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Abstract

In this contribution we present a method for segmenting
temporal sequences of range and intensity images. The pa-
per addresses two problems: Fusion of intensity and range
data for image segmentation and visual tracking of seg-
ments over time. Our method is based on clustering ina 4D
feature space which contains intensity and geometric fea-
tures. The problem of tracking segments over timeis solved
by adaptive image sequence clustering. The main idea is
to use the cluster centers of the previous image to initialize
clustering for the current image. This link between con-
secutive clustering steps allows to track clusters over time
without explicit correspondence analysis. First experiments
show that our method can successfully segment and track
objects independent of their shapes and motions.

1 Introduction

The task of the proposed algorithm is to segment a tem-
pora sequence of range and intensity images such that a
servicing robot can perform visual object tracking in real-
time. A laser range camerais mounted on the head of the
robot. It generates at each time step a high resolution range
and intensity image.

The proposed a gorithm addresses two problems ) How
to fuse intensity and range information for segmentation
and I1) how to track segments over time.

1) Basically there are two different approachesto fusing
range and intensity data for image segmentation: a) sep-
arately segment the range and intensity images and then
merge the segmentation results or b) perform the segmenta-
tion on the combined range/intensity data. @) When merging
two separately segmented images the crucia step is find-
ing corresponding regionsin the pair of segmented images.
Each segmented image can be represented as graph, where
nodes encode the regions and edges the spatial relationships
between the regions. The correspondence problem can be
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seen as a subgraph matching problem which, in general, is
NP complete [2]. Once the set of corresponding subgraphs
is found, the combined graph is built by choosing one sub-
graph from each pair of corresponding subgraphs. b) Seg-
mentation of the combined range/intensity data is a more
natural approach to the fusion problem. Most of the com-
mon image segmentation techni ques such as region growing
[8], split and merge[4], or clustering [6] can be extended to
deal with the combination of range and intensity data. In
clustering, data fusion can be achieved by combining dif-
ferent features into a single feature space. The clustering
algorithm itself remains unchanged.

I1) A main problem in visua tracking is finding corre-
sponding image features (e.g. corner points, edges, regions)
in consecutive frames. Usually this problem is treated sep-
arately from the problem of feature extraction. In [3] we
suggested the combination of feature extraction and track-
ing. We devel oped a clustering algorithm for segmentation
of color image sequences which implicitly matches corre-
sponding clusters in consecutive images. In [5] the same
idea lead to a segmentation method based on region grow-
ing. They use the segments of the previousimageto initial-
ize the seed points for the region growing algorithm in the
current image.

In this paper we will develop atwo step clustering tech-
nique for segmenting range and intensity image sequences.
Intheinitial step of our agorithm, segments are determined
by a divisive clustering algorithm which is applied to the
first pair of images. For each new image pair the clusters
of the previous pair are adapted iteratively such that links
between corresponding clusters are preserved.

The outline of our paper is as follows. In Section 2 we
describe the initial clustering of the first image pair. Adap-
tive image sequence clustering is introduced in Section 3.
Our experimental results are presented in Section 4. The
paper is summarized in Section 5.



2 Initial Clustering in the combined Posi-
tion/Intensity Space

At each time step our laser cameradeliversarangeimage
and an intensity image as inputs to our segmentation algo-
rithm. Based on the range image and the internal camera
parameters we calculate the 3D coordinates for each pixel
with respect to the camera coordinate system. The 3D po-
sition and intensity features are then combined to a 4D in-
tensity/position feature space where each pixel is described
by avector f, containing its intensity I and its 3D position
(X, Y, Z) f” = (w : Iij, Xij, Y;'j, Zij), wherei is the row
and j the column of the pixel, w isaweighting factor which
determines the relation between the intensity and the posi-
tion features.

We assume that pixels with similar 3D coordinates and
similar intensities belong to the same physical object. Note
that this assumption is rather general and does not make
any restrictions regarding the shape of the objects. If the
assumption holds clustering in the intensity/position feature
performs an object-based segmentation since it groups pix-
els of similar intensity and 3D position. Formally, the task
of clustering can be described asto find anumber of M pro-
totypes p,,,, which minimize the sum of quantization errors:
> (fij — Pmin)’, Where p,,.in is the prototype closest to
the feature vector £;; in the intensity/position feature space.

Clustering of the first pair of images in a sequence has
to be performed without any prior knowledge about the po-
sition of the clusters in the feature space. For this reason,
we have chosen adivisive clustering method [6] which does
not need to beinitialized with cluster positions. The method
starts with one cluster covering the whole data space. In
each iteration the cluster with the highest variance is split
in two by a hyperplane. The hyperplane is determined so
that it is perpendicular to the direction of the highest vari-
ance and runs through the center of the original cluster. The
objective of this heuristic is to minimize the variances of
the two new clusters. After the partitioning has been per-
formed, the prototypes are calculated as the centers of the
new clusters. Instead of preselecting a maximum number
of clusters, one can alternatively define an upper limit for
the sum of quantization errors as the stop-criteria for the
divisive clustering.

