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Segmentation of Prostate Boundaries From
Ultrasound Images Using Statistical

Shape Model
Dinggang Shen�, Yiqiang Zhan, and Christos Davatzikos

Abstract—This paper presents a statistical shape model for
the automatic prostate segmentation in transrectal ultrasound
images. A Gabor filter bank is first used to characterize the
prostate boundaries in ultrasound images in both multiple scales
and multiple orientations. The Gabor features are further recon-
structed to be invariant to the rotation of the ultrasound probe and
incorporated in the prostate model as image attributes for guiding
the deformable segmentation. A hierarchical deformation strategy
is then employed, in which the model adaptively focuses on the
similarity of different Gabor features at different deformation
stages using a multiresolution technique, i.e., coarse features
first and fine features later. A number of successful experiments
validate the algorithm.

Index Terms—Attribute vector, deformable registration,
deformable segmentation, Gabor filter, hierarchical strategy,
prostate segmentation, statistical shape model, ultrasound image.

I. INTRODUCTION

P
ROSTATE cancer is the second-leading cause of cancer

deaths in American men. The American Cancer Society

predicted that in 2002, 189 000 men would be diagnosed with

prostate cancer and about 30 200 would die [1]. When prostate

cancer is diagnosed in its early stages, it is usually curable; and

the treatment is often effective even in its later stages. Therefore,

the decision of when, how, and on whom to apply a diagnostic

procedure is very important [2].

Ultrasound (US) images of the prostate have been widely

used for the diagnosis and treatment of prostate cancer [18]. US

has been the main imaging modality for prostate related applica-

tions for various reasons: It is inexpensive and easy to use, it is

not inferior to MRI or CT in terms of diagnostic value, and it can

follow anatomical deformations in real-time during biopsy and
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treatment. Therefore, various US images of the prostate have

been used, for example, for needle biopsy [3], brachytherapy

[4], and cancer treatment [5]. The accurate detection of prostate

boundaries from the US images plays a key role in many appli-

cations, such as the accurate placement of the needles in biopsy

[3], the assignment of the appropriate therapy in cancer treat-

ment [4], and the measurement of the prostate gland volume [6].

Currently, in most applications the prostate boundaries are

manually outlined from transrectal ultrasonography (TRUS) im-

ages, which is a tedious, time-consuming, and often irrepro-

ducible job. Therefore, a lot of work has been done to inves-

tigate automatic or semi-automatic algorithms that could seg-

ment the prostate boundaries from the ultrasound images accu-

rately and effectively. Knoll et al. [7] developed a deformable

segmentation model, by using a one-dimensional wavelet trans-

form as a multiscale contour parameterization tool to constrain

the shape of the prostate model. This method is implemented as

a coarse to fine segmentation frame, based on a multiscale image

edge representation. Ghanei et al. [8] designed a three-dimen-

sional discrete deformable model to outline the prostate bound-

aries. The initialization of the model was manually produced

by a set of human-drawn polygons in a number of slices, and

it was simply deformed under both the internal force such as

the curvature of the surface, and the external force such as edge

map [9]. Pathak et al. [10] presented a new paradigm for the

edge-guided delineation, by providing the algorithm-detected

prostate edges as a visual guidance for the user to manually edit.

The edge-detection algorithm is implemented in the following

three stages. First, the stick-shaped filter is used to enhance the

contrast and also reduce the speckle noise in the TRUS prostate

images. Second, the resulting image is further smoothed using

an anisotropic diffusion filter. Finally, some basic prior knowl-

edge of the prostate such as shape and echo pattern is used to

detect the most probable edges of the prostate.

In medical imaging, it is important to build deformable shape

models that take into account the statistics of the underlying

shape. So far, many statistical shape models have been devel-

oped to segment various structures from the human organs. Ob-

viously, the use of statistical information greatly improves the

performances of the developed models in the deformable seg-

mentations. For example, Cootes et al. [11], [12], [20] have de-

veloped a technique for building compact models of the shape

and appearance of variable structures in two-dimensional im-

ages, based on the statistics of labeled images that contain exam-

ples of the objects. Each model consists of a flexible shape tem-

plate describing how the relative locations of important points
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on the shapes can vary, and a statistical model of the expected

gray-levels in a region around each model point. This method

was further extended in [13]. Our group previously introduced

an adaptive focus deformable model (AFDM) [14], which uti-

lized the concept of an attribute vector, i.e., a vector of geo-

metric attributes that was attached to each point on a surface

model of an anatomical structure, and which reflected the geo-

metric properties of the underlying structure from a local scale

(e.g., curvature), to a global scale that reflected spatial relation-

ships with more distant surface points. If the attribute vector is

rich enough, it can differentiate between different parts of the

shape that would otherwise look similar. An important aspect

of using the attribute vectors is to provide a means for finding

correspondences during the deformation.

