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IX

SUMMARY

The multidisciplinary field of digital image processing is concerned
with the methodology and the technology of manipulating images by means
of digital computers, special purpose processors or special purpose hard-
ware. One of the possible goals of processing an iﬁage digitally is to
analyze the image contents, in order to extract information about the
phenomena which are being represented by the image. Image analysis can
thus be described as an image-to-data transformation, the output data
being, e.g., a set of measurement values, a set of labeled objects, or
even a description of the imaged phenomena.

One of the crucial steps in the analysis process is the segmentation
of the image, i.e., the partitioning of the image plane into regions
which are homogeneous according to some predefined criteria. The result
of the segmentation stage is thus a map of the various regions, which is
intended to be meaningful with respect to the imaged phenomena. The mean-
ingfulness of the segmentation result can usually only be established
by the successive analysis steps, because this requires a much higher

level of abstraction.



In this thesis we discuss the segmentation of images which are severe-
ly contaminated by noise. We restrict ourself to two-dimensional mono-
chrome still images containing distinct object regions. Although the
segmentation methods discussed here are applicable to a much wider class
of images, the latter restriction indicates that our segmentation prob-
lem can be described as the problem of delineating the object regions
in very noisy images. The simple traditional segmentation methods show
a rather poor performance in the presence of noise, mainly because the
noise destroys the coherence of the image structures of interest. Ob-
viously, the influence of the noise can be decreased, at least to a cer-
tain extent, by applying specific pre- or post-processing techniques. In
the present study, we focus on attempts to improve the performance of
the segmentation stageitself. Obviously, the methods discussed here can
still be combined with pre- or post-processing techniques to improve the
performance even further.

Because the noise destroys the coherence of the image structures, the
segmentation decisions cannot be made on a pixel-by-pixel basis; the spa-
tial context has to be taken into account. An attractive way to accomplish
this is by means of sequential methods. Because sequential region-orien-
ted methods tend to show a rather poor geometric accuracy of the result-
ing object region boundaries, we focus on sequential edge-oriented ap-
proaches. In particular, we discuss a dynamic programming optimal bound-
ary detector algorithm, which facilitates the incorporation of a priori
knowledge. In addition, we consider continuous relaxation labeling pro-
cedures, which are parallel though iterative procedures which also ex-
ploit the spatial context and allow the incorporation of generic a prio-
ri knowledge.

Chapter 1 Qf the thesis contains a concise introduction into the
field of digital image segmentation. Some general notions and concepts
are discussed and a short methodological review of segmentation tech-
niques>is given

In Chapter 2, we proceed with an introductory treatise of image mod-
eling. Replacement models are described and some discretization issues

are discussed. We then establish our preference for defining an edge as
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a concatenation of edge pixels above the alternative of a concatenation
of the pixel boundaries between neighboring pixels of adjacent regions.
The estimation theoretic approach to object region delineation is dis-

cussed on the basis of some important contributions from the literature.

Chapter 3 is devoted to the dynamic programming approach to object
region boundary detection. After discussing some results from the open
literature, we discuss our restricted-search algorithm. In this method,
the image data within a region-of-interest are geometrically transformed
into a rectangular matrix. Next, a corresponding matrix of cost-coeffi-
cients is computed. Dynamic programming is used to search for the opti-
mal path through this matrix. The resulting path is then transformed back
to the image domain, thus constituting the object region boundary. This
method is described and analyzed in great detail. Special attention is
given to the geometric transformation. We establish both a curvature con-
straint and a global constraint which a boundary is to satisfy in order
for our restricted-search method to be applicable to it.

In Chapter 4, we discuss continuous relaxation labeling procedures.
In particular, we develop a feasible implementation of a relaxation la-
beling edge detector scheme. By decomposing the computations to a large
extent into spatial convolutions and dyadic point operations, the pro-
posed method is especially suited for implementation on modern digital
image processing systems, which usually feature special purpose proces-
sors for these tasks. The initialization of the label probabilities is
discussed in detail.

In Chapter 5, both the dynamic programming method and the relaxation
labeling procedure are evaluated experimentally by measuring their per-
formances when applied to synthetic test images with various values of
the signal-to-noise ratio. The evaluation criteria include the estimated
correct and false edge pixel probabilities and Pratt's figure of merit.
It is shown that, especially at very low values of the signal-to-noise
ratio, the dynamic programming method performs much better than the tra-
ditional methods of edge detection, even when the latter are combined
with the relaxation labeling procedure.

Some possibilities for automated detection of regions of interest, as
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required by the restricted-search dynamic programming algorithm, are
discussed in Chapter 6. One of the proposals is to obtain a coarse pre-
segmentation of the image by applying a region-oriented method. Such
methods tend to correctly detect the presence of an object region but
often show a rather poor performance in terms of the geometric accuracy
of the region boundary.

Chapter 7 is devoted to two medical applications, in which the re-
stricted-search dynamic programming approach has proven to be quite suc-
cesful. The first application concerns the analysis of gated blood-pool
cardiac scintigrams, the second the analysis of coronary arteriograms.

Chapter 8 contains the conclusions and a general discussion of the

results.



1. INTRODUCTION

In a broad sense, digital image analysis deals with the extraction
of information from pictorial data by using digital techniques. One of
the crucial issues in digital image analysis is the problem of image
segmentation. The goal of image segmentation is to partition the image
domain into regions which are homogeneous according to some predefined
criteria. The segmentation result forms the basis for all subsequent
measurements, object recognition, and, eventually, image interpretation.

In this thesis we discuss the digital segmentation of images which
are severely contaminated by noise. We restrict the discussion to two-
dimensional monochrome still images containing distinct object regions
and a common background region. However, the segmentation methods to be
developed here are applicable to a much larger class of images.

In this chapter, we briefly discuss some general notions and con-
cepts. Section 1.1 contains an introductory treatment of the digital
image analysis problem. Section 1.2 focusses on the segmentation stage

and contains a short methodological review of segmentation techniques.



1.1. DIGITAL IMAGE ANALYSIS

Images are extremely important and widely used carriers of informa-
tion, not only in everyday life, but also in medicine, remote sensing
and industry, as well as in many fields of scientific research, ranging
from anthropology to zoology. In the multidisciplinary field of digital
image processing, both the methods and the means are being investigated
and developed for the processing of such images by using digital comput-
ers or special purpose hardware. The goal to be achieved by processing
an image in this way usually falls in one or more of the following cat-
egories: .

1. digital image coding for the efficient and robust transmission or
storage of images or image sequences by using data compression -or
data reduction techniques;

2. digital image restoration and enhancement to remove or reduce the
effects of distortion and noise which may corrupt the image (resto-
ration) or to amplify specific features of the image (enhancement);

3. digital image analysis to extract information from the image in the
form of a measurement, a classification, a description or even an
interpretation.

In the categories 1 and 2, the final result is again an image and the

processing can be described as an image-to-image transformation. In

category 3, the result is no longer an image, but data extracted from
the image by the analysis process, which can thus be described as an-
image-to-data transformation.

In many cases, the imaging and analysis process consists of the fol-
lowing consecutive steps:

1. image formation where the physical phenomenon of interest is trans-
formed into an image, usually by measuring the reflectance or ab-
sorption of, e.g., visible light or X-rays, or by measuring some
kind of radiation originating from the object itself;

2. image sensing by means of an appropriate sensor, like a vidicon or
CCD video camera, a y-ray scintillation camera, etc., resulting in

an electrical signal;
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3. image digitization where the image is discretized both spatially
(sampling) and in gray-value (quantization), yielding a matrix of
discrete gray-values;

4. preprocessing by applying procedures for image calibration, restora-
tion or enhancement to remove or reduce the effects of distortion
and noise;

S. segmentation where the image is partitioned into hopefully meaning-
ful regions, resulting in a region map at a symbolic level of des-
cription;

6. region measurements to assess characteristic region descriptors like
e.g., geometric propertieé, texture or integrated optical density;

7. object classification by using techniques from the fields of statis-
tical or structural pattern recognition;

8. image interpretation by analyzing the relationships between the ob-
jects in order to finally arrive at a semantic level of description
of the entire image.

This general scheme is illustrated in figure 1.1.

The block scheme given in Fig. 1.1 should be regarded as a general
model which describes the analysis process in a broad sense. In fact,
there may be rather complicated in{eractions between the various pro-
cessing steps which make the system much more complex than it appears
in Fig. 1.1. On the other hand, some of .the processing steps may be
omitted in particular cases. In an analysis system intended for digit-
al image mensuration, the processing steps 7 and 8 will obviously not
be present. In facf, processiné step 8 -is included in Fig. 1.1 for the
sake of completeness only, but really forms the object of state-of-the-
art research in many laboratories, with relatively little practical re-
sults so far. This is not surprising, because the incorporation of knowl-
edge and expert reasoning is extremely difficult, though very challeng-
-ing. Knowledge-based approaches may aléo be of use within the various
processing steps or for overall control of the system. We will not dis-
cuss these issues here. Some of our ideas concerning these possibili-
ties can be found in Gerbrands et al. (1987) and Backer and Gerbrands

(1988). A general introduction to the field of image analysis can be
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found in many textbooks like, e.g., Duda and Hart (1973), Rosenfeld
and Kak (1982), Pratt (1978), Gonzalez and Wintz (1977), Castleman
(1979) and Niblack (1986).

1.2. DIGITAL IMAGE SEGMENTATION

As mentioned above, the goal of digital image segmentation is to
partition the image plane into regions which are homogeneous according
to some predefined criteria. The result of the segmentation stage is
thus a map of the detected regions, which is hopefully meaningful with
respect to the imaged objects. The term 'hopefully' is used here to
stress the fact that the meaningfulness of the segmentation result can
only be established by the later stages of the analysis process. This
section contains a short tutorial review of the various approaches to
digital image segmentation.

If for didactic purposes only, let us mentally model our two-dimen-
sional monochrome still image as a gray-value landscape, where the gray-
value of each picture element or pixel is represented by the altitude
at the corresponding position in the landscape.

Consider an image containing some bright object regions in a dark
background region. The dark parts in the image are represented by the
valleys and low-lands in the landscape, the bright parts by mountain
peaks and plateaus. If the difference between the gray-values of the
object and background regions is sufficiently large in comparison with
the inevitably present noise, then we can easily segment this image by
applying a decision threshold to the gray-values: pixels with a below-

threshold gray-value are assigned a labelAA indicating their member-

Ol
ship of the background class, and pixels with an above-threshold gray-

value are given the label A indicating that they belong to the object

region. The thresholding pricedure is followed by a connectivity anal-
ysis of the pixels with label Al in order to identify the respective
conglomerates. This process is called component labeling. Each conglom-
erate or component constitutes an object region in the segmentation
mask. Many methods have been proposed for the automatic selection of a

good segmentation threshold for a given image. The extension to multi-



ple decision threshold and to local or adaptive thresholds is relative-
ly straightforward.

The dual approach of edge detection is based on the observation that
there exists necessarily a transition region of intermediate gray-val-
ues between an object region and the surrounding background, i.e., a
slope in the landscape. These slopes can be detected by computing some
numerical approximation of the gradient vector. In the continuous case,
the gradient of a two-dimensional function is a vector containing the
partial derivatives of the function. In digital image processing, it is
common practice to approximate a partial derivative opérator by a dis-
crete difference operator. As an example, the horizontal and vertical
Sobel operators are given in Fig. 1.2. By convolving the image with
these operators, we obtain the approximations to the partial deriva-
tives. In the traditional approach of edge detection by edge enhance-

ment/thresholding, the magnitude of the discrete gradient is computed

-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 -1

Fig. 1.2. Sobel discrete difference operators

or approximated and the result is compared with a decision threshold.
If at a certain pixel the magnitude of the gradient exceeds the thresh-
old, it is assﬁmed that the pixel lies on a significant slope of the
gray-value landscapé and is conséquently detected as a so-called edge
pixel. If the image contains distinct object regions, the idea is that
the detected edge pixels will form a connected path around the gray-
value mountain. When a closed path is found, a contour filling algorithm
is applied to label the encompassed pikels as belonging to one region.
An important variation is to look for local extrema of the magnitude

of the gradient, which can be implemented by searching for zero-cross-
ings of the second derivative. 'A drawback of gradient-based methods

is that fhey tend to increase the effects of the noise, which is inevi-

tably present in real-world imagery. This issue will be discussed in



some more detail in Chapter 2. . -

Gray-value thresholding methods as deséribed above attempt to detect
the regions explicitly, and the boundaries result implicitly. These are
region-oriented methods. In the dual approach of edge detection, the
boundaries between adjacent regions are detected explicitly, and the
regions themselves result implicitly. This is usually called the edge
or boundary approach. In both approaches discussed so far, the decisions
are independently made on a pixel by pixel basis. Such methods are
called parallel methods, because all decisions can, in principle, be
taken simultaneously if the computing facilities allow that. As a re-
sult of these independent decisions, the performance of both methods
is rather poor when the image is severely contaminated by noise, be-
cause the noise destroys the coherence of the structures we would like
to detect. As a result, the detected regions will be fragmented or the
detected boundaries broken. In addition, many spuricus regions or edges
will be detected.

One may attempt to solve this problem in a number of ways. The first
approach is to suppress the noise by using preprocessing techniques.
This can be achieved to a limited extent only, and when the image is
very noisy it will be almost impossible to suppress the noise sufficient-
ly without unacceptably affecting the image contents itself. The second
approach, possibly applied in combination with the first, is to segment
the image and attempt to improve the segmentation result by applying
post-processing techniques. Such algorithms perform logical operations
on the assigned labels in order to remove apparent- label inconsisten-
cies. Again, this can be achieved to a liﬁited extent only. The third
approach aims at the improvement of the performance of the segmentation
stage itself, by incorporating some generic a priori knowledge about re-
gions or boundaries in the segmentation algorithm, and by exploiting at
least the local spatial context in which the decisions are to be made.
This last approach forms the main subject of the present study.

The dichotomy of region-oriented methods versus boundary-oriented
methods is not the only one possible. A second dichotomy is to distin-

guish parallel methods and sequential methods. Sequential methods of



digital image segmentation are characterized by the fact that the pro-
cessing that is performed at a point is influenced by the results from
earlier processing of other points. Combining both dichotomies we ar-
rive at sequential region-oriented methods, commonly denoted as region-
growing methods, and sequential boundary-oriented methods, generally
known as edge-tracing methods.

Returning to our example of an image containing bright object regions
and a dark background region, the following region-growing algorithm
can be envisaged. Search for the highest peak in the gray-value land-
scape and consider the patch of pixels with maximum gréy—value to be
the initial estimate of the first region. An acceptance test is then
applied to each pixel within a layer around the tentative region, and
the accepted pixels are incorporated. This process is repeated until
at a certain stage none of the candidate pixels is accepted, yielding
the final region. The same procedure is then applied to find the next
region, and so on.

It is our experience that region-growing methods tend to correctly
detect the presence of the regions, but the geometric accuracy of the
resulting region boundaries is often rather poor, especially when the
image is severely coﬁtaminated by noise. In Chapter 3 we develop a se-
quential method of boundary detection, in which all possible boundaries
within a predefined region of interest are considered and compared on
the basis of a merit function. Maximization of the merit function,
which depends on the complete boundary, results in the detection of the
optimal object region boundary. The optimization technique of dynamic
programming forms the heart of the method. Unlike in heuristic search
techniques, the merit function is not used to guide the search. In the
dynamic programming approach, all possible boundaries are evaluated im-
plicitly and the method facilitates tracing back the optimal boundary
once its end point is found. Actually, this point is called the start-
ing point in the jargon of dynamic programming.

The dynamic programming method of boundary detection shows the usual
advantages of sequential segmentation methods. A priori knowledge is

incorporated in terms of the predefined region of interest and in the



choice of the merit function. The context is taken into account by eval-
uating the merit function along the entire boundary. The actual calcu-
lations are simple and straightforward. The method also shows the usual
disadvantages of a somewhat complicated computer program and an inher-
ent search-order dependency. However, it is felt that these are only
minor drawbacks.

The parallel segmentation methods of gray-value or gradient-magnitu-
de thresholding can also be extended in order to facilitate the utili-
zation of generic a priori knowledge and local spatial context by com-
bining them with a method called relaxation labeling. Relaxation label-
ing itself is also a parallel method, but consists of a number of iter-
ations. Essentially, the decisions on the basis of the gray-value or
the gradient-magnitude are postponed until sufficient supporting evi-
dence is gathered from an iteratively extended neighborhood. In other
words, this particular method of decision making in context inherently
warrants a consistent segmentation labeling. In Chapter 4, we discuss
this approach in detail and we develop a feasible implementation of
a relaxation scheme for edge detection.

In Chapter 5 the methods of relaxation labeling and dynamic program-
ming will be evaluated quantitatively by using synthetic test images
with various amounts of noise. The dynamic programming method maintains
a good performance, even for very low values of the signal-to-noise
ratio. This is partly caused by the fact that the boundary search is re-
stricted to a predefined region of interest. It is often possible to
detect such regions of interest automatically by applying a separate
algorithm to obtain a coarse presegmentation of the image. In Chapter
6 we discuss this aspect in more detail. The dynamic programming method
of boundary detection which is described, analyzed and evaluated in
this study is actually used in various applications. Some examples from
the field of quantitative analysis of medical images are discussed in

Chapter 7.
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2. ITMAGE MODELING

The purpose ofbthis chapter is to discuss various aspects of image
modeling in the context of digital image segmentation. The term 'model-
ling' is used here in rather a loose sense. Following Rosenfeld and Davis
(1979), it is meant to imply the explicit formulation of the assumptions
an image is to satisfy in order for a particular segmentation technique .
to be applicable to it. Usually, one distinguishes statistical models
and spatial models. Statistical models describe the pixel population in
an image or region in terms of first-order and, frequently,-higher or-
der statistics of the gray-values of the pixels. Some examples from this
class of models are the gray-value distribution, the gray-value cooccur-
rence distribution of pairs of pixels, ranaom fieid models, etcetera.
The so-called spatial models describe an image in te;ms of regions and
region properties. This type of models may include descriptions of how
the image is composed of regions, statistics of regionpositions, orien-
tations, sizes and shapes as well as models for region boundary curva-
ture, etcetera. Some of the spatial models facilitate the introduction
and exploitationvof a priori knowledge from the specific application do-
main. The terms 'statistical' and 'spatial' models are someWhat mislea-

ding. Statistical models may very well consider spatial relationships
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between pixels and spatial models may give statistical descriptions of
region distributions or specific region properties. We prefer to use the
terms 'gray-value model' and 'structural model' instead.

Given a structural model of an image, it still remains to choose gray-
value models for the pixels in the regions. From this combination, it is
often possible to derive a gray-value model for the image as a whole,
but the reverse is usually not true. As discussed in Chapter 1, the pro-
blem to be addressed in this thesis is the segmentation of noisy two-
dimensional monochrone images, containing distinct regions. In many ap-
plications, the regions will represent distinct objects or object parts
in the original scene, which has led to the common practice in the field
of digital image processing of using the terms 'region' and 'object'
almost interchangeably. It should be noted that the term 'region' may be
applied at both the signal level and the symbolic level, while the term
'object' certainly introduces semantic aspects. The purpose of the seg-
mentation stage in an image analysis scheme is the accurate delineation
of the region boundaries, which should correspond with the boundaries of

the imaged objects.

2.1. REPLACEMENT MODELS

In the continuous case, a monochrome image can be described as a real
valued function f(x,y) of two independent real-valued variables x and y
defined on the image domain D, i.e., (xX,y) € D. The function value
f(x,y) is usually referred to as the gray-value of the image at position
(x,y). An image containing two distinct regions, say an object region
and a background region, can be described at the symbolic level by in-

troducing a two-valued replacement function r(x,y),
r(x,y) € {0,1}, V(x,y) €D, (2.1)

where r(x,y) takes the value 1 if (x,y) belongs to the object region
and value 0 elsewhere. Now let fo(x,y) and fl(x,y) denote the back-
ground image function and the object image function, respectively,
where both functions are defined on the full domain D. The image con-

taining two distinct regions can then be modeled as
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f(x,y) = (1-r(x,y)) fo(x,y> + r(x,y) fl(x,y). (2.2)

The replacement function r(x,y) constitutes a structural model of the
image. Once it is known, it completely describes all geometric proper-
ties of the object region. Basically, the segmentation problem is the
problem of recovering the replacement function r(x,y), given a discre-
tized noisy version of the cobservable image f(x,vy).

The binary replacement function r(x,y) defined in (2.1) corresponds
with a partition of the image domain D into two disjoint subsets: a sub-
set DO containing all positions (x,y) that belong to the background re-
gion and a subset D1 containing the points of the object region. In the
binary case, as described a.o. by Nahi and Jahanshahai (1977), the re-
placement function coincides with the characteristic function of the ob-
ject region subset Dl:

r(x,y) € {0,1}  ¥(x,y) €D (2.3a)

r(x,y) = 1 iff (x,y) €D (2.3b)

1’
where 'iff' stands for 'if and only if'.

Pursuing this approach, an image containing K distinct regions can be

modeled by introducing K two-valued functions pk(x,y),

P (x,y) € {0,1}, v(x,y) € D, k=0,1,...,K-1 (2.4a)

pk(x,y) =1 iff (x,y) € Dy (2.4b)
where the subsets Dk’ k=0,1,...,K-1, constitute a partition of the image
domain into K disjoint subsets, i.e.,

Dk cD (2.5a)

U Dk =D (2.5b)

k

Dk n Dk = ¢ if k1 # k2 (2.5¢)
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An image containing K distinct regions can then be modeled as

flx,y) = 2 o (x,y) £ (X,¥), (2.6)

where each function fk(x,y), with (x,y) € D, denotes the gray-value func-
tion of region k, k=0,...,K-1.

From a slightly different point of view, an image containing K dié-
‘tinct regions can be modeled by introducing a single K-valued function

p(x,y), i.e.,

p(x,y) € {O{...,K-l}, V(x,y) €D . (2.7a)

p(x,y) = k iff (x,y) €D, (2.7b)-
with the subsets Dk as defined above in (2.5). Now the image moael be-
comes

f(x,y) = i MAX{0,1 - [k-p(x,¥) [} . £, (x,y). (2.8)

Both image models (2.6) and (2.8) are replécement models. The charac-
teristic function approach of (2.6) could be generalized to continuous-
valued membership functions in the sense of fuzzy set theory. The multi-
valued function approach of (2.8), on the other hand, facilitates, e.g.,
the use of Markov random field models. In the sequel, we will restrict
the discussion to a binary-valued replacement function quite frequently,
in which case the characteristic function approach and the multi-valued
function approach both yield the model of (2.2). Note that this does not
necessarily imply a limitation to the single object case. So far, no con-
nectivity constraints were introduced with respect to the subsets Dk' An
image containing K identically distributed object regions may still be
modeled by means of (2.1) and (2.2). Furthermore, note that a binary-
valued replacement function does not necessarily imply a restriction to
binary-valued images at the signal level. The nature of the image as a
2-D signal depends on the grayvalue functions fk(x,y) as well as on the
replacement function. Frequently, the grayvalue functions are modeled as

sample functions of stochastically independent two-dimensional random
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processes. In addition, the replacement function is sometimes modeled
as a sample of a random process, in which case it is assumed that the
underlying processes of p(x,y) and fk(x,y),;k=0,...,K-1, are stochasti-
cally independent. However, in a goal—qg;entgd approach it may be more
appropriate to adopt a detefministic mo@ei?fdé:tﬁe replacement function

or for some of its properties.

2.2. DISCRETIZATION ISSUES

As stated in the previoué section,ethéfsegﬁentation problem may be
formulated as the problem of recovering. the réplacement function from a
discretized version of the observable image f(x,y). In general, image
discretization involves aspects.of image sensing, spatial sampling and
amplitude quantization. ééme of ité effects will Be éiscussed here in
quite a qualitative way.

.Let us model the continuous-space continuous-amplitude image f(x,y).
in terms of a discrete-valued replacement function p(x,y) fo; all
(x,¥Y) €D in combination with K different constant-valued iﬁagelfunc—
tions fk(x,y). This model implies the presence of discontinuities at
the region boundaries. Obviously, the assumed presence of ideal step
edges requires infinite bandwidth of the 2-D signal f(x,y) and is thus
a mathematical abstraction. Leaving aside this observation, the model
may still be acceptable in ﬁhe'continuous case. Howéver, if the continu-
ous image is discretized, the well—known'sampling theorem definitely
requires a bandwidth limitation in order to prevent aliasing. If we mo-
del the required anti-aliasing filter as an ideal low-pass filter, and
if we sample the resulting signal at the minimum rate required by the
sampling theorem, then the discrete image shows transition regions.at
the object boundaries with a width at least equal to the sampling
distance. The following analysis may -support this statement.

Consider a continuous image f(x,y) containing one vertical ideal
step edge‘at y’= yolbetwgen'two constanﬁ-vaiued regions. The image i;
filtered with an ideal low-pasg anti-aliasing filter. The filﬁgred im-
age is then sampled by aeansuof alsquare gfid of Dirac pulses.;This mo-
del is illustrated in Fig. 2.1. We will first restrict the anal&sis to

the 1-D case.
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Fig. 2.1. Sampling grid on continuous image.