3 Adaptive Image Sequence Clustering

For thefirst image pair of a sequence a set of prototypes
is determined by the divisive clustering described above.
For each followingimage pair the prototypesof the previous
pair serve as initialization for the parallel k-means cluster-
ing [7]. Paralel k-means clustering consists of two steps

per iteration n:

Clusters: C,, (n) = 1)
{pixel ij |||fij — Pm(n —1) H2 < ||fij —pi(n—1) HQW};
Prototypes: p,, (n) = )
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In the partitioning step each pixel ij, characterized by
its feature vector f;;, is assigned to the cluster C,,, (n) with
the closest prototype p.,,(n — 1). After that, the prototypes
Pm(n) are recomputed as the average of the data in their
clusters. Each of these two aternating steps reduces the
sum of quantization errors until no further changes occur.
At this stage a local minimum of the sum of quantization
errorsis obtained.

Initializing the k-means clustering with prototypesof the
previous image implicitly establishes correspondences be-
tween clustersin two consecutiveframes. If frame-to-frame
changes are small, k-means clustering will track scene mo-
tion by appropriately shifting the clustersin the 4D feature
space. However, initializing with the prototypes of the pre-
vious image might not be sufficient to track fast moving
objects with large frame-to-frame displacements. For this
reason, we added a standard Kalman filter which predicts
the location of each prototypein the 4D feature space based
on its given trgjectory. The predicted prototypes then serve
asinitializationfor the k-meansclustering in the next frame.
Theintensity is assumed to betimeinvariant and is kept un-
changed. Sincethere can be varioustypes of moving objects
in the scene, a rather general kinematic model is chosen in
the Kalman filter [1]: The motion along the X -, Y- and Z-
axis are assumed to be decoupled, X -, Y- and Z-motions
are therefore predicted by separate filters. The motion of
the cluster is assumed to have nearby constant velocity. To
account for slight changes in the velocity, the time contin-
uous acceleration is modeled as white noise. The discrete
state equation for a sampling period 7' is:

s(k+1)=As(k)+w(k) (3)
with
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The measurement equation for the one-dimensional posi-
tionis:
p(k) = Cs(k) +n(k) (6)



with

cC = (10) 7)

E (n*(k)) = o2 (8)

The parameters of the filter are the power spectral density
of the process noise o2, and the measurement noise 2.

4 Experiments

All experiments have been carried out on rea inten-
sity/range images taken by alaser range camerawhich was
developed at DaimlerChrysler Aerospace. The camera de-
livered range data with a relative error of about +5%. The
resolution of the range and intensity images were 640 x 480
pixels. The frame rate of the camera was 7 Hz which
lead to large frame-to-frame changes when the camerawas
mounted on a moving robot or when the camera observed
moving objects from a stationary platform. Since our a-
gorithm requires small frame-to-frame changes we had to
generate artificial sequences by manually shifting objects
between two shots. The next generation of the Daimler-
Chrysdler range camerawill have aframerate of 25Hz. This
will be sufficient to apply our algorithm to natural scenes of
moving objects.

We evaluated 3 sequences with about 25 pairs of range
and intensity images each. The task of the algorithm was
to segment the scene and to track the moving objects. Fig-
ures 1 a—) show the first intensity images of our 3 test
sequences. The dark lines indicate the trajectories along
which the objects (box, cylinder, and watering can) have
been moved. The frame-to-frame displacements of the
moving objects were between 20 and 30 pixels. The benefit
of combining intensity and range data is clearly illustrated
in sequence 3. At the beginning of sequence 3 (Figures 1
¢) and €)) the range data would not be sufficient to separate
the watering can from the background. At the end of the se-
guence (Figures 1 d) and f)) the intensity contrast between
the watering can and the occluding box is low, whereas the
differencein their range values is significant.

An example of clustering in the combined intensi-
ty/position feature space is shown in Figure 2 @). The orig-
ina intensity of each pixel is replaced by the intensity of
the associated cluster center. As expected, large objects are
segmented into several tile-like clusters (e.g. dark box in
the lower right corner of Figures 2 a)). Most of the ob-
ject boundaries coincide with boundaries between clusters
which indicatesthat each cluster contains points of only one
object. Figures 2 b)—d) show the results of tracking. The
dark lines are the trgjectories of the clusters which belong
to the moving object. The cylinder is segmented into 2, the
watering into 5, and the box into 4 clusters. Figures 2 b)and
d) show that tracking is robust against partial occlusions.

5 Conclusion

In this paper we proposed a new agorithm for segment-
ing sequences of range and intensity image pairs. The
problem of fusing range and intensity data for image seg-
mentation is solved by clustering in a combined 4D inten-
sity/position feature space. Each image is divided into a
given number of clusters by grouping pixels of similar in-
tensity and 3D position. The agorithm unifies segmenta-
tion and tracking by initializing the clustering of new im-
ages based on clustering results from previous images. In
this context, Kalman filters are used to stabilize tracking
by predicting dynamic changes in cluster positions. First
experiments have been carried out on real range/intensity
images taken by a laser camera. The method successfully
segmented and tracked moving objects of various shapes.
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Figure 1. a)—-d): Intensity images of our 3 test sequences. The dark lines indicate the trajectories
along which the objects have been moved. e)-f): First and last range image of the third test sequence.
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Figure 2. a): Results of the intensity/position clustering. The original intensity of each pixel is
replaced by the intensity of the associated cluster center. b)-d): Results of tracking. Black lines
represent the trajectories of the cluster centers.