However, the previous deformable models have limitations

when applied to prostate segmentation. In this paper, we will

present a statistical prostate shape model by using prior knowl-

edge of the prostate in the US images, which is described next.

1) The ultrasound probe that was used to capture TRUS im-

ages appears as a dark disc in the TRUS images. There-

fore, the location and the radius of the ultrasound probe

can be easily detected.

2) The prostate is a walnut-shaped object, with the two parts

of boundaries, i.e. the upper boundary and the lower

boundary (c.f. Fig. 1). The lower boundary is always

close to the boundary of the ultrasound probe, which

results from the acquisition procedure of TRUS images.

Therefore, the rough position of the prostate relative

to the ultrasound probe can be simply represented by

the orientation of a line connecting the centers of the

ultrasound probe and the prostate. This can be used for

the initialization of the prostate model.

3) The prostate boundary in the TRUS image can be iden-

tified as a dark-to-light transition of intensities from

the inside of the prostate to the outside of the prostate.

This property is particularly pronounced on the upper

boundary in the majority of prostates (c.f. Fig. 1).

The proposed algorithm relies on two novel elements, i.e.,

the Gabor filter bank representation of the prostate boundary

in the ultrasound image and the hierarchical shape deformation

strategy. In most deformable models, the edge maps are usually

used as image features to drive the deformation of the model.

However, in the TRUS images of the prostate, the signal-to-

noise ratio is very low, due to absorption and scattering. There-

fore, it is difficult for the traditional edge detectors such as

Canny edge detector to extract the correct boundaries of the

prostate. In this paper, the Gabor filter bank [16] is used to

characterize the prostate boundaries in a multiscale and mul-

tiorientation fashion. We select Gabor features for image rep-

resentation for the following two reasons. First, each Gabor

filter includes the Gaussian operation, which can remove the

noise in the ultrasound images. Second, the Gabor filter bank

includes the filters of multiorientations, which can provide the

edge directions, and multiscales, which enable us to hierarchi-

cally focus on the similarity of different image features at dif-

ferent deformation stages. It is important to use the hierarchical

deformation strategy in the prostate segmentation, since some

Fig. 1. Typical ultrasound image of the prostate. In this figure, the prostate is
localized in the region that is encircled by the black and white contours, with
the black providing the upper boundary of the prostate and the white providing
the lower boundary of the prostate.

features such as the ultrasound probe are more reliable to be

detected than others, while other features such as the prostate

boundaries are usually very noisy and thereby cannot be iden-

tified directly. Since there exists a strong relationship between

the position of the prostate and of the probe, we can first detect

the location of the probe and then use the location of the ul-

trasound probe to roughly estimate the location of the prostate.

In this paper, we employ two major hierarchical deformation

strategies. First, since the Gabor bank evaluates image features

at different levels, our model is designed to focus on the coarse

features first and fine features later, so that the robustness of the

algorithm is enhanced. Second, for each driving model point,

the range of the searching domain and the length of the curve

segment are hierarchically adjusted during the progression of

the algorithm, so that they are large initially and decrease later.

This increases the robustness of the algorithm and improves the

accuracy of the final segmentation results.

II. METHODS

Our model consists of three major parts, i.e., the calculation of

the statistical shape from the prostate samples, the hierarchical

representation of the image features using the Gabor filter bank,

and the hierarchical deformable segmentation. This is summa-

rized in Fig. 2, and is briefly described in the following.

The shape statistics of the prostate can be calculated from a

set of training samples that are manually outlined from their ul-

trasound images, which is similar to the approach used in [11].

However, the normalization of the prostate samples is different.

In our approach, we normalize the prostate along with the ultra-

sound probe as follows. First, the shape of the ultrasound probe

in the sample is normalized to that in the model. Simultaneously,

the same transformation is performed on the prostate of the un-

derlying sample. Second, the prostate in the sample is further

normalized by rotating it around the center of the model’s ultra-

sound probe, and also scaling it along the radial direction and
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Fig. 2. Summary of the proposed algorithm for the prostate segmentation in the TRUS images.

the rotational direction of the model’s ultrasound probe. The

rotation degree and scaling sizes are determined directly from

the correspondences between the model prostate and the sample

prostate, which can be established by the affine-invariant fea-

ture-matching approach in [15].

The image features in the prostate image are hierarchically

represented by a set of rotation-invariant features, which are

reconstructed from the Gabor filter bank. Before calculating

Gabor features, we first employ a small ellipse-shaped median

filter, whose long axis passes through the center of the ultra-

sound probe, to remove noise in the ultrasound images. Notably,

the regular Gabor features are not invariant to the rotation of

the ultrasound probe. However, for each scale, we can resample

and interpolate the Gabor features in the particular orientations,

and make the reconstructed Gabor features invariant to the rota-

tion of the probe. We use these rotation-invariant features as the

image attributes for driving the prostate shape model to its cor-

rect position in the ultrasound image. Details of constructing the

rotation-invariant Gabor features are described in Section II-A.