In the 1-D case, the continuous signal can be modeled as an ideal

step function,

£(y) = uly - yg), (2.9)
where
u(y) = 0 for y £ 0
=1 for y > 0. (2.10)

This signal is filtered with an ideal low-pass filter with cut-off fre-
quency - The output signal corresponds with the unit step response of

the filter:

N |

s(y) = 5 + 7 Sifu_(v-v )}, : (2.11)

where the function Si is defined as

2 sin b
si(a) = | =~ db. (2.12)
0
The unit step response is sketched in Fig. 2.2. We now define the width
T of the transition region around the true edge position Y, as the
ratio between the step size and the maximum value of the derivative of

the unit step response, i.e.,
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TE e = — (2.13)

Fig. 2.2. Unit step response of ideal lowpass filter.

Sampling the bandlimited signal s(y) at the minimum rate required by the
sampling theorem yields a sample distance which also equals n/mc. The
sample positions are indicated in Fig. 2.3. for the special case where
there is a sample located exactly at Y=Y i.e., at the original step
edge position.

Obviously, the transition region [yo - %, Y + %] contains exactly one
sample point, independent of the relative shift between the sampling
grid and the continuous signal. In the 2-D case, one should consider
both arbitrary shifts and arbitrary rotations between the 2-D sampling
grid of Dirac pulses and the continuous image function. Without loss of
generality, we will restrict the discussion to rotations between

- % and + % with respect to the y-axis. Simple geometric analysis shows
that the number of sample points in the transition region, counted

along a row of the image, is now either one or two, depending on the ro-
tation, the translation and the considered row.

So far, we only discussed the sampling process in terms of mathemati-
cal Dirac pulses, and neglected the effects of the physical sensing pro-
cess. The actual measurement will consist of taking the weighted inte-
gral of the values of the continuous image within some finite neighbor-

hood of the sample position. The weighting function reflects the spatial

sensitivity characteristic of the sensor. For example, if there is a
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Fig. 2.3. Unit step response with samples at (yo +n . E—)’ n=0,+1,+2,...
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one-to-one correspondence, both in shape and in spacing, between sensor -
elements and pixels, and if the sensor elements show uniform sensitivity
and linear response, then the pixel value will be proportional to the
mean value of the signal portion which is being covered by that pixel.
Now we define the transition region in the discrete image to be the set
of pixels of which the values are affected by the presence of the transi-
tion region in the low-pass filtered continuous image. Simple geometric
analysis now reveals that the number of pixels in the discrete transi-
tion region, counted along a row, may be as large as four. This is illu-
strated in Fig. 2.4.

What we learn from this rather elementary discussion is that even if
the continuous image contains ideal step edges, the discrete image,
which results from sensing the image and sampling according to the
Shannon theorem, will contain transition regions which are quite dis-
tinct. Even in the case of a perfectly registered step edge along ei-
ther the x- or the y-axis, the discrete transition region is at least
one pixel wide. This observation is of importance in the development of
edge detection schemes, but also in the design of artificial test im-
ages in digital computers when these test images are iqtended to model
digitized real world images. The discrete transition regions will be even

more distinct in case of oversampling, i.e. sampling well above the
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Fig. 2.4. Pixels in the discrete transition region are marked with

asterisks.

Shannon rate. Oversampling is frequently used in quantitative image anal-
ysis in order to improve measurement accuracy. The spatial sampling pro-
cess introduces quantization effects in any measurement problem involv-
ing the positions of points in the 2-D plane, e.g., measurements of edge
location, edge length [Cf. L.Dorst, 1985] or geometric properties of ob-
jects [Cf. Ho, 1983].

The second part of the discretization process consists of quantizing
the gray values into a finite set of discrete values. Obviously, this
will result in quantization effects in any measurement problem involving
these gray values, e.g., measurement of gradient values, integrated op-
tical density, or texture. Unless stated otherwise, we will assume that
the quantization noise may be neglected, at least in comparison with the
other types of noise which are present.

A discrete image is then modeled as a real-valued function f(i,j) of
two independent integer-valued variables i and j, with
(i,j) € {1,...,N} x {1,...,N}, where i defines the row number and j de-
fines the column number on the square grid. Following the replacement
function approach of Section 2.1., a discrete image representing a con-
tinuous image containing identically distributed objects on a common
background canbe described at the symbolic level by introducing a terna-

ry replacement function p(i,]),

p(i,j) = {0,1,2}, (i,j3)€ {1,...,N} x {1,...N}, (2.14)
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where p(i,j) takes values of 0, 1 or 2 corresponding to the point belong-
ing to the background, to an object or to the intermediate transition
region. This leads to the following model:
2
£(i,3) =3 MAX {0,1 - [k-p(i,3)[} - £, (i,3), (2.15)
k=0

with fo(i,j) representing the background function, fl(i,j) the object
function and f2(i,j) the brightness function in the transition region.
This function is some mixture of both the background function and the ob-
ject funcfion, but the mixing parameters are not position-invariant. The
mixing parameters depend on the relative position of (i,j) with respect
to the actual edge in the continuous image, on the shape of the point-
spread function of the anti-aliasing filter and on the sampling. In a
statistical model this would lead to stationarity problems. We will re-
strict the use of the model in Eq. (2.15) to some rather simple examples.
It should be noted that the segmentation problem was formulated in
Section 2.1 as the problem of recovering the binary-valued replacement
function of the continuous image, given the discrete image. This implies
that the model given in (2.15) is only of interest at intermediate levels

of the analysis.

2.3. EDGE LOCATION

In the traditional gradient-type of edge detection techniques a pixel
(i,J) is assigned to be an edge pixel if some numerical approximation to
the magnitude of the gradient vector at (i,j) exceeds a detection thres-
hold. In this case, a concatenation of such edge éixels constitutes an
edge in the digital image. An example is given in Fig. 2.5a. Naturally,
the discrete gradient masks used in these schemes are odd-sized and cen-
tered at (i,j). Common examples are the masks of Sobel and Prewitt, as
mentioned in Chapter 1. An alternative is to use even-sized gradient
masks and to assign the pixel boundary between two pixels to be an edge
element if the magnitude of the gradient measured across this pixel
boundary exceeds the detection threshold. The edge is then defined as the

concatenation of pixel boundaries. An example is given in Fig. 2.5b.
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Fig. 2.5a. Edge pixels. Fig. 2.5b. Pixel boundary edge.

At first sight, it may appear that the pixel boundary edge gives a
more accurate estimate of the true edge location. This, however, is not
true, and results from an incorrect interpretation of the concatenated-
pixel edge of Fig. 2.5a. In the context of edge location, we should be
more careful in defining the edge in terms of a concatenation of edge
elements. In the case of odd-sized gradient masks the edge should be de-
fined as the chain of line elements which connect the central points of
successive edge pixels. An example is given in Fig. 2.6.

We will pursue our analysis with the 1-D example of Section 2.2,
considering one row of an image containing an ideal vertical step edge
which was filtered with an ideal low-pass anti-aliasing filter. In gene-
ral, there is an unknown shift between the actual edge and the sampling
grid. In the case of perfect registration, i.e., when there is a sample
point located exactly at the original edge position, we define the
shift ¢ to be zero. This situation is sketched in Fig. 2.7.

The first class of operators to be considered here contains an odd

number of elements, say [+1 O -1]. Given a specific shift between the
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Fig. 2.6. Concatenated edge elements.

s(y) f

2.7. Sampled brightness function across the edge.
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continuous brightness profile and the sampling grid, the sampled bright-
ness function is convolved with this operétor. The edge is detected at
the point of maximum response of the discrete difference operator, and
the position of the detected edge is defined as the central point of the
central element. It is easy to verify that we can restrict the analysis
to shifts between the continuous function and the sampling grid in the
interval [-h/2,+h/2], where h = ﬂ/wc is the sampling distance or grid
constant. We assume the shift ¢ to be a random variable which is uniform-
ly distributed between -h/2 and +h/2. The difference € between the actu-
al edge position Y, and the detected position jo varies linearly with o,
and is thus alsouniformly distributed. It is easy to see that e is also

limited to the interval [-h/2,h/2], -which leads us to

E(e) = 0 (2.16)

var(e) = h® / 12. (2.17)

Now we turn to even-sized operators, say [+1 -1], and select as the
detected edge position the central pixel boundary at maximum response.
Simple analysis reveals that the position error is again uniformly dis-
tributed between -h/2 and +h/2, so the expected error and the variance
of the error are the same as for the odd-sized operator. The analysis
given here is similar to the one given by Ho (1983) for the case of seg-
mentation by gray-value thresholding at the 50% level of the step size
of the ideal edge, and the results are identical. The resulting position
error variance is also equal to the variance of the-quantization error
which results when a 1-D signal with a uniformly distributed amplitude
is quantized with a uniform quantizer, which emphasizes the fact that
the spatial sampling process introduces quantization effects in any mea-
surement problem involving the positions of points in the 2-D plane.
This is also discussed in a somewhat different context in Van Otterloo
and Gerbrands (1978).

From the above analysis we conclude that there is no difference in
the edge location accuracy between an even gradient operator and its odd

counterpart which contains an additional zero-valued central coefficient.



24

There is, however, a difference with respect to high-frequency noise
sensitivity.
Let us first consider the frequency behavior of the discrete differ-

ence operator (1 -1]. Its impulse response is
h(j) = &(3) - §(j-1). (2.18)

By using the z-transform in negative powers of z we arrive at the fol-

lowing transfer function:
-1
Hl(z) =1-2z . (2.19)

The Fourier modulation transfer function (MTF) is obtained by substitu-

ting z = e?V and computing the magnitude:

[H () = [2 sin 3. (2.20)

This function is sketched for 0 £ v £ 7 in Fig. 2.8.
Now we turn to the operator [1 0 -1]. This odd operator can be decom-
posed into the concatenation of the previous discrete difference filter

(1 -1] and a low-pass filter [1 1], because

[H(v)| 4

Fig. 2.8. Modulation transfer functions of the filters [1 -1] (1),
[11] (2) and [1 0 -1] (3).
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(1 1] * [1 -1] = [1 0 -1], ‘ (2.21)

where * denotes convolution. Accordingly, the MTF [H3(v)| of the filter
[1 0 -1] can be obtained by multiplying IHl(v)I with the MTF of the fil-
ter [1 1]:

[H,(v)| = [2 cos 3], (2.22)
yielding
[B5(v)| = [4 sin 3 cos Z| = [2 sin v]. (2.23)

Both MTF's are also sketched in Fig. 2.8. From this figure, it is quite
obvious that the filter [1 0 -1] has similar differentiating behavior
for the lower frequencies as its counterpart [1 -1]. The higher frequen-
cies, where the noise usually dominates the signal, are suppressed in-
stead of amplified. Similarly, if we compare the even operator

[11-1-1] and its odd counterpart [1 1 0 -1 -1], the decompositions
[11-1-1]=7[11]*([10 -1] (2.24a)
and
[110-1-1]1=1[111]* ({10 -1] (2.24b)

show the presence of additional low-pass filters [1 1] and {1 1 1] with
MTF's
y .
(H4(v)| = |H2(v)| = |2 cos > : (2.25a)

and

[Hs(v)f {1+ 2 cos v, (2.25b)

respectively. Again, this supports the observation of improved noise
suppression of the odd operator in comparison with its even counter-
part. Note that the extra zero-element can be introduced at no addi-
tional computational cost.

The above 1-D analysis directly translates to the 2-D case as the
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common 2-D discrete difference operators can be decomposed into 1-D oper-

ators. For example, the horizontal Prewitt operator can be decomposed as

follows:
10 -1 1
10-1] = 1] @ [10 -1] (2.26)
10 -1 1 -

where 8 denotes the Kronecker product of matrices. We recognize a low-
pass smoothing filter along the columns in combination with a discrete
difference operator as discussed above.

On the basis of this filter analysis approach we express a preference
for odd-sized discrete difference operators, which naturally leads to a
preference for pixel edges over pixel boundary edges. In addition, the
use of pixel edges simplifies practical implementation as it prevents us
from being forced to use both the original sampling grid and the pixel

boundary grid.in one image processing system.

2.4. PERTINENT LITERATURE

In this section we will briefly describe some of the replacement mo-
dels from the pertinent literature. These models are presented here mere-
ly as examples; the treatise is certainly not claimed to be exhaustive.

Nahi and Jahanshahi (1977) discuss the boundary estimation problem
for images containing a single object region within the background
region. The digital image f(i,j), with (i,j) € {1,...,N} x {1,...,N},

is modeled by means of a binary-valued replacement function r(i,j):

£(i,3) = (1-r(i,3)) £,(1,3) + r(i,3) £,(i,3). (2.27)

Here, fo(i,j) and fl(i,j) denote the background image function and the
object image function, respectively. The replacement function is heavi-
ly constrained. First of all, the object region is assumed to be 'hori-
zontically convex'. This means that if pixels (il,jl)Aand (i2,j2) are
both elements of the object region subset Dl’ and il=iz, then any pixel
(i,3) with j=Yj1+(1-Y)j2, 0 <y <1, is element of Dl' In other words, -

if two pixels on a row of the image bélong to the object region, then
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every pixel between them belongs to the object region. Now let m and m,
denote the first and the last rows of the image containing any object
region pixels, if we scan the image row by row from top to bottom. The
constraint of horizontal convexity implies that on each row %,

my £ g s m,,
object point (1,52), with B2 éag, can be defined as

a unique first object point (Q,aﬁ) and a unique last

a,: (L,a,) €D, A (L,a,-1) € Dy (2.28a)

Byt (L.By) €D, A (2,8,+1) € D. (2.28b)

'R 1

This model is illustrated in Fig. 2.9.

Fig. 2.9. The model of Nahi and Jahansahai

The statistics of the replacement functionAare then formulated in terms

of the statistics of m,, m, and the sequence {w_ ,...,w 1}, where
1 2 ml m2
= (d £ 05 m.. 2.29
w, = (dg,By) m 82 =m, ( )
This sequence is modeled as a first-order Markov sequence, 1i.e.,
p(“z‘wz—l'wzfz"j"mml'“ﬁ.'m2> -
(2.30) °

plug|wg_q.mymy),
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in order to express the dependency of the object boundary points on con-

secutive rows. It is assumed that
P(wyfa,_;.m,m,)) = plwyfw, _,,m) (2.31)
which can be developed a little further into

plwglog ymy) =p@g Bolag 1.8y yomy)

=p(a,|a, 1,8, ;.m).P(Bylag a_1,B, ;/m).  (2.32)

The density functions p(ml), p(mz/ml), p(a2|ag and

1Bgoqemy)
P(Bllaz’ak—l’ﬁﬁ—l’ml) are supposed to be given. Nahi and Jahanshahi then
develop an estimation procedure to obtain a set of maximum a posteriori

estimates for the unknowns ml, m2

noisy observed image g(i,j):

fay and Bg (m1 A m2), given a

g(i,3) = £(i,3) + n(i,3). ' (2.33)

Here, f(i,j) is the noise-free image defined in Eq. (2.27), and n(i,])
is an independent zero-mean Gaussian white noise field.

It is of crucial importance to note that the estimation procedure re-
quires the background image function fo(i,j) and the object image func-
tion fl(i,j) in the replacement model to be known a priori. This severe
restriction diminishes the applicability of the Nahi-Jahanshahi estima-
tion procedure to the more general image segmentation problem. Sur-
prisingly, it is suggested in the original paper that some other image
segmentation procedure wouldbe required to obtain estimates of the image
functions fo(i,j) and fl(i,j) in the replacement model. It is interest-
ing to dwell a little more upon some additional assumptions. First, it

is assumed that the maximum width of the object is known:

L =max (B, - a,). (2.34)
N ) )

Second, in the numerical derivation of the estimates, the conditional

densities of Eq. (2.32) are replaced by p(allal-l’BZ—l'ml) and

p(82|a1,a2_1,32_1,m1),respectively, where g, al—l and B, , are esti-
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mates of ¢ ,B2 and B These conditional density functions are then
chosen to be Gau351an den31ty functions with mean values al 1 and BQ 1
and with both variances equal to [L —L[ , where LQ 1= Bl—l' This

means that the model simplifies to simple probabilistic expectation
windows centered on the estimated boundary points on the previous row of
the image.

The apparent theoretical elegance of the model is somewhat affected
by these simplifying assumptions. This applies to the model used by Nahi
and Lépez-Mora (1978) as well. Their model is very similar, as both the
object region width and the geometrical center position are assumed to
satisfy first-order Markov-processes with respect to consecutive lines
through the 'horizontally convex' object region. Main points of criti-
cism towards both models are the constraint of 'horizontal convexity'
and the lack of connectivity in a two-dimensional sense along the bound-
ary. By searching for the first and last pixel of the object region on
each row, the edge definition used here implicitly is the pixel bound-
ary edge discussed in Section 2.3. The successive vertical edge elements
are modeled explicitly, but the necessary horizontal connections result
implicitly, as illustrated in Fig. 2.10.

" A similar approach is used by Cooper et al. (1980) and Cooper and
Sung (1983). Again, the image is described by a binary replacement mo-
del. The contour of the simply connected object region is modeled as the
concatenation of pixel boundary edge elements. Instead of considering a
model for the complete contour, the concept of local windows is intro-
duced. Each window contains a part of the object region boundary, such
that the boundary enters the window on one side, passes through the win-
dow as a simple connected edge and leaves the window through the oppo-
site side. An example is given in Fig. 2.11.

Four cases may be distinguished, with the edge running from the left-
hand side to the right-hand side, or vice versa, and with the edge pas-
sing from the top to the bottom, or conversely. The models for all
cases are analogous. If the edge runs from the top to the bottom through
the window, the boundary process is treated as a sequence of vertical

edge elements, Yo 2=1,...,M, where M is the number of rows. Each row %
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Fig. 2.10 Pixel boundary contour of object region based on Markov-model

of vertical edge-elements.

contains exactly one edge element, its position being denoted as Y;,
i=0,11,...,1g, where C+l is the number of columﬁs. An example is given in
Fig. 2.12 for M=7 and C=11. Cooper c.s. discuss one particular model in
detail, where the sequence {Yg} is modeled as a first-order Markov se-
quence with quantized Gaussian transition probabilities. Notice the sim-
ilarity with the models of Nahi discussed above. Cooper c.s. develop a
maximum likelihood boundary es;imation procedure which is ba;ed on dy-
namic programming. This approaéh will be discussed in detail in the
next chapter.-Finally, the detected boundary segments from consecutive
windows are seamed together to obtain a global boundary for the object
region.

An alternative way of looking at the above model is to let the
states of a Markov chain {XZ} represent the geometric end'points of the

edge elements Yoo The transition from a particular state x; to a state
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Fig. 2.11. The concept of local windows: exémples of a vertical window(1)

and a horizontal window (2).
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Fig. 2.12. Boundary in window, M=7, C=11.

3
¥+l
ments, followed by one vertical element. Elliott and Srinivasan (1981)

corresponds with a unique sequence of |i-j| horizontal edge ele-

and Scharf and Elliott (1981) use a different geometric interpretation
of the states of the Markov chain. There, the states correspond with the
end points of edge segments terminating at the boundaries of successive=

ly larger rectangular blocks of pixels R 'Qzl""’iﬁax' Each rectangle is

2
of size & x (2%-2) as denoted in Fig. 2.13.'Not all boundary segments are



32

allowed. The key constraints are that edge segments departing one rectan-
gle are not allowed to reenter it and that the edge segment between any

two states x; and xi+1 does not pass through another state located on the

boundary of R The possible state locations are depicted in Fig. 2.13

L+1°
for 2=1,2,3,4. The number of possible state locations is 1 when %=1, 3
when 2=2, and 4%-3 when 2 2 3. This means that the matrix PQ o+1 of state
transition probabilities is of size (48+1)x(4%-3), when % 2 3. For exam-

ple, P6,7 is of size 25 x 21. To estimate these probabilities from a
given class of images is quite impossible. Instead, Elliott c.s. choose
the matrices of transition probabilities a priori. The choices are based
on some heuristics related to the shapes of the corresponding boundary
segments, i.e., the expressed preference for locally smooth and low cur-
vature boundaries leads to relatively high values of the belonging tran-
sition probabilities.

It is interesting to note that the authors finally select transition

matrices which effectively limit a boundary sequence from moving more

than a distance of one pixel between consecutive states while equally fa-
2
2’
1 3 7 10 1.1 3 4 i

. i
{Xl’XZ’XB'X4 } and {xl,xz,x3,x4}, with the states Xy

voring the straight path {xi,x xg,xZ} and both diagonal paths
as depicted in Fig.

2.13. In a sense this implies that a relatively complex Markov model is

13 S 1 1
3 3 3%y
r-~-@---@-—-7---0-—-0---1
] 1 [} ] [ '
| \ i ] | | 5 3 5
12| 8| ) i 1 ]
%, 0 %38 x ¢ 0x & 0y
| | X7 ! ! [
119 .7a .- 3 @3
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X, @ “---g L i ox
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B - R M S
9
¥ *a *qa g 04
Fig. 2.13. Rectangular blocks RQ (dotted) and possible state locations
xi (heavy dots) for %=1,2,3,4. The drawnline corresponds with

1 .3 .6 _5
the sequence {xl,xz,x3,x4}.
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used to incorporate some very simple geometric notions. It also means
that there is no truly probabilistic mechanism; a similar result could
be obtained by using deterministic weighting functions.

A less restricted Markov model for the object region boundary is de-
scribed by Cooper and Elliott (1978) and, in extended form, by Cooper
(1979). Again, the boundary is modeled as a concatenation of directed
pixel boundary edge elements. The i-th edge element in the sequence is
.t

denoted by ti’ and g successive elements, e.g., {ti }, com-

-q’’ i-1
prise a state vector for the g-th order Markov process. An edge element

is not permitted to coincide with but be directed in the opposite direc-

tion to its immediate predecessor. Then, given {ti_q,...,ti_l}, ti can
be any of three edge elements ti, ti or ti, and there are three state
transition probabilities for the three possible states {ti_q+l,...,tz}.

In the above references, the case g=8 is discussed in detail. The state
transition probabilities are chosen to be decreasing functions of the
magnitude of the angle 92 between a vector running from the beginning
of element t. to the end of t. ,
i-7 i-4
to the end of tji. This is illustrated in Fig. 2.14.

and a vector running from the begin-

ning of element ti-3

Fig. 2.14. The arrows indicate the angles 81 associated with the three

choices for edge element ti, 3=1,2,3.
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This particular choice of the state transition probabilities origi-
nates from the fact that Cooper and Elliott explicitlyattempt to give a
maximum likelihood reformulation of the deterministic cost-function mini-
mization approach as described by Martelli (1976). There, the angle ei
is used as a measure of curvature and the cost-function comprises both
the curvature along the boundary and the magnitude of the gray-value gra-
dient accross the boundary. The deterministic cost-function minimization
approach will be discussed extensively in Chapter 3. In the next section
we will give an example of the maximum likelihood estimation of Markov-

process object region boundaries.

2.5. MAXIMUM LIKELIHOOD BOUNDARY ESTIMATION

In this section we will give an example of the use cf a Markov model
for the object region boundary in combination with a maximum likelihood
formulation of the boundary detection problem. The example given here is
due to Cooper (1979).

Consider a digital image f(i,j), with (i,j) € {1,...,N}x{1,...,N},
which is modeled by a binary-valued replacement function r(i,j) as in

Egq. (2.2.):
£(i,3) = (1-r(i,3)) £5(1,3) + r(i,3) £,(i,3). (2.35)

Both the background image function fo(i,j) and the object region image

function fl(i,j) are assumed to be constant-valued functions, f_. and fl'

0
respectively, with fl—fo > 0. The image is degraded by additive zero-

mean Gaussian noise:
g(i,j) = £(i,3) + n(i,3). (2.36)

The elementary edge elements are the pixel boundaries between adjacent
pixels as discussed in Section 2.3. Each pixel boundary in the image is
assigned a value by means of discrete difference operators. The entire
set of these values is referred to as the edge map, and one can derive
an expression for the joint likelihood of an edge map and a hypothesized
object region boundary.

Denote the value of the edge element between pixels (k,%) and (m,n)
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by e(k,2,m,n), where
e(k,2,m,n) = g(m,n) - g(k,Q) (2.37)

and--it is assumed that k=m+l and %=n (vertical neighbors) or k=m and
2=n-1 (horizontal neighbors). For convenience we subscript the edge ele-
ments in a hypothesized boundary by a single subscript, i.e., e, denotes
the value of the i-th edge element in a sequence comprising a hypothe-
sized boundary. Similarly, let s(k,%,m,n) denote the value for an edge
element in the noise free image f(i,j), and let S; denote the value of
the i-th such edge element in a hypothesized boundary. Lastly, denote
the i-th edge element in a hyéothesized boundary by ti as in the last
paragraph of Section 2.4., and we also adopt the same g-th order Markov
model for the object region boundary, with state transition probabili-
ties

PB(ti,...,ti_q+l|ti_l,...,ti_q). (2.38)

The likelihood of a particular object region boundary of length L is

P(L).P (Egreeerty) o I Plty,...t

i=qg+l

L.t ) (2.39)

B i-q+l|ti-l i-q

where P(L) is the a priori probability of having L elements in a hypoth-
esized boundary and PB(tq""tl) is the likelihood of the first g ele-
ments. The likelihood of edge element value e(k,%,m,n) is a Gaussian

distribution

2
pG(e(k,l,m,n)) = E%E; exp |- jfiké%éﬂLﬂl) (2.40)

if the edge element is not part of the boundary, and is

1
L R S S 2.41
Pgle;-s;) o/on P 2 ( )

if the edge element is part of the boundary, indeed. The joint likeli-

hood of the edge map and a hypothesized object region boundary is the



36

product of the likelihood of the boundary and the conditional likelihood
of the edge map, given the boundary. Assuming statistical independence

the log likelihood is

£E,B = ¢n P(L) + &n PB(tq""’tl) +
L
+ % P(t.,..,t. |t o,.oot )+
i=q+l B' 1 i-g+1' "i-1 i-q
L
+ -—
.Z Ln pG(ei Si) + X &n pG(e(k,E,m,n)) (2.42)
i=1 (k,2,m,n)

where the last summation is taken over the set of edge elements
(k,2,m,n) which do not belong to the boundary. In.Cooper (1979) it is
shown that (2.42) can be simplified to

L .
= + -
£E,B constant P(L) ‘_Z c(ti,...,ti_q+l)
i=g+1
L siei L si
‘3 = - (2.43)
i=1 o i=1l 2¢
where C(ti""’ti—q+l) denotes a curvature-like function of the sequence
{ti—q+1""’ti} as was discussed in the final paragraph of the previous

section. The term 'constant' contains all terms of the log likelihood
which are not influenced by the choice of the elements ti' Equation
(2.43) is maximized through appropriate choice of the variables ti’
i=g+1,...,L.

