the test set only once and

on not using it for parameter optimization.

7.4 Quantitative results

The results in Table 1 and Fig. 11 show that the presented

framework clearly outperforms all other methods. The main

reason is that SSC1, SSC, and ALC all cannot handle occlu-

sions. SSC1 and SSC work only on the subset of complete

trajectories, which reduces the density but also the F-measure

considerably. Many objects are missed completely, because

they are not covered by any complete trajectories. While ALC

can deal with incomplete trajectories, it fails when trajectories

have little overlap. In contrast to SSC1 and SSC, the density

stays high, but the F-measure is not better. Also the baseline

method based on two-frame optical flow performs poorly,

especially on longer sequences. It cannot separate an object

from the background if there is no clear motion difference in

some frames or in case of articulated motion.

The presented dense segmentation inherits the temporal

consistency from the long term analysis of sparse trajectories.

A comparison to the sparse result shows that filling the

gaps between the trajectories comes with a small loss in

performance. Only with a very coarse subsampling of 16,

performance drops significantly. Dense segmentation is clearly

a harder task, as can be seen in Fig. 13. While the sparse

segmentation just omits the difficult leg area of the cat, the

dense segmentation is forced to decide for a label.

Since previous techniques have not been designed for very

long sequences, we also show results for just the first 10 frames

in Table 1. In this case, SSC1 achieves approximately the same

performance as the presented approach, while ALC and Naive

still have problems.

We also evaluated the effect of model selection. On first

glance it is surprising that the results with automatic model

selection (SSC1) are consistently better than those, where the

correct number of objects is provided (SSC). We believe,

this is due to imperfect trajectories that do not allow the

detection of all ground truth objects. If affinities propose a bad

segmentation, the constraint to yield a given number of clusters

can be counterproductive, while automatic model selection

adapts to such situations. We also ran a variant of our method

(marked with ∗), where we replaced the optimization over K
by the correct number of clusters. This number provides only
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Fig. 11. Precision-recall graph for the training set (left) and the test set (right) for the evaluation on all sequences;

see also Tab. 1. ’s’ denotes the sparse clustering result, ’d’ the dense segmentation. The number indicates the

subsampling rate of the trajectories. The proposed approach performs significantly better than previous approaches.

Embedding affinities by SSC into the presented approach improves over the traditional SSC framework. This shows

that the definition of affinities and the model selection framework both contribute to the performance.

an upper bound, since the regularization could still remove

some of the K clusters. Also this version performed worse

than the version with automatic model selection.

The density of trajectories has a similar effect on model

selection as the regularization parameter ν: sparser trajectories

lead to fewer clusters. This is because smaller object parts

are no longer covered by sufficiently many trajectories to

support a separate cluster. This reduces the over-segmentation

of articulated objects like the bear in Fig. 12. On the other

hand, smaller objects will be missed, if trajectories are too

sparse. We found that decreasing the subsampling from 4 to

2 does not help capturing smaller objects anymore. A deeper

analysis indicates that the optical flow is the limiting factor.

Since for smaller objects the region area over the contour

length gets smaller, misplaced discontinuities in the optical

flow have a strong effect and hamper motion segmentation.

Trajectory subsampling has a positive effect on the compu-

tational cost. For subsampling rates of 4, 8, and 16, the average

computation times of the clustering are 6s, 800ms, and 600ms

per frame, respectively. Computation of the forward and back-

ward flow takes on average 20s per frame on the CPU or 2s per

frame on the GPU. The dense segmentation on average adds

1s per frame on the GPU. These computation times allow the

application to large video datasets on commodity hardware.

7.5 Qualitative results

The qualitative results show that the method is applicable to

a quite general set of sequences and can deal with many

challenges. Fig. 12 highlights the possibility to deal with

articulated motion. Strong articulation usually leads to an over-

segmentation of the object, as the articulated parts are assigned

to separate clusters. This can be a desired effect. The current

parameter setting for the dense segmentation tends to smooth

out these smaller parts, but these can be modified if necessary.

A limitation of the method can be observed for feet that stay on

the ground for a long time and then get occluded before they

move. These limbs are assigned to the background because

a true long term analysis of their motion is frustrated by the

occlusion.

In contrast, partial occlusion of larger objects usually is not

a problem, as shown in Fig. 13. Although the cat is occluded

several times, the visible parts show sufficiently similar motion

to keep the whole object in the same cluster. Only at the very

end of the sequence, the overlap of trajectories is too small and

the cluster gets split temporally. Also strong occlusion due to

changing viewpoint can be handled, as shown in Fig. 14. The

viewpoint changes by almost 180 degree, i.e., hardly any part

of the horse in the first frame is still visible in the last one.

Also the background changes completely. In contrast to many

methods from literature, the proposed way to define affinities

can handle this case easily.

The long term motion analysis can also deal with objects

that are static for many frames, such as the sitting person in

Fig. 4. Although the person is perfectly static at the beginning,

it can be separated from the background by motion cues. The

motion cues from the end of the sequence are successfully

propagated to these first frames. For the method to work, it is

only necessary that the object shows a different motion in at

least one frame. We found that the method will not work,

if there is a moving camera but the object is static in all

frames. This is because at the footpoint, where the object is

standing on the ground, the optical flow of foreground and

background is identical, which leads to a leakage problem in

spectral clustering.

