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ABSTRACT

Accurate and automatic detection and delineation of cervical
cells are two critical precursor steps to automatic Pap smear
image analysis and detecting pre-cancerous changes in the
uterine cervix. To overcome noise and cell occlusion, many
segmentation methods resort to incorporating shape priors,
mostly enforcing elliptical shapes (e.g. [1]). However, el-
liptical shapes do not accurately model cervical cells. In this
paper, we propose a new continuous variational segmentation
framework with star-shape prior using directional derivatives
to segment overlapping cervical cells in Pap smear images.
We show that our star-shape constraint better models the un-
derlying problem and outperforms state-of-the-art methods in
terms of accuracy and speed.

Index Terms— Star-shape prior, cervical cell, segmenta-
tion, microscopy.

1. INTRODUCTION

According to the World Cancer Report 2014, cervical cancer
is the fourth most common type of cancer in women. Fortu-
nately, regular Pap smear screening allows for early detection
and treatment of this type of cancer. Currently, Pap smear
test is a manual screening procedure used to detect poten-
tially pre-cancerous and cancerous regions in the endocervi-
cal canal of the female reproductive system.

Automatic segmentation of cervical cells in Pap smear im-
ages is a critical first step toward computer-aided diagnosis
and automatic screening. The number and type of cervical
cells (the latter typically inferred from features such as shape
and area of cytoplasm and nucleus) are two important fac-
tors in detecting pre-cancerous changes in the uterine cervix.
Therefore, accurate and automatic detection (or localization)
and delineation (or segmentation) of such cells play critical
roles in designing such automatic computer-aided diagnosis
system. Due to the complexities of cell structures resulting
from poor contrast and highly overlapping cells, the fast, ac-
curate, and automatic cervical cell segmentation remains an
open problem, despite recent advances [2, 3, 4, 5, 6].
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Fig. 1: Elliptical vs. star-shape prior. Star-shape prior (b)
models cervical cells better than elliptical priors (a) used in
[1].

Each cell in cervical cytology images consists of two
parts: nucleus and cytoplasm. In the literature, some methods
used parameter sensitive morphological operations to detect
the nuclei [2]. However, they do not segment the cytoplasm
which is a critical deficiency as the shape of the cytoplasm
is an important property for the diagnosis. Other methods
focused on segmenting free-lying (single non-overlapping)
cells. For example, Yang et al. [3] and Li et al. [4] adopted
gradient vector flow (GVF) snake to segment both the nu-
cleus and cytoplasm of a single cell. Other works utilized
unsupervised classification techniques to segment the nuclei
and cytoplasm [5, 6]. However, these methods [5, 6] are not
able to delineate the boundary of each individual overlapping
cytoplasm. Instead, they segment the whole cell clump which
is insufficient for subsequent cellular counting and shape
analysis. Recently, Lu et al. [1] proposed a level sets-based
method to segment nuclei and cytoplasm, simultaneously, of
cervical cells. Their optimization energy functional consisted
of several terms including regularization (length and area),
elliptical shape prior, and two pairwise terms measuring the
area overlap ratio and intensity ratio between neighbouring
cells. As cervical cells are not exactly elliptical, adopting
the elliptical shape prior cannot describe the segmentation
problem very accurately (Fig. 1).

In this paper, we propose a new variational method to seg-



ment overlapping cervical cells. We show how to encode the
star-shape prior into a continuous variational framework as
a more general shape prior compared to the elliptical shape
prior. The star-shape prior also better models the underlying
segmentation problem unlike the elliptical shape prior used
in [1] (Fig. 1). To handle the overlapping aspect of cervical
cells, we introduce a Voronoi energy term which controls how
much neighbouring cells can overlap. We validate our method
on the dataset provided by the “Overlapping Cervical Cytol-
ogy Image Segmentation Challenge” held in conjunction with
the IEEE International Symposium on Biomedical Imaging
(ISBI) 2014 and compare our method with the winners of this
competition as well as the baseline method proposed by the
challenge organizers [1].