It should be noted that the assumption of statistical independence of
the edge values does not hold for edges which are related in the sense
that some common pixel value is involved in the computation of the edge
values. In particular, the edge elements of the same pixel are partially
correlated. This problem is discussed in Cooper (1979) and appears to
be non-significant.

Formally, all the picture data are involved in Eq. (2.43). However,
the only data explicitly involved in the estimation are the edge ele-~

ments along a hypothesized boundary. As a consequence of this observa-
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tion, the maximization of the log’likelihqod can be done sequentially
by using heuristic search techniques or dynamic programming. For reasons
of computational costs, this search will have to be restricted to a pre-
defined region of interest within the image.

Finally, it should be noted that the likelihood in (2.39) is correct
for a boundary of variable length L. If one is particularly interested
in simple closed object region boundaries, it appears that such global
constraints (simple curve, closed) cannot be incorporated in the model.
As pointed out by Cooper, the model may be good for describing sub-
segments, but is not quite correct for globally describing a closed

boundary.
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3. THE DYNAMIC PROGRAMMING APPROACH

This chapter deals with the detection of object region boundaries
by applying an optimization technique commonly, referred to as dynamic
programming. The assumed.or required properties of a hypothesized bound-
ary are embedded in a deterministic cost-function and the boundary de-
tection problem becomes the problem of searching for a minimum-cost so-
lution. It will be shown that such solution can be found by applying
well-known algorithms from the field of .operations research. For rea-
sons of computational complexity, it is attractive if not necessary to
restrict the search space as much as possible. In the method to be de-
veloped here, this is accomplished by restricting the search for the
object region boundary to a predefined region of interest. in the image
domain. The definition of a region of interest is application-dependent,
and examples will be discussed later. The-image data in the region of
interest are transformed into-a rectangular matrix. Next, a correspond-
ing matrix of cost-coeffcients is computed gnd dynamic programming is
used to find the optimal path through this matrix. The resulting path
is then trangfgrmed back to the original image domain, :thus constituting

the object region boundary.
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The method to be developed here draws heavily upon the early work of
Montanari (1971) and Martelli (1972, 1976), which will be outlined in
Section 3.1. The method itself will be described in Section 3.2. The
issue of resampling the image data within the arbitrarily shaped region
of interest into a rectangular matrix is the subject of Section 3.3.
The constraints will be formulated which a boundary is to satisfy in
order for our method to be applicable to it. The chapter is concluded

with an example in Section 3.4 and some final remarks in Section 3.5.

3.1. PERTINENT LITERATURE

The idea of using dynamic programming in image analysis and picto-
rial pattern recognition is usually attributed to Kovalevsky (1967),
who applied the method to the problem of separating noisy images of
lines of typewritten characters into the individual symbols. Other ap-
plications, as discussed in Kovalevsky (1980), include the recognition
of straight lines in‘ginagy images and the recognition of typewritten
and handprinted characters.

Independently, and almost simultaneously, a similar approach appeared
in the literature on information theory when Viterbi (1967) published
his algorithm for the asymptotically optimal decoding of convolutional
codes. The Viterbi algorithm has found use in many information theoretic
problems ever since, as it can be applied to any problem concerning the
maximum a posteriori probability estimation of the state sequence of
a finite-state discrete-time Markov process observed in memoryless
noise. It is curious to note that the Viterbi algorithm was only later
shown to be a shortest-route algorithm of a type long known in the
field of operations research as a variant of dynamic programming, as is
mentioned by Forney (1972, 1973) in his extensive treatment of the al-
gorithm. If one adopts a finite-state Markov model for the object re-
gion boundary, then the applicability of the Viterbi algorithm to the
boundary estimation problem is obvious from our discussion in Section
2.5.

A major contribution to the dynamic programming approach is given by

Montanari (1971), who used the technique for the optimal detection of
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low-curvature curves in noisy pictures. Consider an ideal digital image
f(i,j) , with (i,3) € {1,...,N} x {1,..:,N}. The image contains a dis-
crete curve, which consists of pixels with constant'gray—value fc(.,.),
against a uniform background of pixels with gray-value fb(.,.), with
fc > fb. The connectivity of the curve is based on the notion of ‘8-ad-
Jacency. Two pixels p = (ip,jp) and q = (iq,jq) are 8-adjacent or 8-
neighbors if the chessboard distance d8(p,q) between p and q is equal
to 1:

dg(p,q) = max{[ip-iq[,[jp—jq[} = 1. (3.1)
With this definition, any point which is not in the first or last row
or column of the image has exactly eight neighbors. An 8-connected
curve is a sequence of pixeis Pyree /P such that 1 is an 8-neighbor
of Py q- 2 £ 2 £ L. A general treatment of these concepts of digital
geometry may be found, a.o. in Rosenfeld and Kak (1982). The problem
discussed in detail by Montanari (1971) is to recover a curve of given

length L when the image f(i,Jj) is corrupted by additive noise:
g(i,3) = £(1,3) + n(1,3). (3.2)

The noise n(i,j) is assumed to be a signal-independent, zero-mean, un-
correlated and identically distributed noise field.

To recover the curve from the noisy image g(i,Jj), we have to find
the actual values of the unknown variables Pyrec-sPp- Here, assigning
a value to the variable p, means specifyipg its coordinates in the ima-
ge domain, with P, = (ig'jg) e {1,...,8} x {1,...,N} =]N2. Due to con-
straints ‘like the connectivity constraint (3.1), the set of admissable
values of the variable p, may bg consjderably smaller:

2 em? (3.3)

Po(dg,3p) €N

For example,]Ni

case]Ni contains, seven points only, with £ > 2. Montanari (1971) pro-

poses a solution to the curve detection problem which is based on the

is the 8-neighborhood of Py except Py’ in which

determination of the optimal curve with respect to a given merit func-
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tion;¢*(pl,..u,pL)g The optimization-process consists of two steps:

I. Find ﬁhevﬁaxiﬁﬁm Véiug éTugf fhe merit fuqqtion'¢;(pl,...;§#),_ '
with p, €N’ , 1 $esr; . ) (3.42)

II.-Find the sét of:valuesf{pT,...,pE} for which,the maximum'@T .
is achieved. - . . | _ . o © -(3.4b)

In éenéral,ithe optimizétioﬁ pfoblem can be solved by compléte exhaus-
tion only, and the computational burden is prohibitive. Assume that we
are searching for a curve of length L=30 ;n‘an_image of size N=64,. and
assume thaf P, and p, are predefined as pl=(32;32f and p2=(31,33). Let
the cardinality of -all subsets]Ng , 2 £ 4 ¢ L, berequal to 7 as'men- -
tioned above. In the absence of 'any.additienal constraints, the number
of possible curves would be in the order of'728~(k~4.6 b4 1023).

The optimization problem canvbe greatly simplified by a proper
choice of. the merit function ¢,. Particularly, if the merit ﬁunction is |
defined as the sum of a number -of terms, and each term depends on a
small subset of the variables {pl,...,pt}tonly; then a multistage op-
timization procedure like dynamic programming can be used (Bellman and
Dreyfus (1962)). An example of particular relevance to our discussion
is the following merit fupct%gn:

&, (pys---oPp) = 2 (PVP,) * + <I>L_l(pn_1,pL)-_ ; o "(.3'-5)

In this case, the merit function ¢, can be evaluated in-terms of accu-':

mulating merit functions wz(pi) by means of . . the following recursion:
(p.) = 0,  (3.6a)

@1 (Pgyq) = max [0 (p,) + ¢ (pg.py, )]
Pos Ny
2

SN

‘ ¥, .1 =1, Ll , v““=(3.6b)

At the final stage we obtain the maximum value QT of the merit function

¢*(P1,--fipL) by means of:.
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¢, = max wL(pL), .o (3.7)
L L
which solves part I of the optimization problem as stated in (3.4a).

At the same time, we obtain the first point of the curve:

m _ . - v : . :
pL.f‘arg max (pL(pL). , ) '§3.8)

2
po_mL

The second point to be found is Pz—l’ which is given by

Prf-lj._:. aaome [0y (pyy) * 8y (py_yop)] (3.9)
_ P s,
In this way, all points p?, 2=L-1,...,1, can be found by recursively
applyihg
pi =arg max [, (p,) + QQ(pQ,p?+l)], 2=L-1,...,1. (3.10)
p,e N, -

A simple way to achieve this goal is to store, for each value of Por1’
the value of P, for which the maximum is obtained while evaluating Eq.
(3.6b). In other words, when.recursively applying (3.6b) we do not only

store the intermediate cumulative merit values ¢&+l( but also

Pouq)e

the pointers m for which the maximum values are achieved:

g+1Pgiq)
- .m2+l(p2+l) = arg max BDQ(PQ) + 0, (Py Py )]s
pos M,

2
Vp2+1 €3N2+1’ £2=1,...,L-1. o (3.11)

Part 1T of the optimization problem, as stated in (3.4b), is then
solved by tracing through the array of pointers by means of ﬁﬁe recur-

sion:

!
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by = arg max @L(pL), (3.12a)
e]NZ
Pr= oL
m m o
Py = my,,(Py,;), 2=L-1,...,1. (3.12b)

If all sets of admissable values]Ni are of the same cardinality [I]Ni]l
the brute-force evaluation of Eq. (3.5) would require in the order of
(L-1) additions for each of the ||INi||L possible curves, and |(IN2{|L
tests to select the optimal curve. The total computational effort would
thus be in the order of L x ||IN§[|L additions and tests. The dynamic
programming approach requires in the order of L x ||]Ni[|2 additions
and tests only. We arrive at this estimate by noticing that the main
computational burden lies in the recursion (3.6), where we have to com-
pute the maximum over ||]Nz|[ possible values of p, for all ||:mi||
possible values of Py and for all L stages. The penalty for the de-
crease in the number of computations is an increase in memory require-
ments. Depending on the actual implementation, we have to store in the
order of [[]Ni[lz values of the accumulating merit functions within a
step of the recursion. In addition, we have to store an array of size
L x [|]Ni|| containing the pointers mg(p?) of Eq. (3.12). However, the
increased memory requirement is not considered to be of major importance
when modern computer facilities are applied.

An éxample discussed in detail by Montanari (1971) concerns a merit

function with the following structure:
(P rev-sPL) = &,(Py,PyiPg) * oo+ O (Pp 5P .P)-  (3.13)

The aim is to find the curve with maximum accumulative gray-value and
minimum curvature along the curve. The curvature in point P, is compu-
ted from the difference between the chain-code of the vector connecting

PQ—l and-pl and the chain-code of the vector connecting P, and Poyp-

Denoting the-gray-value of point p, = (il’j by g(pl) and the curva-

)
L
ture at P, by c (pZ—l’pQ'PQ+1)’ the following merit function is used:
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_ L-1
. 9(py) - a 222 c(Py_1/PgrPpq)s (3.14)

[{ oe B sn}

<I>*(’pl;...,pL) =
L
where q is a weighting coefficient, with constraints to assure the con-
nectivity of the curve and to limit the angle between successive chain-
code vectors to m/4 radians. This effectively reduces the cardinality
of the set]Ni+1 to three for a given pair of values for Py and Py-
One of the drawbacks of the method, as mentioned by Montanari (1971),
is the fact that it is very hard to incorporate constraints of a more
global nature into the method. Especially, if we are looking for a
curve which is both simple and closed, there will be interaction be-
tween all points of the curve and the merit function cannot be decompo-
sed like in (3.5) or (3.13). We will address this problem in Section
3.2.
... Drawing heavily upon the work of Montanari (1971), Martelli (1972)
proposes a similar approéch to the problem of detecting edges in noisy
pictures. The considered edges are the pixel boundary edges discussed
in Section 2.3, i.e., an edge is a concatenation of pixel boundaries.
These cracks between 4-adjacent pixels are the elementary edge elements.
When the edge is the boundary separating two regions which have differ:
ent constant gray-values, discrete difference operators with an even
number of elements can be used to obtain a numerical approximation to
the gray-value gradient accross the crack, as has been discussed in
Section 2.3. A good edge will be one for which the sum of these gradient
values along the edge is high. By substituting the gradient values for
the gray-values in the merit function of Montanari (1971) described
above, the application of the dynamic programming optimization proce-
dure is straightforward. However, Martelli (1972) prefers to formulate
the problem as the problem of searching for the minimum-cost path
through a weighted graph, and to use the well-known A* heuristic search
algorithm from the field of artificial intelligence (Nilsson (1971)).
The nodes .of the graph correspond with the elementary edge elements.
There exists a directed arc between two nodes if the corresponding two

edge elements can be consecutive elements of an edge in the image domain,
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i.e., they are adjacent. To each edge element a cost coefficient is as-
31gned defined by: ' -

(i 3y d) = Q- Ig(ip,jp) (i, 'q)l (3.15)

where g(.,.) is the pixel gray-value defined in (3.2), the pixels

(i p,jp) and (iq,jq)~are 4-neighbors and Q is a large positive constant,
€.g., the maximum possible value of the gradient. In the graph, these
cost cpefficients are assigned to the arcs directed to the correspond-..
ing nodes. An example of part of a gray-value image and the correspond-
ing graph is given in Fig. 3.1. If an arc is directed from node Poq

to node Py then node Py is called a successor of node Pyoy and node

Pyq is said to be a parent of node Py . L !

j_4 3+l

-~ ! P

R P N
(i-1,3) (i-1,3+1)

a : L ey

C(i,3+1) (i+1,3+1)
|

(L3) ()
' l

(i+1,3) (i+1,3+1) . b
I

Fig. 3.1.'a) éfay—vélue image. b)correspondlng welghted dlrected graph

for Q 10 (not all arcs have been drawn)
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A- sequence of 'nodes’ p1 p is calldd a path from Py to pL.lf Py is
a succeéssor of p2 1 259 ¢ L, and the sum of the cost coefficients
of the directed arcs in the path is the cost of the path The algorlthm
"A* may now ‘be used to find the ‘path w1th mlnlmal cost from a given star-
ting node s to any member of a set of goal nodes. Let F(p ) be an esti-
mate of the cost of a mlnlmal ¢ost path from s to a goal node which 1s“
constrained. to go “through pz The estlmate F(p ) can be expressed as
the sum’ of the estimate of the cost of the optlmal path from & to pZ

s

and an estimate of the cost of the minimal cost path from P, to a goal
node:" o ’ : ’ v : T o [

v

M(p,).= Y(By) *+ h(py). .= - R (3.16)

X
’ Y.

For v(p llwe tahe the cost of the lowest~cost path,from s to Py found
so far. Heurlstlcs from the problem domaln can be utlllzed to evaluate
h(p )5 The ‘node w1th the smallest value of r found so far is hypothe—
sized to be on the optlmal path. In the algorlthm A% thlS node is ex-
panded next Expandlng a node means that the functlon F is evaluated .
for all successors of the current node It is well known ‘that 1f h(pg)
1s a lower bound on the cost of the optlmal path from P, to any goal
node then algorlthm A* w1ll flnd the optlmal path between the starting
node s and a goal If we choose h(p ) =0, theﬁalgorlthm is called_the
unlform cost algorlthm. A descrlptlon of the algorithm A* may be found
in Nilsson (1971), and will be omltted here - . _

One of the arguments of Martelli (1972) to prefer the algorlthm Ax
to dynamlc programming is that ‘the tern h(pg) "in Eqg. (3 16) can be
used to 1ncorporate heuristic knowledge from the appllcatlon domaln
A second" argument is that dynamlc programmlng is & 'blind" procedure
in the sense that even in the absence of noise all possible paths ‘are
evaluated,'while a best-first expansion asrin A*lfinds theaoptimal path
almost directly. A final argument is that a proper choice of the heuris—
tic term h(pgl guarantees to find the optimal solution.

The experiments reported by Martelli (1971) concern the problem of

finding the minimal cost edge through a noisy image, where the edge is
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known to start in the first row and to end in the last row. Apparently,
the term ﬁ(pz) is set identical to O,vso no heuristic information is
used. To speed up computation time, a 'pruning' mechanism is introduced.
Suppose that the currently active node correspondé with an edge element
on row k in the image, then all nodes corresponding with edge elements
on row k' with k' £ k-3 will be deleted from the search, i.e., they
will never be expanded. This pruning mechanism invalidates any claim

of optimality. In addition, Martelli (1972) observes that for low va-
lues of the signal-to-noise ratio, the computation time becomes inde-
pendent of the signal-to-noise ratio. In other words, the algorithm
becomes 'blind',Alike the dynamic programming procedure.

In Martelli (1976) the method is extended to the problem of finding--
the closed boundary of an object region. Based on a priori knowledge
about the size and position of the object, a number of starting nodes
are selected ad hoc. The goal nodes are defined dynamically during
the search in such a way that the corresponding contour in the image is
closed. In addition, the smoothness of the curve is taking into account
by assigning an extra cost coefficient to the curvature of the contour,
like in Eq. (3.14). The curvature estimate, however, is now based on
the angle between two vectors which locally approximate the hypothesized
edge. This procedure was described in more detail in Section 2.4 while

discussing the results of Cooper and Elliott (1978) and Cooper (1979).

3.2. A RESTRICTED-SEARCH ALGORITHM

The applicability of the dynamic programming approach can be greatly
improved if there are ways to effectively restrict the search, because
this would yield a signifi;ant reduction in bpth computation time and
memory requirements. , ,

An obvious possibility is to confine the search to some predefined
region of interest in the image domain. In many applications, particu-
larly those concerning object mensuration and inspection, tbere is suf-
ficient generic knowledge about thé object in order to define such a
region of interest a priori. Sbme examples.will_be given in Chapte; 7',

In other cases, it may be possible to obtain a region of interest from
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a coarse pre-segmentation of the image. An example of this approach,
which involves a low-resolution or multi-resolution region oriented
segmentation algorithm, will be discussed in Chapter 6. The idea of
‘using local windows proposed by Cooper et al. (1980) and Cooper and
Sung (1983), which was discussed in Section 2.4, is in fact very simi-
lar. Their main objective, however, is the possibility of processing
the various windows in parallel.

A second possibility of search reduction is to limit the number of
admissable values of the variables pi, 2=1,...,L, in the optimization
problem (3.4). As an example( the curvature constraint in (3.14) used
by Montanari (1971), effectively reduces the number of possible suc-
cessors Py, to three for each considered pair of points Po_1 and P, -
The method we propose here is to transform the image data in the ar-
bitrarily shaped region of interest into a rectangular matrix. An exam-
ple of a region of interest which is bounded by two concentric circles
is given in Fig. 3.2a and the corresponding transform matrix in Fig.
3.2b. The hypothetic region boundary indicated in Fig. 3.2a corresponds

with the edge in Fig. 3.2b. In this particular case, the transform

Fig. 3.2a) Region of interest containing contour and polar resampling.

b) Transform domain with corresponding edge.
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involved is a straightforward polar coordinate transform of the data. The
resampling,process will be discussed in more detail in Section 3.3:
For our discussion here, it -suffices to state that' it is assumed that
each row of. the, transform matrix.contains exactly one point of the.
transformed object region boundary. Note that this assumption is essen-
tial tothe method.proposed_pere.b

Following our discussion in Section 2.3, we will consider:an edge
to be an 8-connected sequence of pixels in the transform domain, and
as each row of the transform matrix contains exactly one boundary
pixel, the numbe; of possible -successors Poi1 given a hypothesized
point P, is limited to three (or two, if P, is in the first or last col-
umn of the matrix). The reverse holds as well: apart from border con-
ditions] a hypothesized point Poi1 has three potential predecessors
Py- This is illustrated in Fig. 3.3. The connectivity constraint in
tpe transform domain effectively introduces a limitation regarding the
curvature of the object region boundary: in the continuous. case, the
next boundary point is restricted to lie within a beam-shaped expecta-
tion window of -m/4 to +m/4 radians with respect to. the tangent of the
circle through the current boundary point. This is illustrated by the

dotted lines in'Fig. 3.2a.

2+1 1| g+1

W

Fig. 3.3. Eachlhypothesized boundary point has three possible succes-
sdrSf(as and three possible predecessors (b).

1Y
So, we state'bpr problem as finding the optimal sequence of boundary

points p,,...,p, 'in the transform matrix, where the path is known to

start on the first row of the matrix and to -end on the last row of the
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matrix and each row contains exactly one boundary'poinf. In othefvwords,
the values of the parameter &, %2=1,...,L, correspond with the row num-
bers and the values of the variables p2 correspond ‘with ‘the column
numbers. An example of stuch a path is given in Flg 3.4, The spec1al

case where' the object Yegion boundary ia the lmage domaln lS ‘a closed

path will be discussed later.

10

11 _ . -

12

13

14

15

16

Fig. 3.4. Sequence of connected boundary pixels;

(pl,...,ple) (5,5,4,4,5,4, 3,2,2,1,2/3,45, 5 ,6).
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For the time being, we will neglect the geometrical transformation
of the image data in the region of interest into a rectangular matrix
and consider the transform matrix to be our input image. For our treat-
ment of the method, we will adopt the following image model. The input
image is assumed to be corrupted by signal-independent uncorrelated
identically-distributed Gaussian noise n(4%,p

l)

g(%,p,) = £(2,p,) + n(L,p (3.17)

Q)'

The noisé—free image f(%,pQ) is modeled with a binary replacement func-
tion, i.e., it contains a connected object region with constant gray-
value fO and a connected background region with a different but also
constant gray-value fb. The two regions are separated by a connected
transient region of intermediate gray-values, as discussed. in Section
2.2. This transient region contains the object region boundary, which
is known to start on the first row of the image and to end on the last
row of the image and each row contains exactly one boundary point.

From the gray-value image g(l,pl) we compute a matrix c(l,pg) of
cost coefficients. In the context of the image model adopted here, it
is quite natural to relate the cost coefficients to gradient values
measured along the rows of the image g(l,pl). In terms of the original
region of interest this means that we measure the gradient perpendic-
ular to the hypothesized object region boundary. Note that this utili-
zation of a priori information is another advantage of the method pro-
posed here. It should also be mentioned that for the image model de-
scribed, the use of gradient values in the cost coefficients results
in a great similarity between our minimum-cost approach and the maxi-
mum-1ikelihood approach proposed by Cooper (1979), which has been out-
lined in Section 2.5. In view of the discussion in Section 2.3, it will
not be surprising that we select an odd-sized discrete difference opera-
tor to obtain a numerical approximation of the gradient along the rows
of the gray-value image. The operator can be a one-dimensional opera-
tor, say [1 0 -1], or a two-dimensional operator corresponding to, e.g.

the masks of Sobel or Prewitt. If we denote its response at position
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(l,pg) by gf(l,pg), we now define” the cost coefficient at (2,p2) as

c(Lpy) = Q- {g'(Lp)|. (3.18)

Here, Q is again a large positive constant, which assures the cost
coefficients to be positive for all values of £ and Py - This only serves
the purpose of facilitating the shortest-path graph search formula-
iion, as advocated by Martelli (1972). Obviously, we would arrive at
the same solution if we replace the minimum-cost search in terms of
c(Z,pQ) by a maximum-gradient search in terms of [g'(ﬁ,pg)l directly.
Following the notation of the previous section, the total cost of
a path (pl,...,pL) is now defined as
L
Q*(pl,...,pL) = §

c(2.pg), (3.19a)
L

1

with the connectivity constraint

|p£+1 - p,| = 1. (3.19b)

The connectivity constraint can be incorporated into the cost functions

by defining
= 1 - <
®(p, .y, ) = c(i+l,p, ) if [po - p | S 1,

= o elsewhere, (3.20)

for all P, =1,...,P and all £=0,...,L-1. The value £=0 corre-

* Pov1
sponds with an extra stage as illustrated in Fig. 3.5, which is connec-
ted to all pixels on the first row. In terms of graph searching, this
stage is the starting node. Definition (3.19) is now rewritten as

L

¢*(pl,..-,pL) = .

1

I ™

. ®(Py /Py, q)- (3.21)

The cost function can be evaluated in terms of accumulating cost func-

tions w(px) by means of the following recursion:
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o
1
2
.’___,..—-'-" -
3 //,/’
|
L—
L. —
Fig. 3.5. Additional stage for %=0.