The initialization of the model is determined by rigidly

transforming the average shape model to a pose that optimally

matches with the rotation-invariant image features in the

ultrasound image under study. Then, the model is hierarchically

deformed under the forces from the image features and the

internal and statistical constraints respectively. The statistical

constraint is fully used in the initial stage that makes the

algorithm robust to local minima; it is designed to slacken

gradually with the increase of the iterations, to make the final

segmentation result accurate as well. The converged pose of

the prostate shape model is regarded as the final segmentation

result of the prostate from the underlying ultrasound image.

Details of automatic initialization and hierarchical deformation

strategy are given in Sections II-C and II-D, respectively.

A. Model Description

In this section, we will first provide the mathematical descrip-

tion of the prostate shape model and its transformation under a

polar coordinate system. Then, we will give the multiscale and

multiorientation representation of the image features from the

TRUS images, using the Gabor filter bank. Both of these tech-

niques will be used for the following sections.

1) Prostate Shape Model: The prostate shape model is rep-

resented by a set of ordered points, ,

which are equally sampled along the contour. In this paper,

the average distance between two neighboring sample points

is roughly two pixels (i.e. 0.8 mm), and there are

points in our prostate model. In the Cartesian coordinate system,
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. For describing the linear transformation of the

prostate model, it is convenient for us to use the polar coordinate

system with the origin at the probe center. In the polar coordi-

nate system, the position of the prostate can be modeled as a

rotation around the probe center and scalings along the radial

direction and the rotational direction of the model’s probe. Let

us assume that, in the Cartesian coordinate system, the center

of the probe is , and the radius of the probe

is . Then, the prostate shape model under this new polar

coordinate system becomes

(1)

where

and atan . The definition of

atan is as follows:

atan

atan

atan

atan

(2)

The domain of is from 0 to . Under this polar coordinate

system, the transformations of the model (or other prostates) are

constrained as rigid transformations, i.e., the scalings and

respectively on the dimensions and , and the shifting on

the dimension . Notably, the shifting on the dimension is not

suggested, since the lower boundary of the prostate is always

close to the probe’s boundary. Therefore, the total number of

the parameters in the rigid transformation is three. Assume that

the rigidly transformed model is

. The relationship between and can be math-

ematically described as follows:

(3)

By determining these three parameters, each prostate sample

can be normalized to the space of the prostate model. Similarly,

by adjusting these three parameters, the average shape model

can be linearly transformed to the space of the prostate subject

and used as initialization.

The transformation parameters ( , , and ) between two

prostate shapes can be directly determined by their correspon-

dences, which can be established by our affine-invariant fea-

ture-matching approach in [15]. In this correspondence detec-

tion approach, we first define an affine-invariant attribute vector

for each point in the prostate shapes, in order to characterize

the surrounding geometric structure. As demonstrated in Fig. 3,

attributes used in this paper are the areas of the triangles formed

by the point of interest and its neighboring points (

and ), which is in some ways the extension of curvature.

The area of the triangle, formed by the immediate neighbors, re-

flects local shape information around the point . The areas of

the larger triangles represent more global properties of the shape

around the point . It is not hard to see that the attribute vector

corresponding to, say, a high-curvature region is completely dif-

ferent from the attribute vectors of flat segments. More impor-

tant, the points of similar curvatures might have very different

attribute vectors, depending on the number of components used

in the attribute vector. For each point , the areas that are calcu-

Fig. 3. Schematic explanation of the attribute vector. The area of a triangle
formed by three points V , V , and V , is used as the vsth element of the
attribute vector, defined for the point V .

Fig. 4. Properties of Gabor filters using our selection of the parameters.
(a) Frequency spectrum of the Gabor filters. The ellipse contour denotes the
half-peak magnitude of the filter responses in the Gabor filter bank. The axes
u and v respectively denote the horizontal and vertical spatial frequencies. U
and U denote the lower and upper center frequencies of interest. (b) Mother
Gabor function shown in one dimension, with the dashed line as the imaginary
part and the solid line as the real part. W is the width for the main lobe of the
real part of Gabor function.

lated from different neighborhood layers are stacked into an at-

tribute vector , which can be further made affine-invariant

by normalizing it across the whole shape, i.e.,

(4)

where is the magnitude of the vector . is

the affine-invariant attribute vector for the th point . With the

attribute vectors calculated, we can then determine the point cor-

respondences across individual prostate shapes by examining

the similarity of the underlying attribute vectors [15].