2. METHODS

Given a cervical image I : Ω ⊂ R2 → R, we are interested
in segmenting each existing cell in the image. In cervical im-
ages, the nucleus typically stands out with high contrast (Fig.
1(a)). We take advantage of this feature and use nuclei as
strong indicators of cells. Since a simple intensity threshold-
ing alone is not enough to detect the nuclei in cervical images
due to two reasons: 1) overlapping cytoplasms sometimes ap-
pear too dark and are mistaken for nuclei, and 2) nuclei may,
albeit in rare cases, appear with low contrast and are confused
with cytoplasm, we resort to a machine learning approach.
We use the histogram of oriented gradient (HOG) features to
represent the appearance of each nucleus and train a random
decision forest (RF) consisting of Tn trees to detect the nu-
clei. Given a new image, rather than classifying every pixel
in the image as nucleus vs. non-nucleus, we first reduce the
search space for nuclei by applying bilateral filtering followed
by the local thresholding technique proposed by Phansalkar et
al. [7] and the circle Hough transform in order to over-detect
the nuclei candidates. Then we apply the trained RF on these
candidate locations to distinguish true from false nuclei. Next
we describe how we segment the cytoplasm.

Let u : Ω → {0, 1} be a labeling function such that
u(x) = 1 if x belongs to the cytoplasm and u = 0 other-
wise. To segment each cell, we propose the following energy
functional:

E(u) = λ1ES(u) + λ2EV (u) + λ3ER(u) +R(u) , (1)

where ES is our star-shape prior term, Ev is the Voronoi en-
ergy term that controls how much cells are allowed to overlap,
ER is the regional data term, andR is the regularization term
that ensures smooth segmentation boundaries. λ1 to λ3 are
positive weights balancing the contribution of each term.

Star-shape prior. This type of shape prior is defined with
respect to a center point c inside the object, which we set to be
the centroid of the nucleus in our application. This prior was
first introduced by Veksler in a discrete graph-cuts formula-
tion [8]. According to [8], “an object has a star-shape if for
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Fig. 2: Star-shape definition and the directional derivative.
(a) A star-shape example (with respect to c). (b) Directional
derivative of u along the ray r used to enforce the star-shape.

any point x′ inside the object, all points on the straight line
between the center c and x′ also lie inside the object” (Fig.
2(a)). In other words, in a star-shaped object, any ray from c
cuts the object’s boundary only once.

Here, we show how an analogous star-shape prior can
be encoded into our spatially continuous formulation. Let
r be an outgoing ray from the detected nucleus of a cell
(Fig. 2(b)). Since the transition from background to fore-
ground along the ray r is an indication of the violation of the
star-shape prior, we examine the gradient along r, denoted
as ∇ru = 〈∇u, r〉. A positive gradient along r indicates
a shape prior violation and must be penalized. So our en-
ergy term that favours star-shapes along each ray r is defined
as ES(u) =

∫
Ω
H(∇ru(x))dx where H(.) is the Heavi-

side function. As our derivative is along a radial ray, it is
more convenient to re-formulate our problem using a po-
lar coordinate system instead of a Cartesian system. Fig. 3
shows an example image unwrapped in a polar coordinate
system around c. Defining Π ⊂ R+ × [0, 2π) as the polar-
based image domain, the labeling function is re-written as
ν : Π→ {0, 1} and our star-shape term becomes:

ES(ν) =

∫
Π

H(∇rν(p))dp , (2)

where p ∈ Π and ∇rν is the derivative of ν along the r-axis
(Fig. 3).