® (py) = 0, (3.22a)
@ (py,q) = min [o(p,) + &(p,. P, ;)]

Pe

PyiPp,q = 1,...,P; 2=0,...,L-1. (3.22b)

The accumulating values w(pg) are stored in a cumulative cost matrix,
which is of the same size LxP as the input image. In addition, the

pointers m } for which the minimum values are achieved in

2+1(Pgi1
(3.22b) are stored:

m 1 (Pgyq) = arg min {o(p,) + &(p,.p, ;)]
Py
Py Pg,q = 1r---/B; £=0,...,L-1. (3.23)

Another matrix of size LxP is required to store the pointers. In fact,
the first row of this matrix may be omitted because all elements point
to the imaginary stage Pg- The optimal path is then found by scanning

the matrix of pointers by means of the recursion:

m _ .
pL = arg min @(pL), (3.24a)
PL
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m m
o = Mpeq (Pgap): £ =L-1,...,1. (3.24b)

The following example illustrates the procedure.
o Example

Consider the following gray-level matrix g(Q,pQ):

¥

~

14 17 16
17 12 18 17
12 15 14 16
7 13 16 18 g(2,p,)
17 13 15
13 17 15 14
10 12 18 19
14 16 12

(€ NS S 7 R BT B N
L N N I L © 2 B Vo e R ¥

NN O R W oo s
I
[

o

Applying the operator [1 0 -1] yields g'(2,pg):

gv 1 |-2 -2 -10 -10 -2
2 |-1-11 -6 -1 -5
3|4 -3-12 -2 -1
4|2 -2-12 -9 -5 g'(%,pg)
51 1-10-11 1 2
6 -3 -7 -9 -2 3
71-3 -7 -5 -8 -7
8|3 -2-12-10 2

The matrix of cost coefficients c(l,pg) = 15 - |g'(2,p2)| becomes:



>,
1 2 3 4 5

g+ 111313 5 5 13
2| 14 4 9 14 10

3] 11 12 3 13 14

4| 1313 3 6 10
5114 s 414 13

6| 12 8 613 12
7112 810 7 8
8|12 13 3 5 13
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C(Q,pg)

The cumulative cost matriX(p(pQ) and the matrix of pointers are com-

puted recursively, starting from the top. The first row of(p(pl) is

equal to the first row of the cost matrix c(Z,pQ) and the pointers can

be omitted. The results are:

1

2

3

4

5

¥

©(P,)

O N o0 gt W N

13
27
20
33
29
32
39
45

13

9
21
25
20
27
33
46

5
14
12
15
19
25
35
35

5
1%
27
18
29
32
32
37

13
15
29
37
31
41
40
45

Ly

mg(pg)

0 NN s W N e
NN RPN ke
NOW W W W N W
S W W W W N W
S W W W W W
N N N T S

The minimum of m(pL) is

ary 1is the pixel (8,3).

found

at p8=3, so the first point of the bound-

The entry in the matrix of pointers at posi-

tion (8,3) is 4, which implies that the second point is the fourth

pixel on the previous row, i.e., pixel (7,4). The complete path is found

as (8,3),(7,4),(6,3),(5,3),(4,3),(3,3),(2,2),(1,3). The path is given

below:



57

¥

O N 0 bW e

The approach described here was originally developed for the deline-
ation of the left ventricle in gated bloodpool cardiac scintigrams,
and was first published in Gerbrands et al. (1981). Major contributions
to this development can be found in Lie (1979). and Hoek (1980). This
application, as well as various others, will be described in detail in
Chapter 7. . '

The left ventricular région in bloédpool scintigrams can be described
as a compact blob which is almost circular,.and the polar coordinate
transform is partlcularly suited for such blobs. However, one is inter-
ested in finding an ob]ect reglon boundary which is not only simply
connected, but closed as well This requlrement 1ntroduces an addition-

al connectivity constralnt

|pl-pL| < 1.' | | ‘ | (3.25)

So, the first and the last points of the boundary are required to be
connected. However, this implies that the transform matrix and the de-
rived matrices must be regarded as periodic in the %-direction, which
results in a non-serial optimization problem. In other words, when
there is interaction between stage 1 and stage L, the Becomposition of
the cost or merit function (Cf. Eq. (3.5)) is not possible and the
above described method cannot be épplied. The formal solution to this
problem is to apply the methéd for a predefined fixed starting point
on the first row, say pl=k. So, the path is forced throﬁgh_point k on
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the first row, and is forced through an adjacent point on row L as well,

i.e., Eq. (3.24a) is replaced by

m .
p; = arg min w(pL). (3.26)
pL=k—1,k,k+l

This procedure is then repeated for all possible starting points on the
first row. From these P possible solutions one selects the closed path
with minimal costs. However, the computation time would increase with

a factor P, and in practice P may be in the order of 25. One may be will-
ing to settle for a suboptimal solution by applying the closed path
algorithm only once, by selecting one very good peint on the first row.

An example will be discussed in Chapter 7.

3.3. GEOMETRIC TRANSFORMATION

The proposed method of object boundary detection requires the image
data in a swath around the hypothesized boundary to be transformed in-
to a rectangular matrix. The odd-shaped region of interest should be
stréightened in such a way that each row of the transform matrix con-
tains exactly one bouﬁdary pixel. In this section the geometric trans-
formation will be discussed.

The straightening operation consists of two steps. The first step
concerns the spatial transformation, which specifies the relationships
between the pixel coordinates i and j in the original discrete image
domain, and the coordinates % and P, in the transform matrix. The

general definition of the spatial coordinate transform is

gt[l,pil = g,l8;(2,py) E,(%,p,) ] (3.27)

Here, go[.,.] denotes the original image and gt[.,.] denotes the trans-
form matrix. The functions gl(ﬁ,pg) and gz(ﬂ,pz) uniquely specify the
coordinate transform. In general, integral values for % and P will
correspond with non-integral values for El(l,pg) and £2(2,p1), whereas

the discrete image go[.,.] is known at integer coordinates i and j only.
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So, the second step in the straightening operation concerns the gray-
value interpolation or approximation. Various schemes will be discussed
in the second half of this section.

As a final remark, it is noted that in the above we implicitly se-
lected the so-called pixel filling approach, i.e., we start with an in-
teger coordinate in the transform domain, compute its non-integral
'preimage' in the original domain and perform some kind of interpola-
tion in the original image. The dual approach is called 'pixel carry-
over'. There, one starts with an integer coordinate in the original
image domain, computes its 'image' in the transform domain and distrib-
utes the original gray-value over the adjacent discrete positions.
This more cumbersome approach will not be considered here. The reader
is referred to Castleman (1979) for .a general treatment of geometric

transformations.

Now we turn our attention to the spatial coordinate transform, es-
pecially in relation to the desired property of the transform matrix
to contain exactly one boundary point on each row. As this issue main-
ly concerns the geometric properties of the object region boundary, we
will first look at the coﬁtinuous case. So we model the boundary as a
continuous curve in the original xy-domain, and we loock for relation-
ships between geometric properties of the curve and the spatial trans-
formation. The first transformation to be discussed here is the polar
coordinate transform.

Assume that the object region boundary is modeled as a circle of
radius R‘centered at (xc,yc), as illustrated in Fig. 3.6a. The actual
curve is not necessarily a perfect circle, and even if it is a circle,
its radius and central point may deviate from the model parameters R
and (xc,yc), respectively. So we take as a region of interest the
swath between two concentric circles with common central point (xc,yc)

and radii R - B and R + B respectively. This region of interest is

2 27
given in Fig. 3.6b.
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a b

Fig. 3.6. Object'region boundary (a) and region of interest (b),

centered around the boundary (—. —.—._).
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Fig. 3.7. Definition of polar coordinates.

Now let us define the polar coordinate system with respect to the
xy-system as indicated in Fig. 3.7. The coordinate transform of Eq.

(3.27) is then expressed as
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£,(6,r) = x_ + r sin(e), (3.28a)

52(9,r> =y tr cos(8), (3.28b)

for 0 £ © £ 21 and R - % Sr £R + g. The variable 6 corresponds with
the variable ¢ in the dynamic programming formulation, and r substitutes
for Py The transformed swath is given in Fig. 3.8, together with the

transform of the model circle with radius R.

R+B/2

27 i

Fig. 3.8. Transformed swath from Fig. 3.6b, and the transform qf

the model circle with radius R (~.—.—. ).

Obviously, any circle with central point (XC'YC) and radius R' in
the interval [R - %,R + %] will be transformed into a vertical straight
line at r=R' in the transform domain. In addition, the transform for
any circle with radius R but with a central point not coinciding exact-

ly with (xc,yc) may be derived analytically (Cf. Jongeling (1987)).
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However, these results are not of particular interest to our discussion
here, except for the observation that for each value of 6 there is only
one value of r corresponding to the transformed curve. This implies that
the dynamic programming method described in Section 3.2 can be applied.

The applicability of the polar coordinate transform is certainly not
limited to circular object regions. The transform may be applied to
any convex object region which contains the point (xc,yc). A common def-
inition of convexity of planar figures is that any straight line in
the plane has at most two points in common with the boundary. This im-
plies that any straight line through any interior point of the convex
region has exactly two points in common with the boundary. So we can
perform the polar transformation along all halflines through (xc,yc),
which will each contain exactly one boundary point.

The constraint of convexity is still too strict. In effect, the po-
lar transform can be applied to any contour with the property that all
halflines through the predefined point (xc,yc) contain exactly one
boundary point. Such contours are called starshaped, as mentioned by
Cohen and Boxma (1983) in their treatise of conformal mapping problems.
Obviously, it may be extremely difficult or impossible to find a legit-
imate central point (Xc'yc) if we are only given our noisy image. In
Chapter 7 we will discuss an application where it is possible indeed,
because the object regions in question are quite compact blobs, although
not necessarily convex. -

It may be illustrative to take an opposite point of view and consider
the set of all curves which can be transformed correctly, given the
central point (xc,yc) of the polar transformation. Without proof, it
is stated that any connected region which contains (xc,yc) as an inte-
rior point, and which has a continuously differentiable boundary, and
with the property that at no point along the boundary the tangent to
the boundary contains (xc,yc), can be transformed with a polar trans-
form with central point (xc,yc). An example is given in Fig. 3.9.

When the object region is not at least starshaped with respect to
some point P, the polar coordinate transform cannot be applied. However,

there are many other cases in which it is not attractive to use the
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Fig. 3.9. Example of boundary of non-convex region which can be trans-

formed with the polar transform.

polar transformation. As stated in Section 3.2, the cost coefficients
in the dynamic programming optimization are computed from the magni-
tudes of the gradients along the rows of the transform matrix. In the
imége domain, we would like this to correspond with gradients measured
in directions which are more or less perpendicular to the local object
region boundary. Now let us take a second look at Fig. 3.6b. The region
of interest given there may also be described as a swath positioned
symmetrically around the hypothesized boundary. So if the object re-
gions in question are not very compact, but quite elongated or odd-
shaped instead, it would be more attractive to transform the image data
in the swath by means of a spatial transformation which transforms the
hypothesized boundary into a straight line. Such transformation would

automatically fulfil our requirement of measuring gradients perpendicu-
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lar to the hypothesized boundary. In addition, the method is no longer
restricted to closed contours, but can be applied to any edge in the
image, provided a suitable region of interest can be defined. The ap-

proach is illustrated in Fig. 3.10.

a b

Fig. 3.10. Hypothesized boundary and region of interest in the image
domain (a) and straightened region of interest by means of

spatial transformation (b).

The dynamic programming‘method developed in Section 3.2. requires
that the transformed region of interest gt(l,pz) contains exactly one
boundary point for every value of the parameter &. In addition, the
spatial transformation should be a one-to-one mapping between coordi-
nates in the briginal image domain and in the transform domain. Local-
ly, this is assured by limiting the width B of the region of interest

to twice the minimum radius of curvature Rmin along the curve:

B

nn

2.R . . (3.29)

This is illustrated in Fig. 3.11. Because the curvature C itself is
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defined as the inverse of the radius of curvature,

1
c=3z, (3.30)

the width of the region of interest should be inversely proportional

to the maximum curvature C = (R_. )_l:
max min
2
B < g ) (3.31)
max

Rnin

I | E—

Fig. 3.11. Region of interest at section of the curve with maximal
curvature for the case B = Z(Cmax)-l'

From Fig. 3.11 it is clear that constraint (3.31) is sufficient only

in the case that the path length of the section with maximal curvature

is less than “Rmin' In other words, the smallest osculating circle

coincides with thé curve over less than its perimeter divided by two.
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There is one exception, when the curve itself is a circle with radius
Rmin’ in which case the polar transform should be applied. This analy-
sis leads to a constraint which assures a unique, non-overlapping re-
gion of interest in a global sense. If the curve itself is not a circle,
and we consider two points on the curve which are separated by a path
length of more than ﬂRmin’ than their Eucledean distance should be at
least equal to the width B of the region of interest. This is illus-

trated in Fig. 3.12.

Fig. 3.12. Global constraint of non-overlapping region of interest.

Finally, it is noted that this analysis in the continuous case al-
lows us to make a remark about the sampling density along the hypothe-
sized boundary. In van Otterloo and Gerbrands (1978) it is proven that
the sample distance along a curve should not exceed a value of

-1

7.(C ) 7. So if C is known, as well as the length L of the curve,
max max

then the number of rows in the transform matrix should be at least
equal to L'ﬂ-l'cmax in order to obtain a faithful representation. This
result cannot be extended to the case where the image go(.,.) itself

is already discrete.

The second step in the geometric transformation to straighten the
region of interest concerns the approximation of gray-values. As has

been pointed out before, the spatial coordinate transform
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gt[l,pg] = gol8, (2P ) E,(2,p) ] (3.32)

will, in general, lead to non-integral values for the functions £1(l,p£)
and gz(z,pg), whereas the gray-values of the discrete image go[.,.] are
known at integer coordinates i and j only. So some kind of interpolation
is necessary to approximate the gray-values at the real-valued coordi-

nates [x,y], where

w
|

= &,(2,p), (3.33a)

g
1

= &,(%,pp). (3.33b)

Theoretically, the gray-value at any coordinate [%,y] can be recov-
ered from the sampled image if the original continuous image was sam-
pled in accordance with the well-known sampling theorem. In the case
of sampling exactly at the Shannon rate, gray-level reconstruction at
intermediate positions requires the use of sinc-functions if the Fou-
rier spectrum of the continuous image covers a rectangle in the 2-D
Fourier domain. Straightforward implementation of tﬁis theoretical re-
sult would obviously be restricted to truncated sinc-functions, which
is possible, but certainly not quite feasible. In the case of sampling
well above the Shannon rate, the sampling theorem allows the use of
filters other than the ideal low-pass filter which corresponds with
sinc-function interpolation. However, direct implementation would be
cumbersome in all cases.

In the image processing literature, many local interpolation schemes
have been proposed with much larger practical value. The problem of
interpolation is not only encountered in relationship with geometrical
transformations, but also in edge detection and digital image magnifi-
cation. Early contributions are due to Prewitt (1970) and Hueckel
(1971). More recently, the facet model was introduced by Haralick and
Watson (1981), which is explicitly used to compute the zero crossings
of second derivatives by Haralick (1984). Comparative image magnifica-

tion studies are reported by Troxel and Lynn (1978) as well as by Schrei-
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ber and Troxel (1985). Many of the proposed schemes utilize higher-or-
der interpolation functions, but it is well-recognized that bilinear
interpolation may be sufficient in many practical cases, especially
when image magnification is not the issue at hand.

In our experiments, which will be discussed in Chapter 5, we have
restricted ourself to three simple interpolation schemes. The first is
the well-known bilinear interpolation scheme illustrated in Fig. 3.13.
In the second scheme, the interpolation is replaced by simply taking
the average over the four neighboring sample points with integer coor-
dinates. Finally, zero-order interpolation will be considered where the
gray-value of the nearest neighbor sample point is assigned to the
real-valued coordinate [x,y] of Eq. (3.33). In all cases, the resulting
edge pixels as detected in the transform matrix are mapped back to the

nearest neighbor in the original image domain.

Fig. 3.13. Bilinear interpolation of gray-value go[x,y] from four sam-

ples at integral coordinates (adapted from Castleman (1979)).

3.4. EXAMPLE

An experimental software package has been implemented on a VICOM

digital image processing system. The package contains software modules
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for the creation of synthetic test images, the interactive definition
of a region of interest, the geometric transformation of the region of
interest into a rectangular matrix, the dynamic programming optimal
path procedure, the inverse geometric transformation and the quantita-
tive evaluation of the result.

Figure 3.14 shows a synthetic test image. The image contains two
regions with a difference in mean value of h. The image is corrupted
by additive uncorrelated Gaussian noise with variance 02, independent
from the signal. The signal-to-noise ratio, defined as the ratio hz/oz,
is equal to 1. The width of the transition region between both regions
is approximately three pixels. The image size is 128 x 128 pixels.

Figure 3.15 shows the interactively indicated region of interest.

-~

: - Fig. 3.15. Region of interest.
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Figure 3.16 shows the region of interest straightened by the geomet-
ric transform. The gray-values are obtained by bilinear interpolation.

The size of the transform matrix is 26 x 86.

Fig. 3.16. Straightened region of interest.

The cost coefficients are obtained from the gradient values using
a discrete difference operator with coefficients [-1 -2 0 2 1].

The cost coefficients may be displayed as gray-values as in Fig. 3.17.

Fig. 3.17. Matrix of cost coefficients.

The result of the dynamic programming optimal path procedure is
displayed superimposed in the cost matrix in Fig. 3.18, in the straight-
ened region of interest in Fig. 3.19 and in the original image in Fig.

3.20. The edge as extracted from the noise-free original image is dis-
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played in Fig. 3.21 for comparison. The quantitative evaluation of

the procedure will be discussed in Chapter 5.

Fig. 3.18. Detected path Fig. 3.19. Detected path
(cost matrix) (straightened ROI)

Fig. 3.20. Final boundary Fig. 3.21. Boundary detected in

noise-free image.
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3.5. CONCLUDING REMARKS

The method of object region boundary detection developed in this
chapter is based on the idea of applying a dynamic programming search
algorithm to a straightened region of interest. Each row of this matrix
should contain exactly one boundary pixel. This greatly simplifies the
dynamic programming algorithm in comparison with the case where dynamic
programming is applied in the original image domain. In comparison
with traditional parallel edge detection schemes, it should be noted
that dynamic programming optimizes a merit function evaluated along
the entire boundary, which introduces a notion of global optimality.
Using the gradient values in the cost coefficients locates the desired
boundary at the points of maximum gradient values, and not at points
of high gradient values as in traditional parallel schemes. This makes
the proposeq method in a sense more related to the method of second de-
rivative zero-crossings proposed by Haralick (1984). The use of a pre-
defined region of interest facilitates the exploitation of problem-
oriented a priori knowledge. Straightening the region of interest solves
the problem that in the original image domain shorter boundaries
are easily favoured over longer boundaries in a minimum-cost approach.
Examples of ways to define regions of interest may be found in Chap-

ters 6 and 7.
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4. THE CONTINUOUS RELAXATION APPROACH

Image segmentation can be described as a pixel labeling or classifi-
cation problem, because the ultimate goal of segmentation is to assign
a label to each and every pixel. The label indicates to which‘one of the
various image components or regions the pixel belongs. This observation
implies that one may attempt to straightforwardly apply traditional tech-
niques from the field of statlstlcal pattern recognition to the image
segmentation problem. An obvious example is image segmentatlon by gray-
value thresholding. When a single threshold is used, the label set A ‘

contains two labels, A, and Al,referring to the classes of background

region pixels and objegt region pixels, respectively. Many thfeshold
selection procedures have been proposed and a general treatment may be
found in Rosenfeld and Kak (1982). From the point ef view of statistical
pattern recognition, the probleﬁ may be formulated in the framework of
Bayes decision theory. If we choose the Bayes loss functions for mis-
clas31f1ca+10ns to be symmetric between the classes, this results in as-

51gn1ng a pixel the label A, if the a posterlorl probablllty of A

k kK’
given the pixel gray-value, is maximum over all k. In the traditional

approach of thresholding, these decisions are made independently on a
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pixel by pixel basis. In the presence of noise, this may result in many
misclassifications. In the sequel, we will describe such errors as lo-
cal inconsistencies in the labeling. For the sake of completeness, note
that the thresholding procedure must be followed by a connectivity anal-
ysis or component labeling procedure to identify the various connec-
ted components.

The traditional method of edge detection consists of thresholding
some numerical approximation of the magnitude of the gradient. Such meth-
ods can be formulated in the same Bayes framework by considering tﬁo
labels, e.g., Ae and Ane’ refering to the class of edge pixels and the
class of non-edge pixels, respectively. Again, the decisions are tradi-
tionally made independently on a pixel by pixel basis, which will usual-
ly result in incomplete boundaries and numerous falsely detected edge
pixels in the interior and background regions.

In many practical situations, one attempts to cope with the problem
of inconsistencies in‘the label~assignment by applying pre- or post-
processing techniques. Prefiltering the image with a possibly non-linear
noise suppression filter (see, e.g., Biemond and Gerbrands (1979))
may greatly facilitate the task of segmenting the image. On the other
hand,.given a tentative segmentation labeling, the result may be cleaned
by applying cellular logic operations like dilations, erosions, openings,
closings and neighborhood voting mechanisms. We will not discuss these
approaches here. Instead, we will focus on mechanisms which allow the
use of contextual information and a priori knowledge within the decision
procedure itself.

The sequential method of dynamic programming boundary detection dis-
cussed in Chapter 3 may be viewed as an example of an approach to image
segmentation which utilizes both a priori knowledge and spatial context.
There, a priori knowledge is used in the definition of the region of in-
terest and in the boundary model. Spatial context is exploited by eval-
uating a merit function along the entire hypothesized boundary, which
introduces in a sense a notion of global optimality. In effect, all data
in the region of interest are used to reach one overall decision. In

this chapter we discuss parallel, iterative procedures which aim at the
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same goal and are known as relaxation labeling procedures.

In Section 4.1. relaxation labeling procedures will be introduced.
Section 4.2 is devoted to a feasible implementation of a relaxation la-
beling edge detection scheme on an image processing system featuring a
spatial convolution processor. The initialization of the iterative pro-
cedure is discussed in Section 4.3. An example is given in Section 4.4,

and concluding remarks are made in Section 4.5.

4.1. RELAXATION LABELING PROCEDURES

The idea of relaxation labeling procedures first appeared in the
image processing literature in a paper by Rosenfeld, Hummel and Zucker
(1976), although Waltz (1975) could.be mentioned as an earlier source.
The basic idea behind relaxation labeling procéduréé is that if we have
a set of entities which are to be labeled, and we have a set of tenta-
tive labels for each entity, then we can attempt to utilize the rela-
tionships among the entities to find a label assignment such that
a) exactly one label is assigned to each entity, and b) the labels of
related entities are mutually compatible. In the present context, the
entities to be labeled are the pixels in the image. However, the same
mechanism can be applied to a variety of problems like scene interpre-
tation, graph matching, histogram analysis, etc.

In the discrete case, the algorithm proposed by Rosenfeld et al.
(1976) is a parallel version of the algorithm discussed by Waltz (1975)
and a solution for the general consistent labeling problem formulated
by Haralick and Shapiro (1979). Because some of the- concepts in the con-
tinuous relaxation labeling procedure, whiéh will be discussed later,
are based-on the discrete case, we will outline the discrete model first.

Let A = {al,...,an} be the set of entities to be labeled and
A= {Al,...,Am} the set of possible labels. Let Ai € A be the set of la-
bels tentatively assigned to entity a;, 1 £ i £ n. For each pair of en-
tities (ai,aj), where i # j, let Aij Ay X Aj be the set of compatible
pairs of labels, i.e. if (A,A') € Aij then it is possible that ai has
label X and aj has label A'. By a labeling L = {Ll,...,Ln} of A we mean

an assignment of a set of labels L, ¢ Ai to each a, € A. The labeling L
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is called consistent if, for all i,]j, we have
({A} x Lj) n Aij #8, VA e L, (4.1)

where ¢ denotes the null set. For i#j, this means that for each pair of
entities (ai,aj) and each label A € Li there exists a label A' € Lj such
that (A,A') € Aij' Rosenfeld et al. (1976) then prove that there exists
a greatest consistent labeling L” such that a) L” is consistent and

b) for any consistent labeling L we have L ¢ Lw, which means that

Li c L:, 1 £1i £ n. In addition, the authors give an algorithm to find
L. The algorithm starts with the initial labeling L0 = {Al,...,An}. Let
Lk be the labeling at the k-th iteration. To obtain Lk+1, discard from
each L? any label A such that ({A}XLj) n Aij = ¢ for some j. In other
words, the label A at a; is kept only if, for every aj, there is at least
one label A' at a. which is compatible with A at a;. The algorithm stops

k+l | Lk, which is the case if and only if Lk is consistent. The

when L
authors prove that the algorithm stops after a finite number of repeti-
tions at the greatest consistent labeling L”. 1t should be pointed out
that L™ may be null. Note that the algorithm stops when all compatibili-
ty constraints are satisfied. A second algorithm is then applied to L=
to find all unambiguous labelings, if one exists. A labeling is called
unambiguous if it is consistent and assigns only a single label to each
entity.