2) Multiscale Representation of Image Features: We use the

Gabor filter bank to capture image features in multiscales and

multiorientations [16]. For convenience, the Cartesian coordi-

nate system is used here to describe the Gabor functions. The

mother function of the two-dimensional Gabor filter is

(5)

with the corresponding Fourier transformation as

(6)

where and . is a shifting pa-

rameter along the axis in the frequency domain. The Gabor
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(a) (b) (c)

Fig. 5. Comparison of the regular Gabor features and the rotation-invariant Gabor features. (a) Original TRUS image. (b) Imaginary part of regular Gabor features
F (x; y), where the features in the probe boundaries indicated by the white arrows are different. (c) Imaginary part of the rotation-invariant Gabor features
~F (x; y), where the features in the probe boundaries are isotropic. In both (b) and (c), the values of the Gabor features are normalized to 0–255, for display
purposes.

filter bank can be obtained by the dilation and rotation of the

mother function. Assume that the total numbers of the orienta-

tions and scales are, respectively, and , and the basic ro-

tation and scale factors are, respectively, and

. Here, and are the parameters that deter-

mine the frequency range of the Gabor filter bank. As shown in

Fig. 4(a), they are, respectively, the upper and lower center fre-

quencies. is the scaling step, used to scale the mother function.

Using the scale variable and the rotation

variable , the th Gabor filter is

(7)

Therefore, for each pixel , we can obtain a vector of

features ,

where is the th Gabor feature calculated by the

th Gabor filter . Notably, the domain of the vari-

able is limited from 0 to , since the Gabor features

have the property, , where ‘ ’ is

the conjugate operation. In order to let the half-peak magnitude

support of the filter responses in the frequency spectrum touch

each other as shown as ellipse contours in Fig. 4(a) [16], we use

, and also

use the following formulas to compute the parameters and

:

(8)

(9)

The Gabor filter bank has two important properties. First, as

shown in Fig. 4(a), the frequency spectrum of the Gabor filter

bank has a multiscale and multiorientation structure. Second,

as a complex filter, each Gabor filter can be separated into two

parts, i.e., the real part and the imaginary part. By appropriately

selecting the parameters as given before, these two parts can be

regarded respectively as a smooth filter and an edge detection

filter. Fig. 4(b) shows the mother Gabor function in one dimen-

sion, where we can see that the imaginary part of the Gabor filter

is exactly an edge detector and the real part is a smooth filter.

Therefore, using the Gabor filter bank offers at least three advan-

Fig. 6. Schematic explanation of the resampling principle for constructing the
rotation-invariant Gabor features. The solid lines show the fixed orientations of
the Gabor filters used to calculate regular Gabor features. The dashed lines show
the actual orientations that we want to obtain the Gabor features. Notably, the
Gabor features that are constructed at the orientations of the dashed lines are
invariant to the rotation of the ultrasound probe. � is the angle of an image
pixel (x; y) in the polar coordinate system.

tages for prostate segmentation. First, with the Gaussian factor

in the Gabor filter, the noise in TRUS image, such as speckle,

can be smoothed or removed. Second, the multiscale structure

of the Gabor filters enables the hierarchical implementation of

our deformable model. Third, the multiorientation structure of

the Gabor filters enables the extractions of edge direction as well

as edge strength. Notably, as the prostate boundary in the TRUS

image can be identified as a dark-to-light transition of intensities

from the inside of the prostate to the outside, edge direction is

an important feature to distinguish the prostate boundary from

speckle noise. Compared to Pathak’s stick-shaped filter [10], the

Gabor filter bank provides rich edge maps that correspond to a

variety of directions, rather than a single “maximum edge inten-

sity” map.

However, the Gabor filter response is not invariant to the ro-

tation of the probe, which can be considered equivalently as the

rotation of prostate around the ultrasound probe. This is clearly

shown in Fig. 5, with Fig. 5(a) as the original TRUS image and

Fig. 5(b) as the imaginary part of the Gabor feature .

Obviously, the Gabor features at the probe boundary are not con-

sistent, as noted by the white arrows in Fig. 5(b). However, we
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Fig. 7. Rotation-invariant Gabor features at difference scales and different orientations. The first three rows show the imaginary part of rotation-invariant Gabor
features; and the last row shows the real part of the one rotation-invariant Gabor feature. The values of the features are normalized to 0–255, for display purposes.

can obtain a set of rotation-invariant features by resampling and

interpolating this set of regular Gabor features, with the first ro-

tation-invariant feature as the output of the Gabor filter oriented

at the angle atan , where

is the coordinates of the probe center and

is a pixel under consideration. Let denote the

reconstructed Gabor features, which are calculated as follows:

(10)

where and . Notice that

is the total number of orientations and . Using the

property of the Gabor features ,

the reconstruction of the rotation-invariant Gabor features

will not increase the complexity order of the algorithm; that

is, we only need to calculate the same Gabor features

for each scale . The schematic explanation of this recon-

struction principle is given in Fig. 6. For a pixel ,

the resulted rotation-invariant features in each scale is

, which can be separated into

two parts, the imaginary part

and the real part . The imagi-

nary part of the feature is shown in Fig. 5(c), which

is obviously isotropic, particularly in the probe boundary.