We have also tested our model with temporal regularity from

Section 6.2. The result videos look much better since there is
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Training set (29 sequences) Test set (30 sequences)

D P R F F ≥ 75% D P R F F ≥ 75%

all frames all frames

MoSegSparse (4) 3.71% 82.33% 64.26% 72.27% 17/65 3.95% 76.15% 61.11% 67.81% 22/69
MoSegDense (4) 100.0% 81.50% 63.23% 71.21% 16/65 100.0% 74.91% 60.14% 66.72% 20/69
MoSegSparse (8) 0.87% 85.10% 62.40% 72.0% 17/65 0.92% 79.61% 60.91% 69.02% 24/69
MoSegSparse∗ (8) 0.87% 79.02% 58.49% 67.22% 14/65 0.92% 78.54% 55.29% 64.90% 16/69
MoSegDense (8) 100.0% 84.21% 58.67% 69.16% 15/65 100.0% 78.42% 57.32% 66.23% 17/69
MoSegSparse (16) 0.20% 86.51% 59.39% 70.43% 15/65 0.22% 85.41% 58.98% 69.77% 20/69
MoSegDense (16) 100.0% 83.27% 50.56% 62.91% 8/65 100.0% 82.08% 49.78% 61.97% 9/69
ALC 0.09% 60.73% 37.24% 46.18% 0/65 0.09% 50.83% 37.62% 43.24% 0/69
SSC1 0.17% 81.11% 36.17% 50.03% 7/65 0.17% 81.62% 42.80% 56.16% 11/69
SSC 0.17% 65.12% 32.29% 43.17% 5/65 0.17% 63.98% 34.61% 44.92% 3/69
Naive 100.0% 44.29% 51.54% 47.64% 2/65 100.0% 40.77% 45.35% 42.94% 1/69

first 10 frames first 10 frames

MoSegSparse (8) 0.95% 92.77% 65.44% 76.75% 16/53 0.97% 87.44% 60.77% 71.71% 19/55
MoSegDense (8) 100.0% 92.97% 63.18% 75.24% 13/53 100.0% 87.41% 58.73% 70.26% 14/55
ALC 0.12% 54.31% 54.80% 54.56% 8/53 0.12% 53.11% 56.40% 54.70% 5/55
SSC1 0.89% 91.16% 63.34% 74.75% 14/53 0.88% 91.67% 50.57% 65.18% 10/55
SSC 0.89% 67.62% 73.04% 70.22% 13/53 0.88% 61.64% 60.63% 61.13% 11/55
Naive 100.0% 72.63% 51.63% 60.36% 2/53 100.0% 57.96% 53.41% 55.60% 2/55

TABLE 1

Results on training (left block) and test set (right block). Acronyms are D: average region density, P: average

precision, R: average recall, F: F-measure and F ≥ 75%: extracted objects. Numbers are given for the sparse

clustering and the dense segmentation with trajectory sampling rate given in parentheses. Details for ALC, SSC1,

SSC and Naive are discussed in the text.

Fig. 12. Example of an articulated object from the benchmark dataset video shot bear02 with 458 frames and 24

annotated images. Top row: Dense segmentation obtained with the variational model from the point trajectories in

the bottom row overlayed with the input images (precision: 98.1%, recall: 74.7%, F-measure: 84.8%). Bottom row:
Clustered point trajectories (precision: 98.9%, recall: 78.4%, F-measure: 87.5%). Clearly, articulated motion leads to an

over-segmentation of the object, yet the clusters could also indicate reasonable object parts.

no more flickering of labels, but there is not a significant effect

on the quantitative numbers.

8 SUMMARY

We have presented an approach for motion segmentation

that exploits long term motion cues. Motion information is

aggregated over the whole shot to assign labels also to objects

that are static in a large part of the sequence. Occlusion

and disocclusion is naturally handled by this approach, which

allows to gather information about an object from multiple

viewpoints. In contrast to video segmentation methods based

on region tracking, we rely on point trajectories computed via

optical flow. Focusing on areas in the image, where optical

flow estimation works best, this makes tracking more reliable.

A dense segmentation is obtained by a variational approach

that fills the gaps between trajectories based on color. This

strategy puts valuable long term motion information first

and relies on color only in those areas, where motion is

difficult to estimate. We provide a benchmark dataset for the

general motion segmentation task with a variety of objects and

resolutions. Results on the dataset look very promising and

consistently outperform results with previous state-of-the-art

methods. This is although only pairwise affinities have been

considered, which restricts the motion model to be locally

translational. In [47] the affinities have been extended to deal

with higher-order motion models. This further improves results

at the price of higher computational costs. In a recent work,

the motion segmentation result of our method has already been
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Fig. 13. Example of a partially occluded object from the video shot cats05 with 87 frames and 6 annotated images. Top

row: Dense segmentation obtained with the variational model from the point trajectories in the bottom row overlayed

with the input images (precision: 64.0%, recall: 52.8%, F-measure: 57.8%). Bottom row: Clustered point trajectories

(precision: 65.0%, recall: 54.2%, F-measure: 59.1%). Although the trajectories on the cat are short due to occlusions,

there is enough temporal overlap to assign trajectories on the cat to the same cluster across most of the obstacles.

Fig. 14. Example of a sequence with large perspective background motion from the video shot horses01 with 500

frames and 26 annotated images. Top row: Dense segmentation obtained with the variational model from the point

trajectories in the bottom row overlayed with the input images (precision: 94.8%, recall: 93.4%, F-measure: 94.1%).

Bottom row: Clustered point trajectories (precision: 95.1%, recall: 95.3%, F-measure: 95.2%). The horse is seen

from different viewpoints and the background changes completely. Nonetheless, there are two temporally consistent

clusters, one for the horse and one for the background.

used to train object detectors from videos [51]. We hope that

our work will continue fostering research in the field of motion

segmentation.
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