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Abstract. MRI is conventionally employed in neonatal brain diagnosis
and research studies. However, the traditional segmentation protocols
omit differentiation between heterogeneous white matter (WM) tissue
zones that rapidly evolve and change during the early brain develop-
ment. There is a reported correlations of characteristics of the transient
WM compartments (including periventricular regions, subplate, etc.)
with brain maturation [?,?] and neurodevelopment scores [?]. However,
there are no currently available standards for parcellation of these regions
in MRI scans. Therefore, in this work, we propose the first deep learning
solution for automated 3D segmentation of periventricular WM (PWM)
regions that would be the first step towards tissue-specific WM analy-
sis. The implemented segmentation method based on UNETR [?] was
then used for assessment of the differences between term and preterm
cohorts (200 subjects) from the developing Human Connectome Project
(dHCP) (dHCP) project [?] in terms of the ROI-specific volumetry and
microstructural diffusion MRI indices.
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maturation · Automated segmentation

1 Introduction

Segmentation of T2w structural neonatal brain MRI is conventionally employed
in neurodevelopment research studies [?] and there are many existing automated
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pipelines. These solutions are based on either classical (e.g., label propagation,
intensity classification) [?,?,?,?] or deep neural network [?,?] methods. In the
majority of these methods, the white matter (WM) is classified as a single tis-
sue component [?,?,?] or subdivided into standard anatomical regions [?,?,?,?]
that follow the adult brain parcellation protocols (e.g., temporal lobe, corpus
callosum, etc.). However, during the neonatal brain development the WM tis-
sue is highly heterogeneous and constantly evolving due to the different rates
of tract maturation and myelination. The example in Fig. 1 shows the regional
difference of T2 MRI signal intensities in WM at different ages: 38 to 44 weeks
post-menstrual age (PMA). The hyperintense T2 signal regions in WM report-
edly correspond the higher water content [?] and are also sometimes referred
to as diffuse excessive high signal intensity (DEHSI) ROIs [?] or transient WM
[?,?]. These tissue types are transient by nature and eventually are expected to
disappear by changing properties and evolving into mature WM tissue. Recently,
[?] formalised a new neonatal brain maturation MRI scoring protocol based on
the appearance of WM transient compartments including periventricular cross-
roads, von Monakow WM segments, subplate and germinal matrix. The higher
proportion of transient WM are correlated with lower degree of brain matura-
tion. However, apart from the works on segmentation of DEHSI [?,?] or high
rate change WM regions [?] that are related to transient WM structures, there
has been no reported works on automation of parcellation of specific types of
WM tissue defined in [?]. These transient WM ROIs are characterised by the
prolonged coexistence in preterm brain [?,?] while periventricular WM is vul-
nerable to injury [?]. There is also no formalised reference parcellation protocol
for transient WM tissue, which is required for development of new automated
methods or even simple manual segmentation for quantitative studies.

Fig. 1. Examples of WM tissue heterogeneity in transient compartments visible on
T2w neonatal brain MRI at different PMA (the datasets are from dHCP project [?]).

Contributions: In this work, we propose the first deep learning based pipeline
for automated segmentation of periventricular white matter (PWM) in neonatal
T2w MRI scans. This extends the already existing solutions [?] for volumetry-
based analysis of brain development. The feasibility of the segmentation pipeline
is assessed with respect to analysis of the difference between term and preterm
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cohorts for 200 neonatal subjects from the dHCP project. The PWM segmenta-
tions from the proposed pipeline were used for both volumetry and calculation
ROI-average microstructural diffusion tensor imaging (DTI) indices.

2 Methods

2.1 Cohort, datasets and preprocessing

The MRI datasets used in this study were acquired as a part of the dHCP project
[?] available via the public release. The selected cohort includes 150 term (37-44
weeks gestational age (GA) at birth) and 50 preterm (≤32 weeks GA at birth)
neonates scanned between 38 and 44 weeks PMA (Fig.2). The selection criteria
was the absence of major anomalies and good image quality.

Fig. 2. PMA at scan and GA at birth of the investigated neonatal MRI datasets from
the dHCP project: term and preterm cohorts.

Each dataset includes diffusion and structural T2w MRI volumes. The acqui-
sitions were performed on a 3T Philips scanner with a 32-channel neonatal head
coil and transportation system [?]. The structural T2w volumes were acquired us-
ing a TSE sequence with TR=12s, TE=156ms. The isotropic T2w volumes were
reconstructed to 0.5mm resolution using a combination of motion correction [?]
and super-resolution reconstruction [?]. All volumes were N4 bias corrected and
normalised in the Draw-EM pipeline [?] that also produced brain tissue parcella-
tion maps. The multi-shell high angular resolution dMRI volumes were acquired
with four phase-encode directions on four shells (b-values: 0, 400, 1000 and 2600
s/mm2) with TE=90ms, TR=3800ms Hutter2018 with 1.5 × 1.5 × 3mm reso-
lution and 1.5mm slice overlap and reconstructed to 1.5mm isotropic resolution
using the SHARD pipeline [?] that also includes slice-wise motion correction,
distortion correction, exclusion of corrupted slices and essential preprocessing.
The extraction of fractional anisotropy (FA) and mean diffusivity (MD) DTI
metrics was performed in MRtrix3 [?] toolbox. The structural to dMRI volumes
were co-aligned using T2 to MD affine registration in MRtrix3.
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2.2 Parcellation map of periventricular WM ROIs in the atlas space