Fig. 7 shows the imaginary part of the rotation-invariant Gabor

features at three different scales and orientations, as well as
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the real part of the Gabor feature at the scale and the

orientation .

B. Energy Function

The goal of our approach is to segment the prostates from

the TRUS images, by minimizing the energy function of the

prostate shape model. There are two energy terms, i.e., the ex-

ternal energy and the internal energy, in the whole energy func-

tion. The external energy is defined by the rotation-invariant

Gabor features, and used to drive the deformation of the model

to the prostate boundary. The internal energy is defined by the

geometric attribute vectors, and used to preserve the geometric

shape of the model during the deformation. The greedy algo-

rithm is used as an optimization method to minimize the total

energy function [14], [15], [17].

The total energy function that our model seeks to minimize

is defined as

(11)

where is the total energy on the th model point , with

the external and internal energy terms and , respec-

tively. The external energy term drives the shape model to

the prostate boundaries with the dark-to-light transitions of in-

tensities, which is represented by Gabor features. The internal

energy term preserves the geometric shape of the model

during the deformation. and are the two weighting

parameters. The detailed definitions of these two energy terms

are given next.
1) External Energy: According to our knowledge of TRUS,

two criteria are used to design the external energy term. First,
the prostate shape model should deform to the boundary posi-
tions with the dark-to-light transitions of intensities. This kind
of boundary property can be captured by the imaginary part of
the rotation-invariant features , with
being strong positive or strong negative according to our se-
lected parameters for the Gabor filters (refer to Fig. 5 for an ex-
ample). Second, for each model point, the image features in its
neighborhood should match well with those in the TRUS image
under study, where the matching degree can be defined by the
real part of the rotation-invariant features . Ac-
cordingly, the external energy function is defined as

(12)

where and are the two weighting parameters for two

parts of the external energy term, and . In order to
make the algorithm robust to the local minima, the parameter

is designed to be large initially and decrease later, while
the parameter is designed to increase during the progres-
sion of the algorithm.

is defined as

(13)

where is the imaginary part of the rotation-in-

variant features at the deformed model position ,

Fig. 8. Schematic explanation for the identical definition of the imaginary
energy part E on the upper and lower boundaries of the prostate. The black
circle denotes the probe, and the walnut-shaped curve denotes the prostate.
The points A and B denote the two model points on the upper and lower
boundaries, respectively. The normal vectors on these two points are ~n and
~n respectively, and pointing in almost different directions. However, the
directions of Gabor filters on these two points, ~n , are the same. Since the
polarities of the features, in the positions of the points A and B are also
opposite, the imaginary energy partE can, therefore, be defined identically
on the upper and lower boundaries of the prostate.

with scale and orientation . denotes the direc-
tion of the Gabor filter at the position , which is

used to calculate the feature . It is defined as

, where
atan and .

is the normal direction of the current model contour at the th
model point , which can be estimated directly by the
positions of the already-ordered neighboring points. is a
weighting parameter.

Notably, the polarities of the Gabor features are
opposite on the upper and lower boundaries of the prostate, due
to the dark-to-light transition of intensities from the inside of the
prostate to the outside of the prostate. The reason that these two
parts can be represented identically in the external energy
is given as follows. For example, the points and in Fig. 8
denote two model points respectively on the upper and lower
boundaries of the prostate, and they have the same Gabor filter
directions, . However, their normal vectors, and , sit at
almost opposite directions. Therefore, the dot products
and have opposite signs. Considering the opposite

signs of the Gabor features at the upper and lower
boundaries and the opposite signs of the dot products between

and , the external energy on the upper
and lower boundaries of the prostate have same signs and, there-
fore, can be represented identically.

is defined as the difference of the real parts of the rota-
tion-invariant features respectively in the model’s TRUS image
and the underlying TRUS image. It is given as

(14)
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Fig. 9. Schematic explanation for the definition of the external energy part E . The thick gray curve on the left is the deformed version of the model curve
on the right. For the ith model point (x ; y ), the ellipse on the left corresponds to the ellipse on the right. Then the image features at (x; y) and its corresponding
position (x ; y ) are compared. The total difference in the ellipse is defined as the external energy part E .

where is a point in the neighborhood of the th model
point in the TRUS image under study. The point

is the corresponding point of in the model space.