Voronoi constraint. As the cervical cells overlap sub-
stantially (Fig. 4(a)), we allow cell segmentations to overlap
as well. However, we define the Voronoi energy term (EV ) to
limit excessive overlapping between neighbouring cytoplasm
segmentations. Ushizima et al. [9] used a Voronoi diagram
(Fig. 4(b)) to separate overlapping cells with a straight line
which obviously is not realistic. Our energy (EV ) is a soft
constraint allowing more realistic results. To define EV , we
first calculate the Voronoi diagram of the detected nuclei (Fig.
4(b)). Then, for each nucleus, we create a mask M that takes
value 0 within the Voronoi cell of the current nucleus only
and 1 otherwise (Fig. 4(c)). The purpose of this mask is to
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Fig. 3: Cervical image in a Cartesian (a) and as polar (b) co-
ordinate system defined around point c.
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Fig. 4: Voronoi diagram for controlling the extent of cell over-
lap. (a) Overlapping cells. (b) Voronoi diagram of the de-
tected nuclei (used as cell boundaries in [9]). (c) The mask
M of all voronoi regions except the current cell’s region.

counteract excessive cell overlap by penalizing the cytoplasm
segmentation, of the current cell, as it extends farther from the
nucleus. We define our Voronoi energy term in the Cartesian
system as EV (u) =

∫
Ω
u(x)M(x)dx to control the overlap

between the current cell segmentation and its neighbouring
regions. Finally, we re-write EV in the polar system as:

EV (ν) =

∫
Π

ν(p)µ(p)dp , (3)

where µ is the transformation of M to polar coordinates.
Regional term. Our regional term in the polar coordinate

system is defined as:

ER(ψ) =

∫
Π

g(p)ρ(p)ν(p)dp , (4)

where g(.) is the polar-transformed version of 1
1+|∇Gσ∗I| ,

which encourages the evolving contours to align with edges.
Gσ is a Gaussian kernel with standard deviation of σ. ρ(p)
is the regional term that measures the agreement of the image
pixel p ∈ Π with the background and cytoplasm statistical
models and is calculated as follows

ρ(p) =
log
(
1− Pr(p|I(p))

)
logPr(p|I(p))

, (5)

where Pr(p|I(p)) is the probability of a given pixel p belong-
ing to the foreground, i.e. cytoplasm. Pr(p|I(p)) is estimated

by training a random forest with Tr trees using the provided
ground truth segmentation in the training set.

Regularization term. Our regularization term in the po-
lar coordinate system is defined as:

R(ν) =

∫
Π

|∇ν(p)|dp . (6)

R(ν) regularizes the segmentation in both r and θ directions
(Fig. 3). We re-write the energy functional (1) in polar coor-
dinates as E(ν) = λ1ES(ν) +λ2EV (ν) +λ3ER(ν) +R(ν).

3. IMPLEMENTATION AND OPTIMIZATION

We used the level set function to represent the cells’ boundary.
In the Cartesian system, we represent u(x) byH(φ(x)) where
φ : Ω → R is a signed distance function such that φ(x) > 0
for all x inside, φ(x) < 0 for all x outside, and φ(x) = 0
for all x on the boundary of the cytoplasm. Let ψ : Π → R
be the transformed level set from the Cartesian to the polar
coordinate system. The energy terms (2)-(6) are written in
terms of ψ by replacing ν and ∇rν with H(ψ) and ∇rψ,
respectively.

In our implementation, we approximate ∇r by the finite
forward differences, i.e. ∇ru ≈ u(x2)−u(x1) where x2 and
x1 are two neighbouring points on the ray r and x1 is between
c and x2.

We used Tn = 40 and Tr = 48 trees to train two random
decision forests for detecting nuclei and learning the appear-
ance prior of cytoplasm, respectively. Higher values of Tn and
Tr did not improve accuracy but rather increased complexity
and caused over-fitting to the training data. The weighting pa-
rameters were optimized on the 45 training images and fixed
to λ1 = 1.5, λ2 = 1, and λ3 = 1.9.

The objective energy functional in the polar coordinate
system is optimized by deriving the Euler-Lagrange update
equation. The final segmentation is obtained by transform-
ing back the optimal ψ (or equivalently ν) from the polar to
Cartesian coordinates.