In the discrete case, a label A is assigned to an entity a; or it is
not, i.e., either X € Li or A ¢ Li’ and the labels A and A' of related
entities a; and aj are either compatible or they are not, i.e. (A,A') €
Aij or (A, A') ¢ Aij' The continuous relaxation labeling procedures gen-
eralize the discrete case by allowing the introduction of weights in both
the label assignment and the compatibility between labels. From one point
of view, the weights in the label assignment may represent fuzzy class
membership, and the quantitative compatibility coefficients can be used
to adjust the label weights. However, in many cases the pixel classes
in the segmentation problem are considered to be mutually exclusive and

exhaustive. Given the noisy image, there may be uncertainty about the
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correct label assignment, but the unknown true label assignment is not
fuzzy. It has become common practice in continuous relaxation labeling
to treat the label assignment weights as if they were probabilities. A

label AQ is assigned to pixel a; with a weight Pi(Ag), where
z 0, £=1,...,m, (4.2a)

-1 (4.2b)

Again, the weights are adjusted by using the compatibility coefficients
between labels of related pixels in an iterative updating scheme, and the
adjusted weights are required to conform to (4.2a) and (4.2b) at all
times. As a result, the label assignment weights behave like probabili-
ties, but they are not necessarily based on an explicitly formulated or
implicitly assumed probabilistic model. We will nevertheless often re-
fer to the label assignment weights as probabilities. By using this ter-
minology, we refer to (Pi(Al),...,Pi(Am)) as the probability vector P:,
and to {P,...,P} as a probabilistic labeling L. A labeling L is called
consistent when, for all a; and Al, Pi(Al) equals the value of some spec-
ified function Fiﬁ of the probabilities Pj(Al),...,Pj(Am), for all j.
Starting with an initial labeling LO, the iterative continuous relaxa-

tion labeling scheme computes for all a; and Ag the updated probability
k+1 _ k
Py ()‘Z) = Fill(l— ) (4.3)

where k is the iteration number. If this process converges to a stable
limit Lm, the resulting labeling is consistent, i.e.,

P (A,) = L (4.4)

i) = Fph). :

The notion of consistency employed here may be interpreted as follows.

A labeling is called consistent when the actual label assignment weights
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and the weights computed from the rest of the labeling coincide. In
other words, the actual label probability of pixel ai is equal to the
same probability as estimated or predicted from the spatial context.
Furthermore, let the updating algorithm stop when, for all a; and AQ,
k+1 _ .k

Pi (AQ)_— Pi(AZ)' (4.5)

It then follows that if the algorithm stops, it stops at a consistent
solution.

It may'be very difficult to establish the convergence properties of
a given updating rule (4.3), and even when convergence can be proven the
limit labeling is not necessarily useful. For example, Rosenfeld et al.
(1976) describe a linear updating scheme which certainly converges, but
to a limit labeling which does not depend on the initial labeling LO.

In practice, updating schemes are used for a few iterations only, and
formal convergence properties are not of particular importance.,Instead,
ad hoc updating rules have been designed which show some desired proper-
ties. The basic idea is that Pi(AQ) should be increased by the update
rule if high probability labels at related pixels aj are highly compati-
ble with AZ at a, - Conversely, Pi(AQ) should be decreased if other high-
ly probable labels are not compatible with Al at a; . Finally, low prob-
ability labels at related pixels aj should have little influence on
Pi(Al). .

An ad hoc non-linear updating rule which shows this behavior is the
original operator proposed by Rosenfeld et al. (1976). Let Cij(Al'Ah)
denote the compatibility between the label AZ at pixel a; and the label
Ah at pixel aj, with

) € [-1,1]. A (4.6)

Ci5(hg Ay

Here, Cij(A = 1 indicates high compatibility, a value -1 indicates

K'Ah)
complete incompatibility and a value 0 indicates indifference. One may
wish to assign weight coefficients dij to the various related pixels aj,

usually depending on their distance to a, with
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§ iy = 1, (4.7)

where I denotes a summation over all related pixels aj. In pixel label-
T
ing schemes, it is common practice to consider the 8-adjacent neighbors

of a; only. The label support from the related pixels aj is now defined

as
A =3d L C..(A,,A )Pk(k ) 4.8
kig = 2 955 2 Gy A By (A (4.8)
j h
where I denotes a summation over all labels h=1,...,m. The label proba-
h

bilities, for all Ag and for all pixels a;, are then adjusted by the

update rule

k
PY(A) [1 + 4, . ]
Py = ——2 S (4.9)
IPi(Ag) [T+ 45,]
L
Note that Akil € [-1,1], due to Egs. (4.2), (4.6) and (4.7). As a result
we have
PX*lay 20, g =1,...,m, (4.10a)
i L
5y =1, (4.10b)
0 i L

which shows that the label assignment weights behave like probabilities.
Since the publication of the original paper by Rosenfeld et al. (1976),

numerous authors have discussed various aspects of continuous relaxation
labeling procedures. Early contributions towards a theoretical analysis
are papers by Zucker (1976), Zucker and Mohammed (1978a) and Zucker,
Krishnamurty and Haar (1978). Some of the attempts to incorporate relax-
ation labeling in a general Bayesian framework by considering the com-
patibility coefficients as conditional probabilities can be found in
Peleg (1980) and Haralick (1983). An alternative approach is to analyze
relaxation labeling procedures in terms of optimization theory. This

approach is based on considering the norm of the difference between the
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current probability vector PZ and the label assignment probability vec-
tor as predicted by the local neighborhood. Major contributions are the
papers by Ullman (1979), Faugeras an Berthod (1981), Zucker, Leclerc
and Mohammed (1981), and Mohammed, Hummel and Zucker (1983). Hummel and
Zucker (1983) develop a new relaxation procedure based on variational
calculus. They establish a local convergence result for this operator
and show that some of the traditional relaxation updating rules are ap-
proximations to their new operator. In particular, the authors show that
there is strong agreement between the ad-hoc updating rule given in Egs.
(4.6-4.9) above and the new updating rule which results from the opti-
mization approachl As a result, we conjecture that the differences may
be neglectable, especially when only a few iterations are considered,

as is common practice in digital image processing.

The compatibility coefficients between the labels of related pixels
have often been modeled as conditional probabilities or correlation
coefficients, or in terms of the mutual information between label pairs.
In the context of curve enhancement, Peleg and Rosenfeld (1978) propose
to estimate such statistical quantities from one image or a set of im-
ages. However, if the images are very noisy, the estimated compatibility‘
coefficients will be hardly reliable. In a sense, one tries to correct
the unreliable data-driven label probabilities by using equally unreli-
able data-driven compatibilities. In the goal-oriented approach advo-
cated here, it seems more appropriate to correct the data-driven label-
ing by using model-driven compatibility coefficients, chosen on the ba-
sis of a priori knowledge. This approach has also been taken by Schach-
ter et al. (1977). Because we will use these compatibility coefficients
in the sequel, they are described in detail.

Let a be the direction of the edge at pixel a,, B the direction of
the edge at pixel aj, and y the direction of the line joining a; to aj,
and D the chessboard distance between ai and aj as defined in Eq. (3.1).
Let Ae and Ane denote the labels for the classes of edge pixels and non-
edge pixels, respectively. Schachter et al. (1977) then define the fol-

lowing compatibility cecefficients:
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2

_ _ _ -D
Cy5(Agihg) = C;- cos(amy) . cos(By) . 27, (4.11a)
~ . _ ) -D
Ci5(AgA ) = Cpomin [0,-cos(2a-2y) . 2 "7, (4.11b)
C..(A_,A ) =cC, . (1 - cos(2B-2y)) 2~ (D*D)
ij( ne’ e) I Y- (4.11c)
i -D
Cij()\ne’}\ne) =c, . 2. (4.11d)

The compatibility coefficient (4.1la) expresses that parallel and per-
pendicular edges have no effect on one another, that collinear edges
reinforce each other and that anti-collinear edges weaken each other.
Similar comments can be given .for the other coefficients in (4.11). In
the next section, we will describe a feasible implementation of a relax-
ation labeling edge detection scheme based on these compatibility coef-

ficients.

4.2. A FEASIBLE IMPLEMENTATION

The practical use of continuous relaxation labeling procedures in
pixel labeling segmentation schemes is severely hampered by the large
amount of computations involved. Let us assume that the initial label-

ingnLO has already been determined from the input image, where

20, _ 0 0 0 0
--,Pn} = {(Pl(ll),---,Pl(Km)),---,(Pn(Xl).---,Pn(Km))}-
(4.12)

Following the traditional approach of edge detection by edge enhancement/
thresholding (Cf. Abdou and Pratt (1979)), these probabilities will be
computed from the response of some discrete gradient estimator. Let us
furthermore assume that the compatibility coefficients Cij(Al,Ah) have
been predetermined on the basis of a priori knowledge. Let ||Ni[| de-
note the number of directly related pixels aj in the neighborhood Ni of
pixel a- Computation of the updated probabilities of all m labels re-
quires in the order of ||Ni||.(m2+m) additions and [|Ni||.m2 multiplica-
tions per pixel a; and per iteration k, because Egs. (4.8) and (4.9)
have to be evaluated iteratively for all labels and for all pixels. Usu-

ally, the neighborhood Ni is restricted to the set of 8-adjacent neigh-
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bors of a; and the influence of related pixels just outside-this neigh-
borhood is assumed to propagate to ai in the subsequent iterations. If
we only consider the labels Ae and Ane, denoting the classes of edge
pixels and non-edge pixels, respectively, the number of additions and
multiplications is in the order of 80, per pixel and per iteration. It
would thus be of great practical interest to find a feasible implemen-
tation. In this section we develop a continuous relaxation edge detec-
tion scheme which is particularly suited for implementation on a commer-
cially available digital image processing system featuring special pro-
cessors for [3x3] convolutions and point operations like addition of
complete images, or multiplication of images on a pixel-by-pixel basis.

Consider the relaxation labeling procedure defined in Egs. (4.8) and
(4.9) with the constraints (4.6) and (4.7). Equaﬁion (4.8) may be re-
written as:

k
dij Ciy (grhp) PR

. z
kig o 13 1]

>
I
e ™M

k
dij €5 (AgrAp) Pj(Ah). (4.13)

[

z
h
In the method to be developed here, the probabilities P?(Ah) are stored
in m image memories, one for each label Ah’ h=1,...,m. If the compatibil-
ity coefficients Cij(AZ,Ah)-are predefined spatially invariant constants,
the summation over the neighbors j in (4.13) can be computed by a convo--
lution processor, and the intermediate results for the various labels

A, can again be stored in m image memories. Summation over the labels

h

Ah completes the computation of the label support term Akil’ and can be

accomplished by a point processor. We now turn to the evaluation of the

update rule:

K
Pi(ag) [1+4,,,1]

T Pk(x )y [1+ 4
¢ itte

(4.14)
kil]

The numerator can again be computed for all pixels a; 'in parallel' by
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using the point processor, and stored in an image memory. After this
has been done for all labels Al, 2=1,...,m, the denominator in (4.14)
is computed. In principle, this can be accomplished by means of the
point processor, just as the final evaluation of the fraction. Basical-
ly, this implementation requires in the order of 2m2+3m. convolutions
and point operators, each of which takes less than 40 ms on an image
processing system equiped with hardware convolution and point processors
in combination with special buses for data transport. Furthermore, it
should be noted that the above processing steps yield the updated pro-
babilities for all labels and all pixels, i.e., for the entire image!
In this analysis we neglect the unavoidable overhead due to, e.g., the
loading of coefficients, and the intermediate scaling operations re-
quired to limit the data at all times to the dynamic range (pixel depth)
of the image memories. The scaling operations and the limited accuracy
of..the hardware processors form a potential threat to the overall accu-
racy.

When we attempt to apply the above method to the edge detection pro-
blem, we immediately discover a flaw in the argument. The compatibility
coefficients in an edge reinforcement scheme naturally depend on the di-
rections of the edge elements at related pixels. This makes them data-
dependent and thus spatially variant. As a consequence, the idea of
using convolutions collapses altogether. To circumvent this problem, we
propose to introduce various labels for edge pixels instead of using a
single label Ae' The various labels are indicative for the directions of
the hypothesized edge elements running through the pixels. To maintain
computational tractability of the relaxation procedure, the number of
labels is necessarily limited, corresponding with a coarse quantization
of directions. Here, we propose to subdivide the original label Ae into
four labels, AN' Ao, A

E S
compass. The label XN (north) denotes an edge element pointing upwards

and Aw, corresponding with the four winds of a

along the columns of the image, with a low gray-value on its lefthand-
side. Similar definitions apply to the other labels, as illustrated in
Fig. 4.1. In addition, we still consider the label Ane for non-edge

pixels, and the following relationships are defined:
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NN\ ¢
4 BN\

A
AN AE S W

north east south ' west

Fig. 4.1. Four subclasses of edge pixels are distinguished, labeled by

AN (norﬁh), AE (east), As (south) and AW (west).
k _ .k k k k
Pi(Ae) = Pi(AN) + Pi(AE) + Pi(ks) + Pi(AW), (4.15)

P?(Ane) =1 - P?(Ae), (4.16)
for all pixels a,. In this way,, the image-dependent information about
the edge directions is incorporated in the probabilistic label assign-
ment. The compatibility coefficients, on the other hand, can be defined
and evaluated a priori, yielding a set of data-independent spatially
invariant values. We can tﬁus pursue the idea of utilizing spatial con-
volutions within the edge reinforcement relaxation labeling procedure.
Furthermore, we are released from the obligation to adjust the hypothe-
sized edge direction at each pixel by means of a separately applied edge
direction relaxation procedure, as proposed by Schachter et al. (1977).
The compatibility coefficients are evaluated beforehand by using the
formulas given in (4.11) except for the fact that cij(Ae’Ane) and
Cij(Ane'Ae) are chosen to be similar, as proposed by Sommen (1979). Fur-
thermore, the multiplicative distance factors are absorbed by the weight-
c

ing coefficients C C, and C

17 720 73 4'
Cij(Ae,Ae) = Cl cos(a-y) . cos(B-v), (4.17a)
C..(A ,A_)=2¢C, . min[0,-cos(20-2Y)], : (4.17b)

ij' e’ "' ne 2
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Cij ne' e C3 . min[0,-cos(2a-2v)], (4.17¢c)
c .

C..(h_,A_) =

ij' ne’ ne 4 (4.17d)

For example, the compatibility coefficient Cij(AN,AN) for the righthand
neighbor aj of pixel a; is given the value zero, because a=7/2, B=1/2,

y=0 and Eg. (4.17a) yields the value C,.cos(m/2).cos(n/2)=0. The com-

1
plete set of compatibility coefficients is given in Fig. 4.2, without

the overall weighting coefficients Cl’ C2, C3, C4. For obvious reasons,
the schemes of Figs. 4.2b-d are rotated versions of the schemes given

in Fig. 4.2a.

P13 4 0 3 4 -1 -3 o0 -
0 0 0 0 0 0 0 0 0 0 0] 0
P}l P03 3 -1 -3 4 0 3
C(AN,AN) C(AN,AE) C(AN,AS) C(AN,AW)

0 -1 0

0 0 0

0 -1 0

c()\N'>\r1e)

Fig. 4.2a. Compatibility coefficients between label AN at the central
pixel a, and all labels at all 8-neighbors aj.

4+ 0 3 50 4 yoo -3 4 0 -3
0 0 0 1 0 1 0 0 0 -1 0 -1
30 -3 s o0 4 40 3 40 -3
ClAgiAy) ClAgirg) CagiAg) CAg Ay

0 0 ¢]
-1 0o -1
0 Q 0
CO\E')\ne)

Fig. 4.2b. Compatibility coefficients between label AE at the central
pixel a; and all labels at all 8-neighbors aj.
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T -1 1 T 0 1 i 1 T 0 1
0 0 0 0 0 0 0 0 0 0 0 0
-+ -1 - -4 0 o1 30 -
A
ClAgrAg) ClrgrAg) ClAgrAg) ClAgrAy)
0o -1 0
0 0 0
0 -1 0
C(As,kne)

Fig. 4.2c. Compatiblity coefficients between label AS at the central

pixel a; and all labels at all 8-neighbors aj.

i 0 -} -+ 0 -} 40 4 oo 3
0 0 0 -1 0 -1 0 0 0 1 0 1
-4 0 4 -4 0 -} 30 -3 30 4
C(AW,AN) C(AW,AE) C(AW,AS) C(AW,AW)
0 0 0
-1 0 -1
0 0 0
C(Aw,Ane)

Fig. 4.2d. Compatibility coefficients between label AW at the central
pixel a; and all labels at all 8-neighbors aj.

0 -1 0 0 0 0 0 -1 0 ¢} 0 0
0 0 0 -1 0 -1 0 0 0 -1 0 -1
0 -1 0 0 0 0 0o -1 0 0 0 0
C(lne,AN) C(Ane,AE) C(Ane,ls) C(Xne,Aw)

1 1 1

1 0 1

1 1 1

C(Ane'xne)

Fig. 4.2e. Compatibility coefficients between label Ane at the central
pixel a; and all labels at all 8-neighbors aj. A
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Note that the central elements in all sets of compatibility coefficients
in Fig. 4.2 are set to zero, which implies that the label probabilities
at the central pixel a, are not allowed to strengthen or weaken them-
selves. The label support should be based on evidence emerging from the
local context. Furthermore, note that the coefficients given in Fig.

4.2 should be scaled properly to prevent overflow. In most image proces-
sing systems it is required that the sum of the magnitudes of the coef-
ficients in any [3x3] convolution window does not exceed a value of one.
Here, the scaling is dictated by the coefficients of the window
Cij(Ane'Ane) in Fig. 4.2e, yielding a scaling factor of 8 for all coef-
ficients in all windows given in Fig. 4.2. In addition, the results must
17 C2, C3 and
C, according to Egq. (4.17). To limit the naturally existing dominance

4

of the non-edge label Ane’ the coefficients C3 and C4 must be chosen

be scaled with properly chosen weighting coefficients C

considerably smaller than Cl and C2.

The implementation of Egs. (4.13) and (4.14) in terms of spatial con-
volutions and point operations may be summarized as follows. Suppose the
current label probabilities are stored in image memories denoted as

k k k k k s - .
[p (AN)], [P (AE)], [p (AS)], [P (AW)J and [P (Ane)]. Initialization is
sues will be discussed in the next section. The computation of the numer-
ators of Eq. (4.14) for the labels Al = AN’AE'AS’AW’Ane is described

by the following pseudo-code:

Algorithm 1:

FOR AQ = AN'AE'AS'AW'An DO

e

BEGIN
(a):= [P* ()1 [C( AP T
[8]:= [P0 1*[C(, AT
[eli= (BRI C0h, Ag) 5
[p]:= [P T*[CO, A 1
[£]:= [PM(A_)I*[CO A )1
[F]:= [a]+[B]+[c]+(D]+[E];

[6,1:= [P0 1+025 (1) 1. 7]
END;

’
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where [C(.,.)] denote the windows given in Fig. 4.2 after proper scaling,
[A],...,[Gz] denote image memories, * denotes spatial convolution and .
denotes point-by-point multiplication. The final scaling of Eq. (4.14)

is described by the following pseudo-code:

Algorithm 2:

[61:= [6,1+[Gy1+[61+(G,1+(G, 1;

FOR AQ = AN’AE’AS’AW'Ane DO

(P 1= (6,1 + (6]

where + denotes point-by-point division of the entries in the image mem-
ories [Gz] and [G]. Algorithms 1 and 2 constitute one iteration of the
relaxation labeling procedure. After the last iteration, the edge proba-
bilities are computed as [Pk+1(Ae)] = [1] - [Pk+1(xne)].

When these algorithms are implemented on a commercially available dig-
ital image processing system, special attention should be given to the
computation of the matrices [F], [GZ] and [G] to prevent overflow. In
many cases- it is more attractive to compute these matrices without the
use of the special hardware and image memories in order to avoid the

problems of limited word-length.

4.3. INITIALIZATION

The continuous relaxation labeling procedure described in the pre-
vious section basically contains three constituting elements: the ini-
tial probabilities for the various labels, the compatibility coefficients
between label pairs at related pixel pairs, and the update rule itself.
Having discussed the update rule and the choice of the compatibility
coefficients in the previous section, we now turn our attention to the
evaluation of the initial probabilities.

Focussing on the edge detection problem, and following the discussion
in Section 4.2, the matrices [PO(AN)], [PO(AE)],[PO(AS)],[PO(AW)] and
[PO(Ane)], containing the initial probabilities for the various labels

for all pixels, will have to be evaluated. This task can again be accom-
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plished by using the convolution and point processors present in modern
digital image processing systems. Based on the comparative study of
Abdou an Pratt (1979), we will use a [3x3] Sobel operator to obtain es-
timates of the first derivatives in the horizontal and vertical direc-
tions. The magnitude IAi[ of the gradient vector in pixel a, may be ap-
proximated by the sum of the magnitudes of the numerical estimates of
the partial derivatives Axi and A

yi®

[Ai( = & [a .. A (4.18)

xi| yi

Schachter et al. (1977) define the initial probability P?(Ae) for the
edge label AQ at pixel a; as

(o,
PPy = — (4.19)
1 e

max |Ai,[

it
where the maximum in the denominator is taken over the gradient magni-
tudes in the entire image. Alternatively, one could consider the maximum
over some large neighborhood of pixel as, at the expense of increased
computational complexity. In our case, we subdivide the label Ae into
the four labels AN AE AS and Aw. The probabilities for the labels AN and
AS are evaluated as follows. The output Ayi of the horizontal derivative
operator is decomposed into its positive part and its negative part ac-

cording to:

b= a if & . >0,
yi yi vi
=0 elsewhere, (4.20a)
and
A . = -h if o, < 0,
yi yi yi
=0 elsewhere. (4.20b)

This operation can be accomplished by means of the point processor,
yielding 1ntermedlate matrlces [A ] and [A 1, respectively. The proba-

bilities p (A ) and P (A ) are now evaluated as
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+
0 A4
PO T mm i (4.21a)
il
and
A
0 _ i
P (Ag) = EEQXTZITT . (4.21b)
il

Again, this is done for all pixels ai yielding the matrices [PO(AN)] and
[PO(AS)].'The matrices [PO(AE)] and [PO(AW)] are computed analogously

+
on the basis of Axi and Axi-’ respectively. Note that

[6_.| =& . + 4. ’ (4.22a)
X1 X1 X1

and

[a .| =a_." +4a . . (4.22b)

yi

Substitution in Egs. (4.18) and (4.19) leads us to the observation that

0 0 0 0 0
PI(A) = Pi(A) + Pi(Ag) + PL(Ag) + BL(A), (4.23)

as required in Eq. (4.15), and the probabilities for all pixels a; for

the non-edge label Ane are evaluated by means of

0 0 y
(P01 = (1] - [P (A )] (4.24)

Basically, this completes our description of the evaluation of the ini-
tial probabilities. There are, however, two issues which need some at-
tention.

By looking at the update rule (4.9), it is quite obvious that a zero
probability for any label cannot be altered by the relaxation process.
In the context of segmentation of noisy images, a zero probability for
any of the labels A _,A_,A

N E"'S
In order to facilitate the label adjustment process, all initial label

and Aw can very well be caused by the noise.

probabilities are restricted to the interval [e,1-4e€], where € is some
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small positive value, say 0.05. This can easily be incorporated in the
point operators of Egq. (4.21).

The second issue is of a more fundamental nature. By defining the
initial edge probabilities as in (4.19), the value P?(Ae) = 1 is assign-
ed to the pixel(s) at which the magnitude of the gradient attains its
maximum value. At all other pixels, the magnitude of the gradient is
transformed into a probability by scaling |Ai| linearly. In effect, this
implies that we are inclined to assign the non-edge label Ane to any
pixel whose gradient magnitude is less than half the maximum value of
the gradient magnitude occurring in the image. The scaling is defined
entirely by the maximum gradiént magnitude, independently from all other
gradient magnitudes. A more subtle mechanism can be envisaged to derive
the edge probabilities from the gradient magnitudes.

In Section 4.1, the probabilistic terminology was introduced rather
earefully in relationship to the continuous label assignment weights.
However, we now proceed in this direction by comparing the problem of
evaluating the initial label probabilities with a two-class problem in
statistical pattern recognition. The two classes are indicated by the
labels Ae and Ane’ and we would like to evaluate the label probabilities,
given the observed gradient values. In this approach, the wanted label
probabilities actually play the role of a posteriori probabilities. If
the class-conditional probability density functions of the gradient mag-
nitude were known, as well as the a priori probabilities P(Ae) and P(Ane),
we could compute the a posteriori probability for the label Ae as illus-
trated in Fig. 4.3. This figure has been adapted from Duda and Hart
(1973).