is the average feature calculated from the training

samples at the position in the model space. Please refer
to Fig. 9, for schematic explanation of this strategy. Notably,
according to the theory of signal processing, the dilation of a
signal in the frequency field is equivalent to the shrinking in the
spatial field. Therefore, the width of the main lobe for the real
part of the Gabor filter becomes narrower and narrower with
the increase of [c.f. Fig. 4(b)], and the smoothing effect of the
real part of the Gabor filter becomes less and less. Accordingly,
we include only the coarse image features , i.e., at

the scale , for the definition of . This is different

from the definition of .
Since the US prostate images are usually very noisy, there

are a lot of spurious boundaries in the images, which are repre-
sented by the strong positive or strong negative imaginary part
of the rotation-invariant Gabor features. If only using the ex-
ternal energy part , the prostate model possibly will be at-
tracted by the spurious prostate boundaries. However, if we can
check the similarity of the intensity distributions around
the prostate boundaries of the model and the subject (as appear-
ance model in [20]), we will have a better chance to avoid the
spurious prostate boundaries. This surely makes the algorithm
robust. The importance of using these two energy terms (
and ) jointly is clearly demonstrated by Fig. 13. In the
upper-left corner of Fig. 13, the positions that are indicated by
the solid and dashed arrows have the similar external energy
part . However, when evaluating the external energy part

, the position indicated by the dashed arrow has a much
smaller image similarity than that indicated by the solid arrow.
By jointly considering the two energy parts, the total external
energy at the position indicated by solid arrow is much smaller
than that indicated by dashed arrow. Therefore, the model is fi-
nally deformed to the position indicated by the solid arrow, pro-
viding the correct result.

2) Internal Energy: The internal energy is used to guarantee
that each model point will be deformed to its corresponding po-
sition in the underlying TRUS image. We use an attribute vector
to capture the geometry of the prostate shape in a hierarchical
fashion. The attribute vector is attached to each point of the
prostate model and reflects the geometric structure of the model

Fig. 10. Demonstration of the Gaussian displacement propagation. The star
denotes the driving point under consideration, and the dots denote the points in
the different neighborhood layer. Indexes 1–3 denote the neighborhood layers,
relative to the driving point. The arrows denote the displacements calculated by
a Gaussian propagation way.

from a global scale to a local scale [15]. Local scale attributes
reflect differential geometric characteristics of the underlying
structure, such as curvature, while global scale attributes capture
spatial relationships among distant points. The attribute vectors
are an important aspect of our model, since they provide a means
of finding correspondences across individuals by examining the
similarity of the underlying attribute vectors. We also use this
similarity of attribute vectors to preserve the shape of the model
during deformation. Accordingly, the internal energy function
is defined as

(15)

where and are, respectively, the normalized
attribute vectors of the deformed model and the average model
at the point . Notice that the attribute vectors are invariant to
the affine transformation. Therefore, the internal energy func-
tion will not be affected by affine transformations. In the
implementation, we can simply affine transform the curve seg-
ment of each model point to the pose where the transformed
curve segment optimally matches with the image features in the
underlying image.

C. Initialization

Initialization is crucial in deformable segmentation. For the
algorithm to be effective in finding the expected objects, the
deformable shape model must initially be placed close to the
boundary of interest. The initialization process proposed in this
paper is guided by the rotation-invariant Gabor features in the
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Fig. 11. Prostate model construction. (a) Ten manually delineated prostate boundaries. (b) Prostate model, which is created from the average shape of the ten
aligned prostates in (a).

ultrasound images. In particular, we perform a series of rigid
transformations [as described in (3)] on our prostate shape
model, and for each transformation we calculate the difference
degree of the corresponding rotation-invariant Gabor features in
the model and in the underlying TRUS image. The initialization
of the model is determined by a transformation that produces
the minimal difference degree. The definition of the difference
degree used in the initialization stage is similar to the definition
of the external energy given in the previous Section II-B-1.
In particular, we include the following three types of prior
knowledge in defining the difference degree, for the purpose of
initialization. First, the property of “dark-to-bright transition”
in the upper boundary part of the prostate is much more consis-
tent in the majority of prostate TRUS images, compared to that
in the lower boundary (c.f. Fig. 1). So, we check the difference
degree only on the upper boundary of the prostate. Second, we
do not want the initialization result misled by noise, and we
prefer fast implementation of the initialization. Therefore, we
use the imaginary part of the coarse Gabor features to evaluate
the difference degree of the rigidly transformed model with the
object of interest in the underlying image. Third, the prostate
in the underlying image is usually not a linearly transformed
version of the prostate model; there usually exists nonlinear de-
formation between them. Because of this, even with an optimal
linear transformation, not all of the model points can be exactly
mapped to their corresponding feature points in the underlying
image. Therefore, we should allow each transformed model
point to search for the best match in its small neighborhood.