4. MATERIALS AND EXPERIMENTS

We tested our method on the dataset provided by the ISBI
2014 challenge consisting of 135 cervical cytology images
(45 images for training and 90 images for testing). The evalu-
ation code provided by the challenge was used to evaluate the
performance of our method on the test set.

Our nuclei detection approach (HOG features + RF)
achieved the F1-value of 0.99 which is a great improvement
in nuclei detection over a simple thresholding technique with
F1-value of 0.88. Table I compares our method with state-
of-the-art methods in overlapping cervical cell segmentation,
including the winners of the ISBI 2014 challenge and Lu
et al. [1]. Using the same notation as [1], in Table I we



Table 1: Quantitative results on the test sets (bold numbers indicates superior results).

DSC TPp FPp FNo Time/Image Computer specification
Ushizima [9] 0.87 0.83 0.001 0.17 12 sec. Cray XC30 supercomputer, 12-core Intel, CPU 2.4 GHz, 64 GB RAM
Nosrati [10] 0.87 0.90 0.005 0.14 16.7 sec. PC, CPU 3.40 GHz, 16 GB RAM

Lu [1] 0.88 0.92 0.002 0.21 1000.9 sec. PC, CPU 2.7GHz , 40 GB RAM
Our method 0.88 0.93 0.005 0.11 6.6 sec. PC, CPU 3.40 GHz, 16 GB RAM

Fig. 5: Qualitative results of overlapping cervical cells seg-
mentation.

report the Dice similarity coefficient (DSC), true positive
(TPp) and false positive (FPp) ratio in the pixel level for
“well-segmented” cells (segmented cells with DSC > 0.7).
In addition, the false negative (FNo) in the object level (in-
accurate segmentation and/or missing cells) is reported as
the proportion of cells having a DSC ≤ 0.7. Fig. 5 shows
qualitative results on some images in the test set. According
to Table I, our method outperformed the recently proposed
techniques in most of the criteria. Particularly, having a large
advantage in FNo compared with other methods confirms
that our method has missed less cells and has estimated the
cell boundaries much closer to the annotation of the detected
cells. We emphasize that we obtained these results while our
method has less parameter to tune (3 parameters) compared
with [10] (4 parameters) and [1] (5 parameters).

5. CONCLUSION AND FUTURE WORK

We showed how to encode the star-shape prior into a con-
tinuous variational framework using directional derivatives
to better model the cervical cell segmentation problem. To
address the cell overlapping aspect of the segmentation, we
proposed a Voronoi energy term as a soft constraint to con-
trol how much cells can overlap. Our approach outperformed
the recently proposed techniques in both accuracy and com-
putational time using non-optimized MATLAB code. There

are at least two directions to extend this work: 1) preparing
the method for real-time batch processing using GPU imple-
mentation, and 2) improving the boundaries in the dense and
highly overlapping regions as the segmentation boundaries in
such regions are still not very accurate.

6. REFERENCES

[1] Z Lu, G Carneiro, and AP Bradley, “Automated nu-
cleus and cytoplasm segmentation of overlapping cervi-
cal cells,” in MICCAI, pp. 452–460. 2013.

[2] ME Plissiti, C Nikou, and A Charchanti, “Automated
detection of cell nuclei in pap smear images using mor-
phological reconstruction and clustering,” IEEE TITB,
vol. 15, no. 2, pp. 233–241, 2011.

[3] SF Yang-Mao, YK Chan, and YP Chu, “Edge enhance-
ment nucleus and cytoplast contour detector of cervical
smear images,” IEEE TSMC, vol. 38, no. 2, pp. 353–
366, 2008.

[4] K Li, Z Lu, W Liu, and J Yin, “Cytoplasm and nucleus
segmentation in cervical smear images using radiating
gvf snake,” Patt. Recog., vol. 45, no. 4, pp. 1255–1264,
2012.
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