However attractive this approach may seem, it cannot be applied to esti-
mate the edge probabilities on the basis of gradient magnitudes, as ob-
tained from noisy images. The main reason for this failure is the fact

that in real-world images the number of non-edge pixels greatly exceeds
the number of edge pixels. In a sense, the number of background and in-
terior pixels is proportional to the total image area NZ, and the number
of edge pixels is proportional to the image size N. As a result, any ob-

served histogram of gradient magnitude values is dominated by the back-



92

4 |
33- /p(lAil }‘ne) ?
e
— u s mmmmmmeee—ens b 1.0
'k o
0 e
4

S /p(‘Al' )\e) |- 0.5
g g2
R '/
./f -

Fig. 4.3. Class-conditional probability density functions (

[1a;1)

probability
P(Ae

) of

gradient magnitude, the computed a posteriori probability

(-—-—-- ) for the case P(Ae) = %, and the linear scaling (..... )

according to Eq. (4.19). Adapted from Duda and Hart (1973).

ground population. An example is given in Fig. 4.4. There is virtually

no hope to estimate both class-conditional probability density functions

and the priori probabilities from such an observed histogram. The follow-

ing approximative model may give us some insight concerning the behavior

of the a posteriori probability P(Ae'|Ai|) of the label A_, given the

observed magnitude of the gradient. Let us assume that the probability

density -function of the gradient magnitude for the non-edge label is

triangular on the interval [0,a]:

2(a-8,])
p(lAill)\ne) e 0s |8 sa,

=0 elsewhere.

(4.25)

Furthermore, let us assume that the probability density function of the

gradient magnitude for the edge label is uniformly distributed over the

full dynamic range. If we set the dynamic range equal to one, we have

pelal|rg) =1 FRIAERY

=0 elsewhere.

(4.26)
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Fig. 4.4. Histogram of gradient magnitude values.

Both class-conditional probability density functions are sketched in

Fig. 4.5 for the case a = 0.4.

A
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probability
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&l

probability
P(A.

0

J T

1.0
lAil—> )

Fig. 4.5. Class-conditional probability density functions of the gra-

dient magnituae, and the computed a posteriori probability

(—=--- ) for the case P(Ae) = 0.1 and a = 0.4.

By applying the well-known Bayes theorem, we obtain
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p([a,|]r)-2(2,)

N EYTAi[|Ae).p(Ae)+p(|Ai{|xne).p(xne)

P(Ae||Ai|) (4.27)

On the interval [a,1] this expression simply yields P(Ae||Ai|) = 1. On

the interval [0,a] we have

P(Ae)

P(AeI[Ail) - 5 (4.28)

P(A,) + 2a (a-|Ai|) - (1-P(X))

The behavior of the a posteriori edge probability is given in Fig. 4.5,
for the case P(Ae) = 0.1 and a = 0.4.

In practice, one can attempt to estimate the parameter a and the pro-
bability P(Ae) from the histogram of gradient magnitude values.
P(AellAil) can then be evaluated by using (4.28) and be used as the ini-
tial edge probability in the relaxation scheme. So in fact, Eqg. (4.19)
would be replaced by Eq. (4.28). However, we feel that we would attach
too much value to the simple model introduced above. The only conclusion
we draw here is that it seems worthwile to investigate the influence of
an ad-hoc non-linear relationship, similar to the dotted line in Fig.
4.5, between gradient magnitude value and initial edge probability. We

will return to this point in Chapter 5.

4.4. EXAMPLE

The continuous relaxation scheme is applied to the gray-value image
of Fig. 4.6. The initial edge probabilities are evaluated by using Egs.
(4.18) and (4.19). The result is shown in Fig. 4.7a, where the displayed
gray-values linearly represent edge probabilities, i.e., Pg(le) = 0 is
represented by black and P?(Ae) = 1 by white. Fig. 4.7b contains a bina-
ry image, resulting from thresholding Fig. 4.7a. Figures 4.8a and 4.8b
show the result of the continuous relaxation procedure after oﬁe itera-
tion. The constants in Eq. (4.17) were chosen as Cl =1.0, C, =1.0,

2

C3 = 0.5 and Cy = 0.5. The results after three iterations are given

in Fig. 4.9.
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Fig. 4.6. Testimage of size [256x256], 8 bit gray-values.

Fig. 4.7a. Initial probabilities. Fig. 4.7b. Result of thresholding.

Fig. 4.8a. Result of first iteration. Fig. 4.8b. Result of thresholding.
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Fig. 4.9a. Result of third iteration. Fig.4.9b. Result of thresholding.

4.5. CONCLUDING REMARKS

Continuous relaxation labeling may be viewed as a mechanism to dimin-
ish the occurrence of segmentation errors by utilizing a priori know-
ledge and spatial context in an iterative and parallel updating scheme.
In this scheme, weight coefficients are assigned to the various tenta-
tive labels of each pixel. These weights are adjusted on the basis of
evidence emerging from the local neighborhood, expressed in terms of com-
patibility ccefficients. In this chapter, we have taken the position that
the compatibility coefficients are to be defined on the basis of generic
a priori knowledge.

Straightforward application of continuous relaxation labeling proce-
dures is severely hampered by the large amount of computations involved.
In this chapter we have described a new implementation of the edge rein-
forcement scheme of Schachter et al. (1977). In our method, the label
weights are adjusted by merely applying spatial convolutions and spatial-
ly invariant point operations, which can be performed quite efficiently
on modern digital image processing systems. This is achieved basically
by transfering the data dependent (and thus spatially variant) compo-
nents of the compatiblity coefficients to the label weights. This neces-
sitates the use of intermediate labels for elementary edges running in

various directions. Here only four edge directions have been distin-
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guished, but the method can be extended to more directions at the ex-
pense of additional computational effort.

In summary, we have reformulated the relaxation labeling procedure
in a concatenation of image processing steps. Each of these steps can
be applied to an entire image at video speed in state-of-the-art image
processors. The approach is certainly not restricted to the problem of
edge detection, but can be developed for any pixel labeling relaxation
scheme, provided that the compatiblity coefficients can be made spatial-

ly invariant.
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S. QUANTITATIVE EVALUATION

This chapter deals with the quantitative evaluation of the. performance
of the sequential dynamic programming method of boundary detection as de-
veloped in Chapter 3, and the performance of the parallel, iterative
method of continuocus relaxation as developed in Chapter 4.

The segmentation phase constitutes only one of many subsequent stages
in a general image analysis system and its performance should ideally be
evaluated in terms of overall system performance, like the accuracy of
specific measures in the case of an image men;grat%on system, or the er-
ror probability in the case of a pictorial pattern recognition system.
However, the same argument applies to all other stages of the complete
system, and it is virtually impossible to vary over a number of possible
methods and parameters for the various stages iﬁ order to investigate
overall system performance. For instance, the dynamic programming method
of object boundary detection may eventually yield a good estimate of ob-
ject area, when a specific algorithm is used as an object area estimator.
This does not exclude the possibility that a specific non-linear prebro-

cessing filter, in combination with a specific thresholding segmentation
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procedure and a particular area estimator eventually produces a better
estimate. Within the scope of this study, however, it is only feasible
to isolate the segmentation link from the complete image analysis pro-
cessing chain and to evaluate its performance by studying its response

to a predefined input.

5.1. METHODOLOGY

Results of the analysis and comparison of edge detector performance
by using quantitative measures have been reported by Fram and Deutsch
(1975,1978), Pratt (1978), Bbdou and Pratt (1979), Shaw (1979) and Peli
and Malah (1982). The common approach is to generate synthetic test im-
ages containing two regions of different but constant gray-levels, sepa-
rated by an ideal step edge or a ramp edge. The ideal test image is then
corrupted by adding signal-independent identically-distributed uncorrela-
ted pseudo-random noise with an approximately Gaussian amplitude dis-
tribution. The noisy test image is the input of the segmentation module
and its output can be compared with the original ideal image. The quanti-
tative measures proposed by Fram and Deutsch (1975) can only be applied
to images containing one vertical edge. The measure introduced by Shaw
(1979) is not particularly transparent and has received little attention.
Here, we follow the evaluation study of Abdou and Pratt (1979). One of
the measures used is the figure of merit proposed by Pratt (1978), which
is also included in the study by Peli and Malah (1982).

Abdou and Pratt (1979) evaluate the performance of parallel edge de-
tectors of the traditional gradient enhancement/thresholding type. A con-
tinuous idealized luminance edge is defined as a planar ramp discontin-
uity between two regions having different but constant gray-levels. The
ideal edge can be described by its position (x,y), orientation angle 6,
base amplitude b, contrast h, and slope width 1, as illustrated in Fig.
5.1. Note that the gray-values within the transition region are obtained
by linearly interpolating between the values b and b+h. The digital test
image is generated by simulating an ideal spatial sampling process in
combination.with uniform gray-value quantization. The noise-free image

can be used to study the sensitivity of any edge detector scheme to edge
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Fig. 5.1. Edge model-

position and orientation with respect to the sampling grid. Presently,
we are merely interested in the performance of edge detectors in the
presence of noise. The ideal digital test image is thus degraded by ad-
ditive noise as described above. In the context of this discussion, the
signal-to-noise ratio SNR is defined as:

SNR = (5.1)

m[?v

Q

where 02 is the variance of the additive noise. Edge detector perform-
ance can now be evaluated by estimating the probabilities of correct and
false edge pixel detection, similar to ROC-analysis in statistical de-
tection theory. This is achieved by assigning a label 'true edge' (Ate)
to all pixels in the transition region and the label 'true no-edge'
(Atne) to all other pixels in the ideal digital test image. Similarly,
the pixels in the segmentation output are labeled 'detected edge' (Ade)
or 'detected no-edge' (Adne)' The detection probability is then defined
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as

- n(Ade'Ate)

P.= PO, (A, ) = : (5.2)
de'"'te n(Ate)

D
where n(Ade,Ate) denotes the number of correctly detected true edge
pixels, and n(Ate) denotes the total number of true edge pixels. A simi-
lar notation is used in the definition of the false positive probabili-

ty:

n()\de')‘tne)

Pp = P()\de|>\tr1e) - n(A )

F (5.3)

tne

It should be noted that PD and PF can also be obtained analytically in
the case of an ideal step edge corrupted by additive Gaussian noise for
the traditional gradient/thresholding edge detector schemes (Cf. Abdou
(1978)). This is not possible for the dynamic programming boundary de-
tector and the continuous relaxation labeling method, where PD and PF
can only be evaluated experimentally.

The probabilities P_ and PF are useful performance measures for edge

D

detectors, especially when we would find P_=1 and PF=O. These measures,

however, do not distinguish between the vagious types of errors that may
occur. Suppose a specific edge detector yields a large number of detect-
ed edge pixels scattered throughout the image plane. This may result in
PD=O and PF=1. The same values would be obtained for an edge detector
which yields a connected edge parallel to the original edge, but shift-
ed Jjust outside the transition region. The latter result is evidently
much more attractive for further processing. The figure of merit (FOM)

of Pratt (1978) distinguishes between the various types of errors by ta-
king into account the error distance d(i) between the position of the de-

tected i-th edge pixel and the straight line representing the original

edge:
n(A, )
1 de 1

R —— (5.4)
MAX{n(A  )nAg ) 5oy 14yd% (i)

FOM =

where n(Ate) and n(Ade) are the number of true and detected edge pixels,
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respectively, and y is a scaling constant chosen to be y = % to provide
a relative penalty between smeared edges and isolated, but offset, edges.
Note that a value for the figure of merit FOM=1 will be achieved when
all true edge pixels have been detected correctly and no spurious edge
pixels occur. When not all of the true edge pixels have been detected,
the scaling term MAX{n(Ate),n(Ade)} results in a lower value of FOM,

even without the occurrence of spurious edge pixels. When spurious edge
pixels are detected, the FOM assumes a value 0 < FOM < 1, due to the
distances d(i).

Abdou and Pratt (1979) have evaluated the performance of traditional
gradient-type edge operators (Sobel, Prewitt, etc.) on the basis of
test images containing either one vertical edge or one diagonal edge.
The considered signal-to-noise ratios, as defined in Eq. (5.1), ranged
from SNR=1 to SNR=100. In the sequel, we will apply their evaluation
method to the dynamic programming boundary detector and to the relaxation

labeling procedure.

5.2. EVALUATION OF DYNAMIC PROGRAMMING

The quantitative evaluation of the dynamic programming method of
boundary detection to be discussed in this section is based on a study of
van der Hoeven (1985) and has been the subject of a paper by Gerbrands
et al. (1986a)..

The dynamic programming method of boundary detection requires the de-
finition of a region of interest (ROI). In practical applications this
can often be achieved by using some automated procedure, as will be dis-
cussed in Chapters 6 and 7. In our experiments we indicated the region
of interest interactively by entering two points of the straight midline
of a rectangular ROI, roughly parallel with the true edge. The images
containing a vertical edge are of size [64x64]. In the case of a diago-
nal edge, the test images are of size [128x128], but the analysis is re-
stricted to a central window as indicated in Fig. 5.2. This window con-
tains again 64 edge pixels. In both cases, the image data in the ROI
are transformed into a rectangular matrix of size [64x25]. The grid con-

stants of the original image and the transformed image are the same. In
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Fig. 5.2.a. Lay-out of test image containing verticalyedge.
b. Lay-out of test image containing a diagonal edge and

evaluation window (---).

the geometric transformation, three interpolation schemes have been con-
sidered: zero-order or nearest neighbor 'interpolation', unweighted aver-
aging of the nearest four pixel values and true linear interpolation

of the nearest four pixels. Because of its success in many medical appli-
cations to be discussed later, the cost coefficients are computed by
considering both the first-order and second-order discrete differences
along the rows of the transform matrix. The cost coefficients are de-
fined as the inverse of a convex combination of the magnitudes of the

first-order difference g'(i,j) and the second-order difference g"(i,Jj):
C(i,3) =M - afg"(i,3)] - (-e)|g"(i,3)], (5.5)

where M is some large positive constant. We have experimented with

various difference operators:

(-2 -1 o 1 2], : o (5.6a)

O~ O

[-1 -2 o 2 17, ; ' " (5.6b)
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[-1 -3 0o 3 1], ' (5.6c)

N Ol

(-1 o 1], (5.6d)

and with various values for the coefficient a. The dynamic programming
optimal path algorithm is applied to the [64x17] central part of the cost
matrix only, because the boundary strips contain unreliable data due to
the convolution with the discrete difference operators. The detected
path is transformed back to the original image domain by using nearest
pixel position assignment. Connectivity is not assured in the image
domain, and possible holes are closed by linear interpolation. The fi-
nal result is then evaluated in terms of the detection probability PD’
given in (5.2), the false positive probability PF' given in (5.3), and
Pratt's figure of merit FOM, defined in Eq. (5.4) above. These quanti-
tative measures can be used tc select the optimal choices for the inter-
polation method, the discrete difference operator and the weighting coef-
ficient a in the cost function (5.5). Again, it is virtually impossible
to consider all combinations. One has to settle for a reasonable number
of experiments, yielding a possibly suboptimal selection. In all experi-
ments, the width of the continuous transition region was chosen equal

to the pixel size in the images.

Selection of difference operator and a

Experiments were carried out for the vertical edge test image, near-
est neighbor interpolation and one realization of the noise field only,
with SNR-values 1, 5, 10, 20 and 50, to select the best choice for the
discrete difference operator from the set given in (5.6a-d), and the
best value for the weighting coefficient o in the cost function (5.5).
In the first series of experiments, the ROI was aligned perfectly with
the true edge. Based on the computed values of PD’ PF and FOM, the fil-
ters given in (5.6a) and (5.6d) were discarded. The best choices for the
coefficient a for the two remaining filters were a=1.0 for filter (5.6b)
and a=0.9 fof filter (5.6c) . In the second series of experiments we in-

troduced an angle between the midline of the ROI and the true edge.
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Angles between 4 and 14 degrees were considered using the best choices
for ¢ from the previous experiment. As an example, for SNR=1, the FOM-
value for the filter given in (5.6b) decreased almost monotonically
from FOM=0.77 to FOM=0.71 with increasing angle. For the filter (5.6c)
the range is FOM=0.75 to FOM=0.40. For larger values of the signal-to-
noise ratio, the difference between both filters is less obvious, but
the preference for the filter [-1 -2 0 2 1] is quite strong. Its
accompanying value for the weighting coefficient is a=1.0. The latter
result indicates that the cost coefficients depend on the first-order
discrete differences only. In a sense, this points towards a relation-
ship between the minimum cost approach and the maximum likelihood ap-
proach discussed shortly in Chapters 2 and 3. In the maximum likelihood -
approach, the likelihood functions are obtained from the sums of the
pixel values on either side of the hypothesized edge. The first-order
discrete difference operator does something very similar, but considers
equal numbers of pixels on either side. This weak relationship only

holds in the case of additive Gaussian noise.

Selection of interpolation method

The second issue to be discussed here is the choice of the interpo-
lation method in the geometric transformation of the region of interest
prior to the computation of the cost coefficients. Three interpolation
schemes have been considered: zero-order or nearest neighbor interpo-
lation, unweighted averaging of the values of the nearest four pixels,
and true linear interpolation of the values of the nearest four pixels.
All experiments were carried out with the filter [-1 -2 0 2 1]
and the value a=1.0 in the cost function (5.5). The first experiment
concerned the test image with the vertical edge, and a perfectly aligned
ROI. The experiment was performed for five different realizations of
the additive noise field. The signal-to-noise ratio was equal to one in
all cases. Table 5.1 gives the measured mean values and standard devia-

tions of the FOM, P_ and PF for each of the considered interpolation

D
schemes.

The entire experiment was then repeated for regions of interest which
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were not in perfect alignment with the original edge. Table 5.2. con-

tains the observed mean values and standard deviations of the FOM, PD

and PF for an alignment error of 14 degrees, as illustrated in Fig. 5.3.

°+ ot
° to +

4 + +

+ 4+ + +

Fig. 5.3. Resample positions (@) with respect to the original pixels

(+) for an alignment error of 14 degrees.

Alignment errors of 3.7, 7.2, 10.6 and 14.0 degrees were considered.

Table 5.3. contains the average values of the means of FOM, P_ and PF,

obtained by averaging over all five angles ranging from zero 20 14 de-
grees.

In almost all experiments the zero-order or nearest neighbor interpo-
lation scheme laggs somewhat behind the other schemes, conformable to
our intuition. A compafison between the other schemes apparently favors
the unweighted averaging of the nearest four neighbors above the true
bilinear interpolation scheme. This counter-intuitive result can bé ex-

plained by observing that unweighted averaging has, in general, a larger

noise-suppression effect than true interpolation. In the case of a per-
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FOM

mean s.d.

Fp

mean s.d.

P
F

mean s.d.

interpolation scheme

0.80 0.10
0.89 0.04
0.79 0.10

0.30 0.13
0.36 0.06
0.29 0.13

0.01
0.01
0.01

0.00
0.00
0.00

zero-order
average

linear interpolation

perfectly aligned ROI

SNR=1

Table 5.1. FOM, PD and PF for various interpolation schemes over five
noise realizations with a perfectly aligned ROI.
FOM PD PF
interpolation scheme
mean s.d. mean s.d. mean s.d.
0.63 0.13 0.21 0.14 0.01 0.00 zero order
0.73 0.10 0.25 0.08 0.01 G.00 average
0.67 0.10 0.21 0.10 0.01 0.00 linear interpolation

misalignement of ROI by 14 degrees

SNR=1

Table 5.2. FOM, PD and PF for various interpolation schemes over five
noise realizations with ROI misaligned by 14 degrees.
FOM PD PF

average mean

average mean

average mean

interpolation scheme

0.74
0.78
0.76

0.26
0.26
0.26

0.01
0.01
0.01

zero order

average

linear interpolation

average over five angles

SNR=1

Table 5.3. Average values of mean FOM, PD

ROI ranging from 00—140.

and PF over five angles of




109

fectly aligned ROI, the resampling positions coincide with the original
pixel positions, and bilinear interpolation becomes identical with zero-
order interpolation. The slight discrepancies in Table 5.1 originate
from the fact that in one of the experiments a different noise realiza-
tion was used. Other evidence supporting the noise-suppression argument
is given by the obseryation that in the case of a misaligned ROI true
interpolation performs better than zero-order interpolation, as can be
seen in Table 5.2, and that the performance of true interpolation ex-
ceeds the performance of unweighted averaging at higher values of the sig-
nal-to-noise ratio. For example, an experiment over only one noise real-
ization with SNR=20 and five different angles of the midline of the

ROI yielded an average value of the-FOM of 0.95 for zero-order interpo-
lation, a value of 0.92 for unweighted averaging and a value of 0.96 for
true interpolation.

The score of the detection probability PD follows the same pattern
as the score of the figure of merit. The false positive probability PF
is extremely low in all cases. This is caused by the fact that the dynam-
ic programming method of edge detection developed here, always detects
a prescribed number of edge pixels in the transform domain, independent ‘
from the signal-to-noise ratio. In the traditional approach of gradient
magnitude thresholding, PF is greatly influenced by the selection of the
threshold. In our case, the relatively small number of false positives
is divided by the large number of 'true no-edge' pixels in order to ob-
tain an estimate of PF according to Egq. (5.3). This attractive property
of the dynamic programming approach is a rather obvious consequence of
the fact that we confine the algorithm to éearch for a single connected
boundary within the region of interest. In the sequel, we will concen-
trate on performance evaluation in terms of the figure of merit.

From these experiments it is concluded that first-order interpolation
by unweighted averaging of the values of the nearest four pixels is the
method of choice to be used in the geometric transformation of the image
data within the region of interest, particularly for low values of the

signal-to-noise ratio.
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FOM-evaluation: vertical edge

The test image containing a vertical edge was corrupted by additive
noise with values of SNR equal to 1, 5, 10, 20, 50 and 100. For SNR=1 and
SNR=5, five noise realizations were considered and the resulting FOM-
values averaged. In all cases, five orientation angles of the interac-
tively indicated region of interest were considered and the results aver-
aged. The final values are represented in Fig. 5.4 as dots connected by
the drawn line. For purpose of comparison, the FOM-values of the tradi-
tional Sobel operator are also given in Fig. 5.4, connected with the
dotted line. These values were obtained by optimizing the decision thresh-
old with respect to the resulting value of the figure of merit, and

correspond with the results reported by Abdou and Pratt (1979).

FOM 1.0 s oo et e e i e e e e e e ;._.;._._..’____.Q
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Fig. 5.4. FOM-values for the dynamic programming approach ( ) and
the Sobel square root operator (----) for various values of

SNR, vertical edge.

FOM-evaluation: diagonal edge

The experiments described above were repeated for a test image con-
taining a diagonal edge. The results, averaged over four orientation

angles of the interactively indicated region of interest, are given in
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Fig. 5.5. The quantitative analysis is restricted to a [64x64] diagonal

window as illustrated in Fig. 5.2b.
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Fig. 5.5. FOM-values for the dynamic programming approach ( ) and
the Sobel square root operator (----) for various values of

SNR, diagonal edge.

FOM-evaluation: circular boundary

The experiments were repeated for a synthetic test image of size
[64x64] containing a circular region with gray-value b+h and with cen-
ter (32,32) and radius 10, surrounded by a background with gray-value b.
The digitization of the continuously defined original image was simula-
ted, and the digital image was corrupted by additive noise with SNR-values
of 1, 5, 10, 20, 50 and 100. For SNR=1 and SNR=5, five noise realiza-
tions were considered and the results averaged. In all cases, three dif-
ferent ways were considered to define a circular region of interest, and
the results were averaged. The first case concerns a region of interest
centered at the true center at position (32,32), with radius 20. In.the

second case, the radius of the region of interest was increased to 30.
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In the third case, a region of interest of radius 20 was defined, but
with an eccentric midpoint at position (32,34). In all cases, the image
data within the region of interest were geometrically transformed by
using a polar transformation along a number of radii. On the basis of
experimental evidence, the number of radii was set to 2R, where R is the
radius of the ROI in terms of the grid constant. Supporting evidence for
this choice can be found in Jongeling (1987) in the context of object
measurements. After detecting the optimal path in the polar domain, the
edge pixels were transformed back to the original image domain and a
closed boundary was obtained by linear interpolation.

There is a slight complication in the definition of the number of true
edge pixels n(Ate) used in the evaluation of the figure of merit (5.4).
In the previous cases, this number was obtained by counting the number
of pixels in the transition region in the noise-free digital test image,
i.e., the number of pixels with a value not equal to either b or b+h.

In the case of a circular object regionh with a continuously defined tran-
sition region width equal to the grid constant, this would lead to a
rather large value of n(Ate). As a consequence, a one pixel wide connected
boundary within the digital transition region would yield a rather low
value of the figure of merit, because not all true edge pixels were de-
tected. Instead, we define n(Ate) to be the minimum number of true edge
pixels which constitute a closed boundary.

The experimental results for the test image containing the circular

object region are given in Fig. 5.6.

FOM-evaluation: amended cost function

When the geometric transformation precisely matches with the shape
of the object region, the object region boundary becomes a straight line
in the transform domain. In the more general case, the transformed bound-
ary deviates from a straight line. An obvious example is a circular ob-
ject region boundary in combination with a polar transformation. The ap-
pearances of the true object region boundary are given in figure 5.7 for
the cases of a correctly centered and an incorrectly centered polar ori-

gin. Analytical expressions for such curves have been derived by Jonge-
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Fig. 5.6. FOM-values for the dynamic programming approach ( ) and the
Scbel square root operator (----) for various values of SNR,

circular object region.

ling (1987).
If one has great faith in the definition of the ROI, one may incorpo-

rate a bonus for straight paths in the dynamic programming cost matrix.
Similar to the use of Markov transition probabilities as described in
Chapter 3, this can be achieved by introducing extra penalties for both

diagonal predecessors. The cost function defined in (3.20) is amended in

the following way:

@' (Py/Py, 1) = c(R+1l,py 1) if py 1 7Py70,
= c(2+1,p2+1) + cd.M if |p2+1-pil=1, (5.7)
= o elsewhere,
for all pl,pl+1=l,...,P and all £=0,...,L-1, where M is the same large

(5.5.), and 0 £ ¢, £ 1. Experiments

positive constant as used in Eqg. a
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a b

Fig. 5.7. Transformed object region boundaries for a concentric (a) and

an eccentric (b) polar origin.

have been performed for the test image containing a circular object re-
gion, 'as described above, and values of the signal-to-noise ratio SNR=1
and SNR=2. All three interpolation schemes were considered, as well as
various offsets between the centerpoint of the object region and the
polar transform origin. For a detailed description we refer to Cohijn
(1987). Here, we merition the main results.