Mathematically, our initialization algorithm is formulated as
follows:

(16)

Fig. 12. Demonstration of the segmentation of the prostate in a TRUS image,
using the proposed method. (a) Automatic initialization, where the dashed
contour denotes the original model and the solid contour denotes the automatic
initialization result. (b)–(d) The intermediate segmentation results, after 1, 4,
and 12 iterations, respectively. (e) Final segmentation; the result of using total
20 iterations.

where is the rigid transformed version of the original
model , using three transformation parameters , , ,
as described in (3). For each rigidly transformed model point

in the shape , we look for the best match in
its neighborhood . The point is one of the pixels in

, with the rotation-invariant Gabor feature .
is the direction of the Gabor filter used to calculate the feature

. is the normal vector of the model

at the point . Fig. 12(a) gives an initialization
example, with the original model shown as a dashed contour
and its automatic initialization as a solid contour.

The initialization of the model is implemented as a global

searching in the space of three transformation parameters. How-

ever, as the statistics of the prostate poses can be learned from
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Fig. 13. Demonstration of the importance of jointly using two external energy parts in the prostate segmentation. The first row shows the intermediate result,

displayed, respectively, in the images of F (x; y) and F (x; y). The dashed contour denotes the automatic initialization of the model, and the solid contour
denotes the deformed model after the first iteration. The second row shows the result after four iterations. The last two rows show the same final segmentation

result in the image of F (x; y) the image of F (x; y), and the original TRUS image, respectively.

the training samples, the searching space can be limited in a

small range. To further enhance the efficiency of the algorithm,

we sparsely sample the parameter space. It should be mentioned

here that the initialization result is not guaranteed to be per-

fect. However, our deformable segmentation algorithm is very

robust, even in the case of bad initialization. This is shown in

Fig. 14.

D. Hierarchical Deformation Strategy

The energy function that we want our algorithm to minimize

contains a number of local minima. Although statistical shape

information of the prostates used in this paper can help our algo-

rithm reduce the chances of being trapped in local minima, we

still need to design hierarchical deformation strategy for making

our algorithm more robust and accurate [14], [15], [17]. The ad-

vantages of using the hierarchical deformation strategies were

explained and demonstrated clearly in [14], [15], and [17]. In

this paper, two major hierarchical strategies are employed, i.e.,

the hierarchical focus of the rotation-invariant Gabor features

in different deformation stages, and the hierarchical searching

range and hierarchical curve segment length for each driving

point.

1) Hierarchical Focus of the Gabor Features in Different De-

formation Stages: According to the analysis in Section II-A,

the Gabor filter bank outputs coarse features as well as fine fea-

tures. This can be observed in Fig. 7. The coarse Gabor features

are robust to the noise, while the fine Gabor features are sensi-

tive to the noise. To make our algorithm robust to local minima,

we must use these image features hierarchically. In particular,

we minimize the energy terms that are defined by the coarse

Gabor features in the initial deformation stages, including the

initialization procedure. This makes the initialization and the

initial model deformations robust to the noise. With the increase

of the iterations, the model is deformed closer and closer to the
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Fig. 14. Demonstration of the robustness of our algorithm with respect to the
initialization. In the upper-left corner, the dashed contour denotes the original
model, and the solid contour denotes the automatic initialization of the original
model, which is far from the actual prostate boundary. The final segmentation
results are shown in the right-bottom corner, with the intermediate segmentation
results in the intervenient figures. This example shows the robustness of our
algorithm in segmenting prostates, even in the case of the bad initialization.

prostate boundary. To enhance the accuracy of the algorithm, the

fine features are used to replace the coarse features, therefore,

we transfer to minimize the energy functions that are defined by

the fine features. The implementation of this hierarchical defor-

mation strategy can be completed by dynamically adjusting the

weighting parameter of (13), during the deformation proce-

dure.

2) Hierarchical Searching Range and Curve Segment Length

for the Each Driving Point: For each driving point, its dis-

placement is propagated to its neighboring model points at the

Gaussian way. Mathematically, the propagation of the displace-

ment can be described as

(17)

where is the displacement on a driving point. The vector

is the displacement on the points in the th neighborhood layer

of the driving point under consideration. is a parameter that

controls the propagation range. Fig. 10 gives an example of this

displacement propagation.

When evaluating whether the current displacement is optimal

for this driving point, we calculate and compare the total en-

ergies on the curve segment, rather than only the energy on

the driving point. The length of the curve segment around each

driving point is large initially, and is designed to decrease later.

Similarly, the size of the searching range, which is large initially,

is designed to decrease as the iterations increase.

III. EXPERIMENTAL RESULTS

In this section, we describe four experiments on the segmen-

tation of the prostate in TRUS images. The first example shows

a complete procedure of our algorithm in segmenting a typical

prostate. Our prostate model is an average shape of the ten

aligned prostates, which are manually drawn from ten TRUS

images. The model and ten training samples are shown in

Fig. 11. Fig. 12 demonstrates a typical segmentation procedure

on a TRUS image, with the original model as a dashed contour

Fig. 15. Comparison of algorithm-based segmentations and manual
segmentations, with the dashed contours as the manual segmentations and
the solid contours as the algorithm-based segmentations. From the results,
we can conclude that algorithm-based segmentation is visually as good as
manual segmentation. The detailed differences between the algorithm-based
and manual segmentations are summarized in Table I.

in Fig.12(a). The original model was automatically initialized

as a solid contour in Fig. 12(a). The initialized model is itera-

tively deformed under forces derived from the image features,

the internal constraints, and the statistical shape information

(calculated from ten manually drawn prostates as shown in

Fig. 11). The intermediate segmentation results are displayed

in Fig. 12(b)–(d), respectively. The final segmentation result is

shown in Fig. 12(e).