In order to provide the basis for the automated segmentation pipeline, we de-
fined the first parcellation map of PWM in the MRI atlas space based on the
guidance from the clinical MRI studies [?,?]. We used the T2w channel of the
4D neonatal MRI atlas from [?] (36 weeks PMA time-point, 0.5mm isotropic
resolution) as the reference space for segmentation of five periventricular WM
regions. The atlas includes the high rate change WM parcellation map, which we
subdivided and refined based on the definition of the PWM ROIs (also referred
to as ”periventricular crossroads”) described and illustrated in [?,?]. Refinement
was performed manually in ITK-SNAP [?] based on T2 signal intensity bound-
aries by a researcher with experience in neonatal MRI. The PWM regions were
the segmented and named based on the definitions in [?]. This was followed by
separation into left and right resulting in ten label ROIs.

2.3 Automated segmentation of periventricular WM ROIs

To our knowledge, there has been no reported works on automated segmentation
of PWM in neonatal brain MRI. The only relevant methods that addressed the
tissue-specific delineation of WM were proposed for segmentation of DEHSI [?,?]
and high rate change [?] WM regions. These solutions are based on classical
intensity thresholding and atlas label propagation, which tend to be prone to
errors and sensitive to image quality and preprocessing. This limits their large
scale application. As an alternative, we propose to use deep learning for 3D
segmentation of multiple PWM regions [?] based on the protocol defined in
Sec. 2.2 and [?]. The proposed solution is summarised in Fig. 3.

Deep learning model for automated PWM segmentation: In this work, we used
the recently proposed vision transformer based deep neural network segmenta-
tion technique (UNETR) [?], as it has shown to perform well for 3D multi-label
segmentation. The proposed segmentation pipeline was implemented in MONAI
Pytorch-based framework [?]. We selected the default UNETR configuration
with combined Dice and cross entropy Loss, AdamW optimiser, 160x160x160
input size and six output channels (3 left and right PWM regions). For this
segmentation network, we selected only the three largest PWM ROIs defined in
the atlas space because of the significantly smaller size and lower visibility of the
other two regions [?].

Generations of labels for training: In this case, there were no available man-
ual parcellations of PWM in subject T2w volumes for training due to the time-
consuming segmentation of these large regions as well as the difficulty in delin-
eation of not well defined tissue boundaries. Therefore, we created the labels for
training of the UNETR network using a semi-automated approach based on the
combination of classical methods (see Fig. 3) and manual refinement. At first,
kmeans segmentation (from MIRTK toolbox [?]) is used for parcellation of the
T2w image within the WM ROI (from the DRAW-EM labels) into 3 clusters.
We select only the cluster with the highest intensity. Next, we run propagation
of the PWM labels (Sec. 2.2) based on subject-atlas multi-channel registration
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Fig. 3. Proposed solution for automated segmentation of PWM in T2w neonatal brain
MRI based on UNETR [?] and semi-automated generation of the labels for training.

[?] in MRtrix3 [?]. The output labels of both methods are combined by multi-
plication. In summary, the label propagation spatially localises and divides the
hyperintensity regions detected by kmeans. All steps were implemented based
on MIRTK toolbox [?]. We run the label generation pipeline for 80 term and 40
preterm datasets. The output labels were then visually inspected and manually
refined in ITK-SNAP, when required.

Preprocessing and training of UNETR segmentation model: The preprocess-
ing of the datasets (T2w images and PWM labels) for training included masking
using the DRAW-EM brain mask, cropping of the background and resampling
with padding to 160x160x160 grid. We used 90 datasets for training and 10 for
validation (including term and preterm). The training was performed for 20000
iterations with the standard MONAI augmentation (random bias field, contrast
adjustment, Gaussian noise and affine rotations ±45◦).

Evaluation of UNETR segmentation: The performance was tested on 10 term
and 10 preterm datasets qualitatively in terms of the PWM region detection
status (visual assessment: correct=100%, partial=50%, failed=0%), and quan-
titatively by comparison to the ground truth labels in terms of recall, precision
and Dice as well as the relative difference in volume and T2 signal intensity.
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2.4 Quantitative analysis of PWM in term and preterm cohorts

The feasibility of using the proposed segmentation pipeline for quantitative stud-
ies was assessed based on comparison of term and preterm MRI datasets. We
used the trained network to segment 150 term and 50 preterm subjects. The
PWM segmentations were used to compute ROI-specific values including vol-
umetry and mean DTI indices (fractional anisotropy (FA) and mean diffusivity
(MD)). The scripts for all calculations were implemented in MIRTK toolbox [?].