In the case of a perfectly centefed ROI, the experiments led to the
predictable observation that a value of the figure of merit FOM=1.00 can
be achieved byiany interpolation scheme when the value of the weighting
coefficient 3 is increased sufficiently. In fact, for cd=l, the dynamic
programming optimal path algorithm constitutes an unnecessarily compli-
cated line fitting algorithm.

In the case of an eccentric ROI, it was found that the unweighted
averaging interpolation scheme performed slightly better than true bili-
near interpolation. In generél, a minor improvement of the performance

is achieved for small values of the weighting coefficient c Increasing

a
the value of cq even further results in a decrease of the performance.

In that case, the preference for straight segments is too strong. As an

example, the results for an offset of four pixels of the polar origin



are given in Table 5.4, in terms of the mean and standard deviation of
the figure of merit, computed on the basis of five noise realizations,
with SNR=1.

It is concluded that the introduction of a bonus for straight seg-

ments is not very useful.

FOM

3 mean s.d.
0.00 0.89 0.05
0.05 0.91 0.04
0.10 0.91 0.04
0.15 0.90 0.05
0.20 0.90 0.05
0.25 0.89 0.05
0.30 0.89 0.05
0.35 0.89 0.05
0.40 0.89 0.06
Q.45 0.88 0.07
0.50 0.88 0.07
0.60 0.77 0.14
0.70 0.67 0.18
0.80 0.65 0.17
0.90 0.58 0.13
1.00 0.56 0.13

Table 5.4. Figure of merit for circular object region, SNR=1, unweighted
averaging interpolation, eccentric ROI, for various values

of the bonus for straight segments.

5.3. EVALUATION OF RELAXATION LABELING

In this section we discuss the quantitative evaluation of the contin-
uous relaxation labeling scheme described in Chapter 4. Given the im-
plementation proposed here, three issues need our attention. The first
1’ C2, C3 and

C4 in the formulas of the compatibility coefficients (4.17). Two sets

issue concerns the choice of the weighting coefficients C
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of coefficients have been considered. The first set was chosen to be
identical to the set used by Schachter et al. (1977). The second set of
coefficients was particularly designed for very noisy images, in the
sense that the no-edge label Ane was allowed to dominate, in an attempt
to prevent the occurrence of spurious edges in the interior and back-
ground regions. The second issue to be considered refers to the number
of iterations of the relaxation labeling algorithm. In the context of
this study, we are not focussed on establishing formal convergence prop-
erties of the relaxation mechanism. Instead, we are more interested in
the performance of the relaxation algorithm when a limited number of
iterations is applied. Here, we consider the applicationof 1, 2, 3, 6 and
9 iterations. The third issue which needs our attention is the decision
threshold, i.e., following the relaxation labeling procedure we still
have to decide which pixels are detected as edge pixels and which are
not. In the context of Bayes decision theory, it would seem natural to
choose the threshold at Pi(Ae)=0.5. However, the experimental results
were quite disappointing. Instead, we interactively selected the thresh-
old such that the figure of merit on the basis of the initial probabil-
ities P?(Ae) was maximized. The same threshold was subsequently used
after the selected number of iterations. Consequently, the results of
this quantitative evaluation study can also be interpreted in terms of
relaxation labeling as a post-processing mechanism following the appli-
cation of the traditional Sobel gradient operator, because Abdou and
Pratt (1979) also selected the threshold of the Sobel operator which
maximized the resulting value of the figure of merit.

Following our discussion of Section 4.3, the initial probabilities
P?(Ae) were computed from the gradient magnitudes by applying a non-1li-
near scaling. The top 0.5% of the pixels with the highest values of the
gradient magnitudes were assigned an initial probability P?(Ae)=1 and
the pixels with intermediate values were scaled linearly, as depicted
in Fig. 5.8. This initial edge probability was subsequently divided be-

tween the labels AN’ A AS and Aw and all probabilities were restricted

EI
to the interval [0.05,0.80] as discussed in Chapter 4.
In the original publication by Schachter et al. (1977) separate relax-
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Fig. 5.8. Non-linear scaling of gradient magnitude values to obtain ini-

tial edge probabilities.

ation schemes "are applied to the edge probabilities and to the hypothe-
sized edge directions. It has been stated before that this is not neces-

sary in the relaxation scheme proposed in Chapter 4.

Experimental results

Experiments were performed on the basis of the synthetic test image
containing a vertical edge and corrupted by additive noise with SNR=1, 5,
10, 20, 50, 100. The first set of weighting coefficients was similar to
the original set used by Schachter et al. (1977): C.=1.000, C_=0.1240,

1 2

C3=C4=0.005. The second set allows the no-edge label to dominate:

Cl=l.OOO, 02=1.000, C3=C4=0.500. Increasing C, and C4 even further tends

to devour the true edges. In all cases, the filse positive probability
was in the order of 0.01. For SNR=50 and SNR=100, the effects of the re-
laxation labeling procedure were neglectable. For SNR=1, there was a
slight improvement due to the relaxation procedure, but even after 9
iterations the results were still useless. The results from the other
experiments are summarized in Tables 5.5 - 5.7. For the case SNR=10 and
the second set of compatibility weighting coefficients we experimented

with a larger number of iterations. It turned out that the results be-

came stable after 18 iterations, with PD=O.625 and FOM=0.765.
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Cl=l.000, C2=O.124O C1=l.OOO, C2=l.000
Cteration 3—C§=O.005 . C3=C§=O.500 o
D D

0 0.312 0.453 0.312 0.453

1 0.312 0.446 0.312 0.459

2 0.312 0.446 0.312 0.459

3 0.312 0.446 0.312 0.458

) 0.312 0.446 0.312 0.472

9 0.328 0.447 0.312 0.471
SNR=5

Table 5.5. Results of relaxation labeling for SNR=5.

Cl=l.OOO, C2=0.124O Cl=l.OOO, C2=l.OOO
. _ C3=C4=0.005 C3=C4=0.500
iteration
PD FOM PD FOM

0 0.484 0.694 0.484 0.694

1 0.484 0.685 0.484 0.685

2 0.531 0.699 0.484 0.685

3 0.562 0.700 0.484 0.693

6 0.578 0.705 0.500 0.710

9 0.594 0.703 0.531 0.741
SNR=10

Table 5.6. Results of relaxation labeling for SNR=10.

The above results were obtained for one realizaiton of the additive
noise field only, but additional experiments have shown that the rela-
tive improvements depicted in Tables 5.5 - 5.7 are typical for the relaxa-
tion labeling procedure in its present implementation. In addition, -
despite the relative performance improvement obtainable by applying the re-
laxation labeling procedure, the results are still quite useless. Espe-
cially at SNR=1, we observed an improvement of the figure of merit from

0.140 to 0.172 after 9 iterations, but the finally detected edge points
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were still scattered throughout the image plane.

€,=1.000, €,=0.1240 | €, =1.000, C,=1.000
_iteration €4=C,=0.005 €4=C4=0.500
P, FOM P, FOM

0 0.953 0.874 0.953 0.874

1 0.953 0.874 0.953 0.874

2 0.953 0.874 0.953 0.878

3 0.953 0.874 0.953 0.908

6 0.969 0.876 0.953 0.919

9 0.969 0.876 0.969 0.920
SNR=20

Table 5.7. Results of relaxation labeling for SNR=20.

5.4. CONCLUDING REMARKS

In this chapter we evaluated the dynamic programming method of bound-
ary detection as developed in Chapter 3, and the parallel, iterative
method of continuous relaxation as developed in Chapter 4. From the ex-
perimental performance evaluation, particularly in terms of the figure
of merit proposed by Pratt (1978), we conclude that at lower values of
the signal-to-noise ratio, say SNR < 10, the dynamic programming method
shows much better performance than the traditional method of gradient
magnitude thresholding, even if the latter method is used in combina-
tion with a relaxation labeling procedure to prevent the occurrence of
inconsistent label assignments to related pixels. In addition, we con-
clude that for images corrupted by additive Gaussian noise, the cost
function in the dynamic programming approach depends on the first deriv-
ative only. The best discrete gradient operator from the observed set
is [-1 -2 0 2 1], and the best interpolation method from the
considered alternatives is unweighted averaging of the nearest four pix-
els. Incorporation of Markov-like boundary properties in the cost func-
tion does not yield a considerable improvement of the performance.

Obviously, these conclusions are valid only within the context of the
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experiments carried out here, but the examples in Chapter 7 show the
wide applicability of the dynamic programming approach to problems

where other methods fail.
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& . ROI-DETECTION

The sequential search method of object delineation by dynamic pro-
gramming as developed in Chapter 3, heavily relies on the possibility
to define a restricted region of interest (ROI) within the image. Given
such a region of interest, the image data within the ROI are transformed
geometrically into a rectangular matrix, which then forms the input for
the dynamic programming algorithm. In specific applications, it may very
wéll be possible to design a goal-oriented procedure to detect the ROI
automatically. Examples of this approach will be given in Chapter 7. In
this chapter, the problem of ROI-detection is discussed in a somewhat
more general setting. In Section 6.1 we treat the case of a compact
blob-like object region which allows the use of the polar transformation.
In Section 6.2 we shortly discuss the possibility of local gradient ex-
trema tracing. Section 6.3 is devoted to ROI-detection by pre-segmenting

the image with a region-oriented segmentation method.

6.1. COMPACT BLOB REGIONS

Let us consider a continuous image of size NxN which can be described
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by a binary replacement model, and which contains a single object region
with a circular boundary of radius R, centered at coordinate (Xc’Yc)'
The background region has constant gray-value b and the object region
value b+h, as illustrated in Fig. 6.1la. In the noise-free case, the pro-
jection P(y) of the data on the y-axis has the value Nb for 0 £ y £ yc—R

2
and for y + R £y £ N, and the value Nb+2h(R2-(y-yC)2)2 for

c
yC-R Sy s yc+R, as depicted in Fig. 6.1b.
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Fig. 6.1. Image containing circular object region (a) and its projec-

tion on the y-axis (b).
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Obviously, when the image is heavily contaminated by noise the projec-
tion profile will be far from the ideal shown in Fig. 6.1b, but the pro-
jection mechanism tends to reduce the noise considerably. In many cases
it. will be possible to obtain a fairly good estimate of the value of Y,
and a rough estimate of the radius R from the discrete, noisy projection
profile. Repeating this procedure for the projection on the x-axis pro-
duces an estimate for X, and the polar transformation can be performed.
This method can be applied to any object region with a compact blob-like
shape, but will fail when the image contains more objects which overlap

in the projection profiles.

6.2. GRADIENT EXTREMA TRACING

When the shape of the object region is such that the use of the polar
transformation is not obvious, or when the image contains a number of
object regions, one is forced to attempt to establish a centerline of
the ROI. The image data within a swath along this centerline is then
transformed geometrically, the transformation being defined as locally
perpendicular to the centerline. Ideally, this centerline would coincide
with the true but unknown object region boundary. The problem, however,
is not circular as it seems, because it suffices to obtain a rough esti-
mate of the boundary. The approach is hierarchical: the coarse estimate
is used to define the ROI and the dynamic programming method produces
the final estimate. One can envisage a number of ways to obtain a center-
line for the ROI. In this section we outline the approach of tracing
gradient extrema.

Tracing gradient extrema is an established method of sequential edge
detection (Cf. Rosenfeld and Kak (1982)). First, a starting point is de-
fined, e.g., by selecting a local gradient extremum of acceptably high
magnitude. In the direction perpendicular to the gradient direction a
search window is defined, and the pixel with the highest gradient is se-
lected as the next point, if its magnitude is above an acceptance thres-
hold. This process is repeated until no new point can be added to the
emerging edge.

In a somewhat different context, this type of local maxima tracer has
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been investigated by Van Ommeren et al. (1986). Given the present point
and the current direction, the next point is selected in a process which
they call "beam-like forward looking". In this process, the sums of the
gradient magnitudes along three hypothesized continuations of the edge
are computed, and the first point ke, 8=1,2,3, of the maximum sum con-
tinuation is selected. An example is given in Fig. 6.2 for a look-ahead
of five pixels. At termination of the sequential edge tracking process,
the detected path is smoothed and the resulting smooth curve is used as

the centerline of the ROI.
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Fig. 6.2.Beam-like search windows with a look-ahead of five pixels

(adopted from Van Ommeren (1984)).

Predictably, the detected path will not be correct in all cases. At
present, visual inspection of the result is recommended. It is envisaged
that the inspection task can be automated in the future by utilizing
knowledge-based systems, following some of the ideas proposed by Cheng
et al. (1988).

It is strongly recommended to apply the above method to a low-resolu-
tion version of the image. The use of a low-pass filter does not only
suppress both the noise and spurious details, it also limits the spatial

frequency range. As a result, fewer samples are required for a faithful
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representation. When the following point spread function is used:

[1 4 3 1]
3 9 12 9 3
1
T3 |4 12 1. 12 a4,
3 9 12 9 3
1 3 4 3 1

the resulting image may be subsampled by a factor of three. Note that
the filter can be decomposed into two filters of size [3x3], and each
of these is separable into two one-dimensiocnal filters of sizes [3x1]
and [1x3], respectively. This facilitates extremely fast implementations
(Cf. Groen (1988)). i
Because the low-resolution image can be represented by fewer pixels,
its use has the additional advantage of a decreased computational bur-
den. The main point, however, is the amplification of the hierarchical
aspects: the coarse estimate is obtained at low resolution and is subse-
quently used to obtain a final estimate at the full resolution. This ap-

proach is extended in a region-oriented direction in the next section.

6.3. REGION DETECTION

The maximum gradient tracing algorithm proposed in the previous sec-
tion, as well as the dynamic programming method-itself, basically search
for the discontinuity between adjacent regions in the image. In the dual
approach, region-oriented segmentation methods attempt to detect the
regions explicitly, and the edges result implicitly. In general, region-
oriented methods tend to correctly detect the presence of the regions,
but the geometric accuracy of the implicitly resulting edges is poor.
Combination of the region information and the boundary information, ob-
tained by separate processing modules, may produce a segmentation re-
sult which is better than the result which can be dbtained by either a
region-oriented method or an edge-oriented method. This is precisely the
approach taken in the design of general purpose image interpretation or

image understanding systems, as proposed, a.o., by Hanson and Riseman
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(1978) and Levine and Nazif (1985). In this section we discuss the pos-
sibility to use a region-oriented segmentation method in order to de-
fine the region of interest as required by the dynamic programming bound-
ary method. This constitutes merely a concatenation of processing mod-
ules, in contrast with the approach in computer vision where the re-
sults of both processing modules are combined at a higher level in the
image interpretation scheme.

The simplest region-oriented segmentation method is constituted by
simply thresholding the gray-values. Indeed, in some very simple situa-
tions, it is possible to achieve a reasonable tentative segmentation.
The results may be improved by applying cellular logic operations like
openings and closings, and extraction of the boundaries -from the binary
segmentation mask yields the wanted tentative centerlines of the ROI's.
The method will fail in the case of more complex images with a poor sig-
nal-to-noise ratio and spatially varying levels for the various regions.
Sequential region-growing methods of” the split-and-merge type have pro-
ven to yield acceptable segmentation results, even at very low values
of the signal-to-noise ratio.

The idea behind split-and-merge procedures is usually attributed to
Horowitz and Pavlidis (1976) and has been treated extensively by Pavli-
dis (1977). Consider an image of size [2Lx2L]. This image can be divided
into its four quadrants, and each of the quadrants can again be divided
into its four quadrants, and so on. This process can be described in
terms of the quartic picture tree (QPT), where the node at level 0 re-
presents the entire image. Each node in the tree has four sons. The
split-and-merge algorithm starts with a tentative partitioning of the

L_ksz—k], correspond-

image plane into non-overlapping squares of size [2
ing with level k in the QPT. We then start with the merging operations.
Some uniformity predicate is defined, and if a quadruplet of sons of the
same father node can be merged to form a uniform or homogenous region,
they are deleted from the tree. First, this is done for all sons at the
starting level k, then the procedure is repeated for all nodes -without

any sons at level k-1, and so on. If no more merging operations can be

accomplished, we return to the remaining nodes at the starting level k,
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where each node is put to a test to decide whether it i$§ homogeneous or
not, according to the uniformity predicate. If it is not, the node is
expanded into its four sons, corresponding with a splitting operation
on the square in the image domain. This process continues as long as
necessary, possibly down to the pixel level.

After all possible merges, and all necessary splitting operations,
the image is segmented in terms of squares of various sizes. The smal-
lest squares may be single pixels. All pixels in one square are assumed
to belong to one single region, because evidently no further splitting
was necessary.

The final stage of a split-and-merge algorithm is called grouping.

In this stage, any adjacent squafes are put to a test to decide whether
they can be joined and still form a homogeneous region according to the
uniformity predicate. This process is repeated until all squares are
assigned to a region, and constitutes the pure region growing aspect of
the algorithm.

In the past, we developed a split-and-merge algorithm along the lines
sketched above for a specific application in the field of remote sensing,
i.e., the segmentation of side- looking airborne radar (SLAR) images of
the earth's surface for vegetation classification purposes, as described
in Gerbrands and Backer (1983). Based on the physics of the SLAR-imaging
system, the most obvious uniformity predicate to be used was a test on
the variance of the gray-values within a split-and-merge square, al-
though the variance criterion does not yield a legitimate uniformity
predicate as defined by Pavlidis (1977). However, the effects of using
this illegitimate criterion have been shown to be negligible, as report-
ed by Gerbrands and Backer (1984). In effect, very few criteria do
yield a legitimate uniformity predicate, and none of these is very sat-
isfactory 'in the practice of image processing. As a result, we propose
to use the variance criterion, despite its theoretical drawbacks.

The split-and-merge segmentation can be used to find a region of in-
terest for the dynamic programming boundary detector in the following
way. When all possible merging operations and all necessary splitting

operations have been carried out, then, in general, the small squares
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will be concentrated near the transition regions between adjacent homo-
geneous regions. We can then create a binary image, where the pixels of
any small region are labeled 'one' and all pixels of larger regions are
labeled 'zero'. The decision threshold can be determined from the histo-
gram of the sizes of the squares after the merging and splitting opera-
tions. In this binary image, isclated squares of "ones" can be omitted,
but any concatenation of squares of '"ones" defines a possible region of
interest. By computing the skeleton of such a concatenation, the center-
line of a possible region of interest can be established. This approach
has been the subject of preliminary experiments performed by Starink
(1986) and de Kok (1987). Figure 6.3 shows a synthetic test image,
figure 6.4 shows the binary image containing the small squares only,

and figure 6.5 shows the skeleton of the significant region, superim-

posed on the original test image.

Fig. 6.3. Synthetic test image.

The method of ROI-detection described above is certainly promising,
but further investigations are needed to establish its true value. In
addition, it should be noted that split-and-merge algorithms, in combi-
nation with cluster analysis and a continuous relaxation scheme applied
to the labels of regions, may produce a segmentation result which is
quite acceptable in itself. This procedure has been reported by Ger-
brands, Backer and Cheng (1986). Finally, it is remarked that the ap-

proach of split-and-merge algorithms can be generalized to pyramidal
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Fig. 6.4. Map of small split-and- Fig. 6.5. Skeleton of significant
merge squares . region superimposed on

original image.

structures with various relationships between father-nodes and son-nodes.
Preliminary experiments in the field of digital image segmentation by

using pyramidal structures have been reported by Eijlers (1987).

©.4. CONCLUDING REMARKS

In this chapter we discussed various possibilities to automatically
define a region of interest, as a prerequisite for the subsequently ap-
plied dynamic programming boundary detector. The supporting experimental
evidence is rather limited, but the general conclusion is that in many
cases it will be possible to find a region of interest. The success rate
of the discussed approaches certainly depends on the characteristics of
the imagery which is to be segmented. The hethods discussed in Sections
6.2 and 6.3 draw heavily upon the idea of 'planning', as introduced by
Kelly (1971), in the sense that analysis at some higher level in a mul-
ti-resolutional pyramidal data structure facilitates the ultimate analy-
sis at the bottom level of the full resolution image representation. This
powerful mechanism does not only find application in the field of image
analysis, but also in the field of digital image coding (motion analysis,
subband coding) and seems to be closely related to popular models of

human visual perception.
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7. APPLICATIONS

The dynamic programming method of object region boundary detection
was originally developed for the delineation of the left ventricle
of the human heart in Technetium-99m radioisotope images, in a coopera-
tive research project between Delft University of Technology and the -
Thoraxcenter of the Erasmus University in Rotterdam. Early publications
describing this application are the papers by Lie et al. (1981) and
Gerbrands et al. (1981). Due to its success, the method has since been
applied to various other segmentation problems in the field of medical
image analysis. In this chapter we describe how the dynamic programming
method-is used in two of the applications which have already proven
their value in clinical practice. In Section 7.1 we discuss the deline-
ation of the left ventricle in Technetium-99m gated blood-pool scinti-
grams. Section 7.2 is devoted to the detection of the boundaries of ar-
terial segments in coronary cineangiograms. Section 7.3 contains a dis-

cussion of some typical aspects of these applications.
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7.1. Tc-99m GATED BLOOD-POOL SCINTIGRAMS

Technetium-99m (Tc-99m) gated cardiac blood-pool scintigraphy has
been accepted in clinical practice as a noninvasive technique for the
assessment of left ventricular (LV) function. With this technique the
red blood cells are labeled with the radioactive isotope Tc-99m and the
emitted radiation is measured with a gamma-camera. The scintillations
at each position in the flat crystal of this camera are registered and
the accepted counts accumulated in a matrix in computer memory. In a
gated study, the cardiac cycle is divided into a fixed number of time
intervals and a corresponding matrix is defined for each interval. The
counts are scheduled to the matrices depending on their time of arrival
with respect to the R-top of the ECG. An example of the first eight scin-
tigrams of a 20 frames study is given in Fig. 7.1. The images are of
size [64x64]. The more or less circular blob in each image represents
the activity of the LV. The total number of counts within the left ven-
tricular activity structure, after appropriate background correction,
provides a direct measure for instantaneous left ventricular volume. The
upper-left image is at end-diastole, where the LV volume is maximal. The

lower-right image is at end-systole, the LV volume being minimal.

Fig. 7.1. Eight images of a Tc-99m gated blood-pool study.
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Studies of this type are performed to obtain the ejection fraction,
which is defined as the change in volume of the LV from end-diastole to
end-systole relative to the maximum volume. Coméutation of the ejection
~-fraction (EF) requires the delineation of the LV boundary and the defi-
nition of a background region. This is achieved by the dynamic program-
ming method as described by Lie et al. (1981) and Gerbrands et al.
(1981), inspired by the ideas of Martelli (1972, 1976) and Ashkar and
Modestino (1978). Specific details concerning the actual implementation

are excerpted from Reiber et al. (1983) and are given here.

Definition of LV center

To allow contour detection in polar coordinates, the LV center must
be determined. This is done automatically in the first frame of the
study. In this frame the 64 sums from the columns and rows are computed
and smoothed with an unweighted 5-point operator. A provisional center
position is found by searching the row and column sums at the right
lower corner of the image for the first local maximum values above cer-
tain row and column thresholds, respectively. The threshold value,

THRES, for the row or column sum has been found empirically to be:
THRES = (MAX-MIN)x4 + MIN,

where MAX and MIN denote the absolute maximum and minimum values be-
tween the 11th and 54th positions of the particular vector, respecti-
vely. Figure 7.2 shows the first frame of a gated blood-pool study with
plots of the row and column sums. Following the computation of this ini-
tial center position, a 21- by 21l-pixel area, centered around this po-
sition, is defined. Next, the total count within a submatrix of size
7x7 is determined for each of the possible positions of the submatrix
within the 21x21 area. The center position of this submatrix at the lo-
cation with the maximal total number of counts is then assumed to be
the approximate center of the LV activity structure. This provisional
center does not necessarily coincide with the geometric center of the
left ventricle or with its center of gravity. This does not pose a se-

rious problem for the contour-detection algorithm, since this approxi-
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mate center will be updated by the contour algorithm itself. The pro-
visional center simply provides a starting point for further analysis.
In case the algorithm fails to find a reasonable center position, the

user may correct the position with the joystick of the computer system.

Fig. 7.2. Automated definition of approximate center of LV activity

distribution from column and row sums.

Contour detection

The polar representation is obtained by sampling the original image
along 64 radii from the provisional center of the LV. Along each radius
32 samples are taken, with sample distances equal to the pixel spacing
in the x,y matrix. The value of a pixel in the polar matrix is defined
by the average of the 3x3 neighborhood of the pixel closest to the sam-
ple point in'the original image. This polar representation is shown in
Fig. 7.3 (top center) together with the original image (top left). The
radial distance is plotted along the horizontal axis and the angular
position counterclockwise with respect to the 3 o'clock direction in
the x,y matrix is plotted along the vertical axis.