In the second example, we show that jointly using the two ex-

ternal energy parts and , is a way to avoid the case

of the deformable model being trapped by the spurious prostate

boundaries. As shown in the first row of Fig. 13, the positions

that are pointed at by the solid arrow and the dashed arrow, re-

spectively, have almost the same energy . Without consid-

ering , it is easy for the model to be trapped by the bound-

aries in the region of the dashed arrow. However, by using the

energy part , our model gradually deforms to the region

of the solid arrow, which can be observed in the second row of

Fig. 13. The last two rows in Fig. 13 show the final segmenta-

tion result in the image of , the image of ,

and the original TRUS image, respectively.

The third example shows the robustness of our approach

with respect to imperfect initialization. It should be mentioned

here that the initialization result is not guaranteed to be perfect.

Owing to the noisy nature of the ultrasound image and the

sparse sampling in initialization parameter space, the initial-

ization could be attracted by local minima. As shown in the

upper-left corner of Fig. 14, the automatic initialization, which

is denoted by the solid contour, is far from the actual position
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TABLE I
COMPARISON OF THE MANUAL SEGMENTATIONS AND THE ALGORITHM-BASED

SEGMENTATIONS

of the prostate. The intermediate results in Fig. 14 show that

the model gradually moves to reflect the expected position

of the prostate with the increase of the iterations. Finally, our

algorithm produces a good segmentation result, which is shown

in the right-bottom corner of Fig. 14.

Finally, we validated our algorithm by comparing the algo-

rithm-based segmentations and the manual segmentations on the

eight US images. Fig. 15 visually shows these results, where

the dashed contours are the manual segmentation results and

the solid contours are the algorithm-based segmentation results.

Moreover, we used the average distances, the overlap area er-

rors and the area errors [19] to show the differences between the

algorithm-based segmentations and the manual segmentations.

Table I summarizes these values. The average distances range

from 2.3 to 4.6 pixels, with the mean at 3.20 pixels. Notably,

the pixel sizes in and directions are the same, i.e., 0.4 mm.

The overlap area errors are from 2.76% to 5.66%, with the mean

at 3.98%. The area errors range from 0.09% to 5.40%, with the

mean at 1.66%.

The speed of our algorithm has been tested on a 500 MHz

processor of SGI workstation. The average running time for seg-

menting one subject is about 64.0 s, in which about 43.6 s is used

for Gabor feature calculation, 0.8 of a second for initialization

and 19.6 s for the deformable segmentation.

IV. CONCLUSION

A statistical prostate shape model has been presented in this

paper, for the automatic segmentation of prostates in TRUS im-

ages. The proposed method has two innovations. First, because

of the characteristics of the US image, we employ Gabor filter

bank to represent the image features around the prostate bound-

aries in a multiscale and multiorientation fashion. It is impor-

tant to use the Gabor features as image features to drive the

deformation of the prostate model, because the multioriented

Gabor filters provide edge directions as well as edge strengths

to correctly distinguish the prostate boundaries. The multiscaled

Gabor filters produce coarse as well as fine image features that

enable our model to adaptively focus on particular features in

the various deformation stages, i.e., coarse features first and

fine features later. Second, to make our model robust to local

minima, several hierarchical deformation strategies have been

presented, including the hierarchical focus of the Gabor features

in different deformation stages, and the hierarchical searching

range and curve segment length for each driving point.

The proposed approach has been evaluated on typical TRUS

images. The experimental results are promising and show that

our approach can outline the prostate boundary from these

TRUS images efficiently and accurately, compared to the

manual raters. We plan a large scale validation study of our

method in the future.

We believe we can continue to improve our methodology in

the following aspects. First, we are investigating a more accurate

initialization approach. Currently, we rigidly transform the av-

erage shape model for making the initialized model optimally

matching with the image features in the TRUS image. This is

also one of the reasons that the initialization results are not good

enough for some images. In the future, we will use several prin-

cipal eigenvectors of the prostate shape statistics to deform the

average shape model, and then rigidly transform the deformed

average models to the space of the patient’s TRUS image for

the optimal initialization. Second, the statistics of the Gabor fea-

tures around the prostate boundaries can be obtained from a set

of training samples, and can be used to statistically define the

similarity between the subject and the model.
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