3 Results and Discussion

3.1 Parcellation map of periventricular WM ROIs in the atlas space

Fig. 4 shows the first formalised 3D parcellation map for five periventricular
WM regions (with left/right separation) along with the original T2w atlas [?].
The segmented regions follow the definitions from [?,?] that call these regions
”periventricular crossroads”: C1, C2, C4, C5 and C6. The C2 and C5 ROIs have
the expected ”horn” shape. All PWM ROIs have the pronounced brighter T2
intensity, which is expected to correspond to the higher water content of PWM
tissue [?,?]. The segmentations were inspected and confirmed by two clinicians
with extensive experience in neonatal brain MRI.

Fig. 4. The parcellation map of five periventricular WM regions created in the T2w
neonatal brain atlas space [?]. Based on the original definitions in [?,?], these ROIs are
referred to as periventricular ”crossroads”: C1, C2, C4, C5 and C6.

3.2 Automated segmentation of periventricular WM ROIs

The results of testing of the trained UNETR model on 10 term and 10 preterm
subjects are summarised in Fig. 5. The network correctly detected all PWM
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Fig. 5. Quantitative assessment of the trained UNETR model for segmentation of three
PWM regions based on the comparison with the ground truth labels on 10 term and 10
preterm test subjects. The metrics (Dice, recall, precision, relative volume and intensity
difference) were calculated for combined left and right PWM ROI labels.

regions selected for training (”crossroads” C1, C2 and C5 as defined in Sec. 3.1
and [?]) in all test subjects (100%). This is confirmed by the relatively high
Dice coefficients for all ROIs (around 0.88 for larger PWM ROIs C2 and C5 and
around 0.74 for smaller PWM C1) in agreement with the adequate recall and
precision. The results are comparable between the term and preterm cohorts.
The average relative difference in volume and intensity are 8.42% and 0.87% ,
correspondingly.

Visual inspection shows that UNETR notably produces slightly smoother
labels than the classical methods with smaller volume and slightly higher aver-
age intensity with lower standard deviation. However, in this case, we also need
to take into account that the ground truth labels are the manually refined out-
puts of the combined kmeans and label propagation segmentation. Notably, only
minimal manual correction was required in 25.4% of all cases primarily when
the input WM DRAW-EM labels were incorrect in the ventricle regions and for
the late PMA and preterm cases with less pronounced PWM ROIs boundaries.
At the same time, neither manual or automated segmentations cannot be con-
sidered as the absolute ground truth because there is no precise definition of
the correct PWM delineation due to the blurred boundaries, patchy appearance
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Fig. 6. An example of the difference between the ground truth and UNETR output
labels for test term and preterm subjects.

and the transient nature of this WM compartment. This is potentially the main
cause of the difference between the ground truth and UNETR label volumes.
This is illustrated in Fig. 6 that shows an example of the difference between the
ground truth and UNETR output labels for one of the subjects.

3.3 Quantitative analysis of PWM in term and preterm cohorts

Fig. 7 shows the results of comparison between 150 term and 50 preterm subjects
based on volumetry and diffusion MRI metrics derived from the UNETR PWM
segmentations (the analysis was performed for C2 frontal ROI only). All au-
tomated segmentations were reviewed and confirmed as acceptable. Additional
minor manual refinements were required in 17.5% of cases, which notably did
not affect the trends in any of the metrics.

The term cohort is characterised by the pronounced decrease in both absolute
and relative PWM volume (that correlates with the increasing total WM volume)
along with the decreasing MD and increasing FA, which are the expected changes
in maturing WM. On the other hand, there are no prominent (significant) trends
for the preterm subjects in any of the metrics. The difference between the term
and preterm cohort trends is significant (p < 0.001) only in the intensity metrics.
The group of preterm subjects have the higher MD and T2 values and lower FA
than in the term cohort. This is potentially related to the higher water content
due to the prolonged existence of transient WM in the preterm brain [?,?,?]. This
also is in agreement with the results reported in [?]. However, taking into account
the smaller number of available preterm subjects (50), the heterogeneity of the
cohort and the respective variations in the GA at birth (24 - 32 weeks GA, Fig. 2),
a more comprehensive investigation on a larger cohort is required for further
analysis of correlations between the age at birth and PWM characteristics.
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Fig. 7. Comparison between term (150, blue) and preterm (50, red) cohorts (dHCP
datasets): volumetry and dMRI metrics computed for UNETR PWM segmentations
(C2 ROI).

4 Conclusions

In summary, we presented the first deep learning solution for automated multi-
label segmentation of periventricular WM regions in neonatal T2w brain MRI.
This included formalisation and definition of the PWM parcellation map in the
standard atlas space. In addition, we demonstrated the feasibility of using semi-
automated combination of kmeans and label propagation for generation of PWM
labels for training the of the networks, which significantly decreases the prepa-
ration time in comparison to manual labels. The practicability of using deep
learning (UNETR) for PWM segmentation was confirmed by quantitative com-
parison of 200 term and preterm subjects from dHCP cohort. The results of the
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analysis showed a significant difference in volumetry and mean DTI indices with-
ing PWM regions. There are also pronounced trends in PWM-derived metrics
vs. PMA for the term cohort. Our future work will focus on further automation
of parcellation of the rest of the WM tissue types (e.g., subplate), optimisa-
tion for different acquisition protocols and wider PMA range and a large scale
quantitative analysis.
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