The detection of the edges in the polar image is achieved by means
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of a second-derivative operator applied along the horizontal lines in
the polar image. The second-derivative image is obtained by applying

a first-derivative operator twice. Finally, the cost matrix is defined
as- the inverse of the second-derivative image. The top right image in
Fig. 7.3 is the first-derivative image and the bottom left image the
cost matrix. The displayed brightness levels in the cost matrix are
proportional to the cost coefficients. The band in which the contour
is to be detected is characterized by low costs (low brightness levels)
as can be seen in this image.

The minimal-cost contour is the minimum-cost path from the bottom

to the top in this cost matrix\(Fig. 7.3, bottom center). Retransform-
ing to Cartesian coordinates and connecting the 64 contour positions

results in a continuous contour (Fig. 7.3, bottom right).

Fig. 7.3. Top imagesxrepresent‘(left to right) original image, polar
image, and first-derivative image. Bottom images. represent
(left to right) cost matrix, detected contour superimposed

on cost matrix, and image with. detected contour superimposed.

Tt is dlear that the detected contour will depend on the initially

computed center positién.>Accordingly, this center position is now re-
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placed by the centroid of the activity distribution within the initial-
ly generated contour and the contour-detection procedure is repeated
from this centroid. Repetition of this procedure will converge toward
an optimal center position, but in practice a single iteration suffices,
since the deviation from the optimal position is then usually not more
than 1 pixel in x- and/or y-direction. One iteration is therefore taken
to give the final contour. The computation time for the foregoing pro-
cedure is only 12 seconds.

If the user does not agree with the displayed contour, he may cor-

rect it or draw a new one with the joystick.

7.2. CORONARY CINEANGIOGRAMS

Coronary angiography plays an important role in the clinical manage-
ment of patients with ischemic heart disease. In this procedure, roent-
gen contrast agent is selectively injected into one of the main coro-
nary arteries via a catheter and X-ray cineangiograms are obtained with
a cinecamera. These films provide the clinicians with accurate informa-
tion about the morphology of the coronary arterial tree, thus creating
the possibility to investigate the presence, the extent, the severity
and the functional significance of coronary obstructions. In this sec-
tion we shortly describe the delineation of selected arterial segments.
At present, in clinical practice, the region of interest for the contour
detection algorithm is indicated interactively. Thg user indicates a
number of central points in the selected segment, such that the straight
line segments connecting consecutive pairs of these points are well with-
in the artery. An example is given in Fig. 7.4.

The indicated piece-wise linear curve is then smoothed, yielding the
tentative centerline of the segment. Two separate regions of interest
are defined by swaths of image data left and right of the tentative cen-
terline. The data in each swath is transformed geometrically by means of
a transformation which is approximately perpendicular to the local cen-
terline. The dynamic programming method is then used to detect the left-
hand and righthand boundaries of the arterial segment. The cost function

involved is given in Eq. (5.5), with a value of a=0.5. The detected paths
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Fig. 7.4. Interactively indicated line segments.

Fig. 7.5. Detected boundaries of arterial segment.

in the transform domain are mapped back to the original image domain,
closed by linear interpolation and smoothed. The final centerline is
then computed from both boundaries and the complete procedure is repeat-

ed to diminish the influence of the human interaction in the definition



138

of the ROI. The final result for the example of Fig. 7.4 is given in
Fig. 7.5.

The same procedure is applied to the tip of the catheter as observed
in the angiogram. Because the true dimensions of the catheter are known,
this measurement creates the possibility to calibrate all subsequent
measurements in millimeters. The boundary data are corrected for pin-
cushion distortion and the digital gray-values in the arterial segment
are calibrated by using a densitometric procedure described in Reiber
et al. (1983a). Various quantitative measurements are then obtained,
like the percentages diameter and area narrowing, the extent of the oc-
clusion, the rouéhness of the boundary, etc. Descriptions can be found
in Reiber et al. (1982) and Kooijman (1982). Some of these measurements

are illustrated in Fig. 7.6.

TENIGE &
EN 3

190 %

Fig. 7.6. Detected contours, diameter function, computed diameter

and area narrowing, and estimated original size of artery.

The complete procedure has been evaluated extensively, as reported
by Reiber et al. (1984a) and Reiber et al. (1984b). Here, it suffices

to state that the accuracy and precision of the boundary detection pro-
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cedure as assessed from cinefilms of perspex models of obstructed arte-
rial segments filled with contrast agent were -30 um and 90 um, respec-
'tively. The variability of the complete procedure in terms of absolute’
arterial dimensions was less than 0.12 mm for clinical cineangiograms.
Related material can be found in Reiber et al. (1986) and Reiber et
al. (1986a). Recent experimental results are described in Reiber et al.

(1987).

7.3. DISCUSSION

In this section we discuss some typical aspects of the applications
described above, starting with the delineation of the left ventricular
region in the Tc-99m scintigrams. It is noted that the procedure to de-
fine the origin of the polar coordinate system resembles the method pro-
posed in Section 6.1. In this application the situation is more complex,
which is especially due to the presence of the right ventricular region.
The interpolation method used in the polar transformation is zero-order
or nearest neighbor interpolation. Note that we discarded this method
in our quantitative evaluation study as described in Section 5.2. In
this application, however, nearest neighbor interpolation is used in
combination with a [3%3] uniform preprocessing filter. In Chapter 5, we
did nét consider such additional operations, because we were focussing
on the potential differences in the performance of the various interpo-
lation schemes. In an additional experiment, we applied the evaluation
method of Chapter 5 to the combination of é [3%3] uniform smoothing fil-
ter and zero-order interpolation. The results are given in Fig. 7.7 for
the test image containing a circular object region. Froﬁ this experiment
we conclude that the inteérpolation method used in this application com-
pares favorably with the other schemes considered.

The next topic concerns the cost function used in the dynami¢ pro-
gramming optimal path algorithm. The cost function used here is based
on the values of the second derivative only, which is in contrast with
our findings in Chapter 5. It should be noted, however, that the images
considered here do not conform to the replacement model. The left ven-

tricular region, as observed in the planar scintigram, represents a pro-
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Fig. 7.7. FOM-values for various interpolation schemes: zero-order (a},
true bilinear interpolation (b), unweighted averaging (c) and
the combination of a [3x3] uniform filter and zero-order in-
terpolation (d), for various values of SNR and a circular ob-

ject region.

jection of the three-dimensional activity distribution in the left ven-.
tricle. If we model the three-dimensional left ventricle as a homogene-
ous sphere, then a cross-section of the brightness function in the pro-
jection image will look like the curve in Fig. 7.8 due to the low reso-
lution of the imaging system. Using the first-derivative values in the
cost function would yield a contour which does not encompass the complete
left ventricular region, since the maxima of the first derivative
function occur at the inflection points of the activity distribution.
The use of the second derivative results in a contour at a sufficiently
shifted position.

"The clinical evaluation of the complete procedure, including various

ways to compute the ejection fraction, is discussed in detail by Reiber
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Fig. 7.8. Maximum gradient magnitude positions (a,a') and required

boundary peositions (b,b').

(1983). Here, it suffices to state that the contour detection scored a
success rate of 92% in a total of 100 patient studies, in the sense that
visual inspection of the detected contours led to interactive correc-
tions by the user in only 8% of the cases. The complete procedure of
ejection fraction estimates compares—favorably with other methods in a
study performed by Reiber (1984).

Now we turn our attention to the second application, i.e., the deli-
neation of arterial segments in coronary éineagiograms. Again, nearest
neighbor interpolation is used in the geometric transform to straighten
the region of interest. In the present implementation, a [5x5] median
filter is applied as a preprocessing filter. The noise suppression ef-
fects of median filters are similar to those of linear filters. The ad-
vantage of this type of non-linear filters is that the edges in the image
are not blurred. On the contrary, they tend to be enhanced by the fil-
tering operation. As a result, it is conjectured here that the combina-

tion of a [5x5] median filter and nearest neighbor interpolation will
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perform as least as good as the combination of a [3x3] linear filter
and the same interpolation scheme, as discussed above. Concerning the
cost function, it is observed that in this application both the first
derivative and the second .derivative are used. In the light of the above
remarks concerning the scintigraphic images, the difference may be ex-
plained by the fact that the blur introduced by the X-ray imaging system
is much less than the blur caused by the low resolution scintillation
camera.

In Chapter 5, we studied the performance of boundary detection schemes
for the case of uniform regions corrupted by signal-independent additive
white Gaussian noise. In relation to the applications discussed here,
the evaluation method has been applied in a limited experiment to syn-
thetic test images with a Poisson gray-vaiue distribution. The test image
containing a diagonal edge was used, and the two regions were assigned
Poisson distributions with parameters Al and AZ’ respectively. These
distributions were approximated by pseudo-random Gaussian noise proces-
ses with parameters ul=02=A and u2=02=A . The signal-to-noise ratio

11 22
was arbitrarily defined as:

()\1-)\2)2 .
SR, = ——— , (7.1)
%(A1+A2) o

the numerator répresenting‘tﬁe squared contrasf between botH regions in
terms of the difference of the means, and the'denoﬁinator represehtingf
the aﬁeréée of the two noise variances. The resulting FOM-values are
given in Fig. 7.9. Thé optimal value for the weighting coefficient in
the cost function of Eq. (5.5), as assessed from some preliﬁinary exberf
iments, waé'u=1.O.AThé results are'avéraged over five noise realizations.
Details of this experiment can be found in Bedawi (1988) and are omitted
here. . | '

Due td its success in both applications discussed here,’the metﬁod of
dynamic programming'boundarf detection is also used for object delinea-
tion in Thélliﬁm-201 myocardial perfusion scintigrams. Early fesults are

discussed by Lie et al. (1981). The method has been in clinical use for
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Fig. 7.9. FOM-values for pseudo-Poisson gray-value distributions for

various values of SNRP, diagonal edge.

a number of years. Detection of the complete coronary tree and frame-to-
frame analysis of coronary cinefilms are the subject of current research,
and preliminary results have been reported (van Ommeren (1986)). Exten-
sion of the method to delineation of the left ventricular region in both
angiographic and echocardiographic images is also being investigated.

The research described in this Chapter is the object of a cooperative

project with the Thoraxcenter of the Erasmus University in Rotterdam.
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8. DISCUSSION

In the previous chapters, we discussed the segmentation of images
which are severely contaminated by noise. Because the noise destroys the
coherence of the image structures we would like to detect, elementary
segmentation methods like gray-value thresholding or gradient-magnitude
thresholding show a rather poor performance for low values of the sig-
nal-to-noise ratio. Consequently, one has to resort to more elaborate
methods, which possibly include extensive pre- or post-processing of the
input image or the segmentation result. In the present study, we focused
on attempts to improve the performance of fhe segmentation stage by ex-
ploiting the spatial context and by incorporating generic a priori know-
ledge. As we are particularly interested in the accurate delineation of
the object regions, we concentrated on edge-oriented methods.

In Chapter 2, we established our prefefence for defining an edge as
a concatenation of edge pixels above the alternative of a concatenation
of the boundaries between neighboring pixels of adjacent regions. The
choice between both edge definitions is similar to the choice between

using either the chain code or the crack code as boundary descriptors
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in segmented images. The selected edge definition naturally corresponds
with the use of the chain code. However, this bears no consequences with
regard to subsequent measurements and analysis, because the crack code
can be derived from the chain code and vice versa. In Chapter 2, we al-
so observed that synthetic test images designed for experimental evalu-
ation of segmentation schemes should show transitions between adjacent
regions with a width at least equal to the grid size. Surprisingly, this
almost trivial rule is very often offended in the practice of image pro-
cessing research.

In Chapter 3, we developed a sequential boundary detection method on
the basis of dynamic programming. This optimization technique is used
here to select the optimal ‘edge with respect to some predefined merit
function. Because the merit function is evaluated along the entire edge,
or, in particular cases, along the complete closed contour, the exploi-
tation of the spatial context is quite obvious. Generic a priori know-
ledge is incorporated in the connectivity constraints as well as in the
structure of the cumulative merit function. Problem-dependent a priori
knowledge guides the choice of the actual merit .function and is also
used to restrict the search to a predefined region of interest (ROI).

We showed that the dynamic programming approach is greatly simplified
by straightening the ROI by means of a geometric transformation. For
blob-like regions with a simple closed contour, the polar transform is
the method of choice. For more general boundaries, the ROI consists of
a swath centered at the hypothesized boundary. In the continuous case,
we established a relationship between the width B of the ROI and the
minimum radius of curvature Rmin along the curve, i.e., B £ Z'Rmin’ as
expressed in Eq. (3.29). Furthermore, we established a global constraint
which a boundary is to satisfy in order for our dynamic programming
method to be applicable to it. The constraint is that if the distance be-
tween two points, measured along the curve, exceeds a value of “’Rmin'
then their Eucledean distance should be at least equal to the width B
of the ROI. These theoretical results merely establish some rules of
thumb for the discrete case, in the sense that a highly curved boundary

requires a rather narrow ROI, which is to be positioned quite accurately.
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In other words, when the region boundary is very complex, the required
amount of a priori knowledge grows tremendously.

In Chapter 4, we discussed a different method which allows the exploi-
tation of the spatial context as well as the incorporation of generic
a priori knowledge. In the parallel, though iterative, approach of con-
tinuous relaxation labeling, the compatibility coefficients between la-
bel pairs at related pixel positions can be selected on the basis of
some notions of generic edge properties. The context is taken into ac-
count by considering iteratively expanding neighborhoods, in an attempt
to prevent the occurrence of label inconsistencies. In particular, we
developed a new implementation of the edge detector scheme proposed by
Schachter et al. (1977). The new implementation is especially suited for
modern digital image processing systems, in the sense that the computa-
tional problem is decomposed to a large extent into spatial convolutions
and dyadic point operations, for which tasks special purpose processors
are usually available.

In Chapter 5, both the dynamic programming method and the relaxation
labeling scheme were evaluated experimentally by measuring their per-
formances when applied to synthetic test images with various signal-to-
noise ratios. The experiments were designed in accordance with the com-
parative study of traditional edge detector schemes as published by Ab-
dou and Pratt (1979), in order to facilitate the comparison of results.
The evaluation criteria included the estimated probabilities of correct
and false edge pixel detection, similar to ROC-analysis in statistical
detection theory, and Pratt's Figure of Merit (FOM). This measure is of
particular importance because, contrary to the false detection probabi-
lity, it distinguishes between the various types of errors. In principle,
the FOM expresses the usefulness of the detected edge for further pro-
cessing. The evaluation criteria were also used to tune the parameters
of the investigated segmentation schemes. From these experiments we con-
cluded that at lower values of the signal-to-noise ratio SNR, say
1 £ SNR £ 10, the dynamic programming approach shows much better perfor-
mance than the traditional method of gradient-magnitude thresholding,

even if the latter method is used in combination with the continuous
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relaxatioh labeling procedure. However encouraging this result, it is
more confirmatory than surprising. The particular method of dynamic pro-
gramming boundary detection developed here is forced to find one single
boundary, containing a predefined number of edge pixels, within a pre-
defined region of interest, on the basis of gradient values measured per-
pendicular to the assumed true boundary, by implicitly evaluating the
merit functions along all hypothesized boundaries within the ROI. This
last point forms the heart of the method, the other points merely origi-
nated from our attempts to find a feasible implementation. In other words,
it is conjectured here that the overall evaluation of the merit function
along the entire boundary is the crucial element. In view of the exten-
sive use of a priori knowledge and spatial context, at least in compari-
son with the other methods evaluated here, it may not be surprising that
the performance at low values of SNR is ‘much better. On the.other hand,
our experiments prove that the proposed way to exploit a priori knowledge
and spatial context within the segmentation stage yields good results
indeed.

In Chapter 6, we discussed various ways to detect the region of inter-
est automatically. It was mentioned there that the sequential region-
oriented segmentation method of split-and-merge, in combination with clus-
ter analysis and a continuous relaxation scheme applied to the region la-
bels, may produce a segmentation result which is quite acceptable in it-
self. We also mentioned the extension to more general pyramidal struc-
tures. It wouldcertainly be of great interest to include such methods in
an extended evaluation study.

The applications discussed in Chapter 7 show the deep involvement of
the staff of fhe Laboratory for Clinical and Experimental Image Proces-
sing of the Thoraxcenter of the Erasmus University in Rotterdam in many
aspects of the work reported here. An exciting and intriguing new develop-
ment, investigated with particular reference to tomographic cardiac scin-
tigraphy, is the extension of the dynamic programming boundary detection
method to the three-dimensional case. Early attempts in this direction
are described by Blokland (1982) and Reijs et al. (1986). A more fundamen-

tal analysis, including simulation studies to compare various approaches,
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forms the subject of a thesis by Starink (1987).

We conclude that the restricted-search dynamic programming boundary
detection method constitutes a very robust and useful tool, especially
suited for application in image measurement systems. In addition, it
would be very attractive to have the algorithm available as one of the
segmentation modules in a more general knowledge-based image analysis

system.
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SAMENVATTING

Het multidisciplinaire vakgebied van de digitale beeldverwerking
richt zich op de methodologie en de technologie wvan het bewerken van
visuele beelden, hetzij met behulp van vrij-programmeerbare computers,
of met behulp van processoren of elektronische apparaten die ontworpen
zijn voor het uitvoeren van specifieke taken. Het doel van deze digitale
verwerking kan velerlei zijn, maar we richten onze aandacht hier op het
met algoritmen analyseren van de beeldinhoud, teneinde daar informatie
aan te onttrekken omtrent de door het beeld gerepresenteerde verschijn-
selen. Beeldanalyse kan op die manier beschreven worden als een trans-
formatie die het beeld omzet in aan het beeld ontleende gegevens, zoals
een aantal meetwaarden, een verzameling herkende objecten, of zelfs een
beschrijving van de afgebeelde verschijnselen.

Een van de belangrijkste stappen in dit analyse-proces is de segmen-
tatie van het beeld, d.w.z. het feweegbrengen van een partitie van het
beeldvlak in deelgebieden die volgens een te kiezen criterium homogeen
genoemd kunnen worden. Het resultaat van de segmentatie-stap is dus een
plattegrond van de onderscheiden gebieden. De bedoeling is natuurlijk
dat deze plattegrond betekenisvol is ten opzichte van de afgebeelde

verschijnselen, maar dat kan in het algemeen pas later in het analyse-
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proces worden vastgesteld, omdat hiervoor een veel hoger niveau van
abstractie vereist is.

Dit proefschrift is gewijd aan de segmentatie van beelden die ernstig
verstoord zijn door ruis.-We beperken ons daarbij tot twee-dimensionale
tijd-invariante grijstoonbeelden die een afbeelding zijn van geisoleerde
objecten. Hoewel de hier besproken segmentatie-methoden ook toepasselijk
zijn op andersoortige beelden, impliceert deze laatste restrictie dat
men het hier bestudeerde segmentatie-probleem kan beschrijven als het
automatisch intekenen van de contouren van de afgebeelde objecten in
sterk door ruis verstoorde beelden. Eenvoudige traditionele segmentatie-
methoden voldoen in het algemeen slecht als er veel ruis is, hetgeen
vooral veroorzaakt wordt doordat de ruis de samenhang van de structuren
in het beeld aantast. De invloed van de ruis kan natuurlijk worden ver-
minderd, althans tot op zekere hoogte, door het toepassen van geschikte
voor- of nabewerkingstechnieken. In deze studie concentreren we ons op
pogingen om de prestaties van de segmentatie-stap zelf te verbeteren.
Het ligt voor de hand dat de resultaten van de hier besproken methoden
nog verder verbeterd kunnen worden door ze te combineren met geschikte
voor- of nabewerkingstechnieken.

Doordat de ruis de samenhang van de beeldstructuren aantast, kunnen
de beslissingen binnen de segmentatie-procedure niet onafhankelijk per
discreet beeldelement (pixel) genomen worden; er moet gebruik gemaakt
worden van de ruimtelijke of spatigle context in het beeld. Sequentiéle
segmentatie-methoden zijn in dit opzicht aantrekkelijk. Het gebruik van
sequentiéle methoden die primair gericht zijn op het detecteren van
coherente gebieden resulteert vaak in een onnauwkeurige lokalisering
van de gebiedsgrenzen. We geven hier dan ook de voorkeur aan sequentiéle
methoden die primair gericht zijn op detectie van de grenzen. Er wordt
in detail een methode beschreven en geanalyseerd waarbij met behulp van
de optimaliseringstechniek van het dynamisch programmeren en onder
gebruikmaking van expliciet ingebrachte a priori-kennis, de volgens een
te kiezen criterium optimale gebiedsgrens wordt gevonden. Daarnaast
wordt aandacht gegeven aan zogenaamde "continuous relaxation labeling

procedures". Dit zijn weliswaar geen sequentiéle maar iteratieve
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parallelle procedures die eveneens gebruik maken van a priori-kennis en
van de context.

Hoofdstuk 1 van het proefschrift bevat een korte inleiding over digi-
tale beeldsegmentatie. Een aantal ideeé&n en begrippen wordt besproken en
er wordt een methodologisch overzicht gegeven van segmentatie-technieken.

In hoofdstuk 2 wordt de inleiding voortgezet maar nu gericht op model-
vorming. De zogenaamde "replacement models" worden beschreven en een
aantal aspecten van beeld-digitalisering wordt besproken. Vervolgens
onderbouwen we onze voorkeur om een gebiedsgrens te defini&ren als een
aaneenschakeling van randpixels in plaats van als een aaneenschakeling
van micro-randen tussen buurpixels behorend tot verschillende gebieden.
De schattingstheoretische benadering van het grensdetectie-probleem
wordt besproken aan de hand van enige belangrijke referenties.

Hoofdstuk 3 is gewijd aan de optimalisering met behulp van dynamisch
programmeren. Na een literatuuroverzicht ontvouwen we onze methode, die
er vooral op gericht is de oplossingsruimte zoveel mogelijk te beperken.
Er wordt een verwachtingsvenster gedefinieerd en het daarbinnen gelegen
deel van het beeld wordt geometrisch getransformeerd tot een rechthoekige
matrix. Vervolgens wordt een overeenkomstige matrix van kostencogéf-
ficiénten opgesteld. Met behulp van dynamisch programmeren wordt het
optimale pad door de matrix bepaald. Dit pad wordt teruggetransformeerd
naar het oorspronkelijke beelddomein en vormt daar de gezochte gebieds-
grens. De methode wordt in detail beschreven en geanalyseerd. Er wordt
vooral aandacht gegeven aan de geometrische transformatie. Er worden
eisen opgesteld met betrekking tot de curvatuur en de globale vorm van
een gebiedsgrens, waaraan voldaan moet zijn om de methode toe te kunnen
passen.

In hoofdstuk 4 wordt het principe van "continuous relaxation labeling"
besproken. In het bijzonder wordt aandacht gegeven aan een speciale
versie van een relaxatie-algoritme voor de detectie van grenzen die een
praktisch uitvoerbare en aantrekkelijke implementatie mogelijk maakt.

Het blijkt dat een groot gedeelte van de vereiste berekeningen kan wor-
den geformuleerd in termen van spatiéle convoluties en puntbewerkingen

op paren van beelden. Dergelijke operaties kunnen zeer snel worden uit-
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gevoerd op moderne digitale beeldverwerkings-systemen die hiervoor spe-
ciale processoren hebben. Het bepalen van de initigle label-toewijzing
voor het iteratieve proces wordt in detail besproken.

In hoofdstuk 5 worden de experimenten beschreven waarmee de in de
voorgaande hoofdstukken ontwikkelde methoden zijn geévalueerd. Op basis
van synthetische testbeelden met verschillende waarden van de signaal-
ruisverhouding worden de segmentatie-resultaten kwantitatief beoordeeld
in termen van de geschatte detectiekans, de geschatte loos-alarmkans en
de zogenaamde "Figure of Merit'" van Pratt. Er wordt aangetoond dat voor-
al bij zeer lage waarden van dé signaal-ruisverhouding de methode van
dynamisch programheren veel beter voldoet dan de traditionele manieren
van grensdetectie, ook als die worden gecombineerd met een relaxatie-
procedure.

Onze methode van grensdetectie met behulp van dynamisch programmeren
vereist het definiéren van een verwachtingsvenster. In hoodstuk 6 wordt
een aantal manieren besproken om een dergelijk venster automatisch te
bepalen. Een van de voorstellen behelst het uitvoeren van een ruwe pre-
segméntatie van het beeld door middel van een gebieds-georisnteerde
segmentatie-methode. Dergelijke methoden detecteren de aanwezigheid van
gebieden dikwijls correct, maar leiden tot een onnauwkeurige lokalisering
van de gebiedsgrenzen.

Hoofdstuk 7 is gewijd aan een tweetal medische toepassingen waarin
de in dit proefschrift besproken methode van grensdetectie met behulp
van dynamisch programmeren haar waarde reeds heeft bewezen. De eerste
toepassing betreft de analyse van scintigrafische beelden van de linker
hartkamer, de tweede de analyse van rdntgenbeelden van de krans-
slagaderen.

De conclusies en een bespreking van de resultaten zijn opgenomen in

hoofdstuk 8.
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