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Abstract—Continual use, as well as aging, allows cracks to
develop on concrete surfaces. These cracks are early indications
of surface degradation. Therefore, regular inspection of surfaces
is an important step in preventive maintenance, allowing reactive
measures in a timely manner when cracks may impair the
integrity of a structure. Automating parts of this inspection pro-
cess provides the potential for improved performance and more
efficient resource usage, as these inspections are usually carried
out manually by trained inspectors. In this work we propose a
Fully Convolutional, U-Net based, Neural Network architecture
to automatically segment cracks. Conventional pooling operations
in Convolutional Neural Networks are static operations that
reduce the spatial size of an input, which may lead to loss of
information as features are discarded. In this work we introduce
and incorporate a novel pooling function into our architecture,
Gated Scale Pooling. This operation aims to retain features from
multiple scales as well as adapt proactively to the feature map
being pooled. Training and testing of our network architecture
is conducted on three different public surface crack datasets. It
is shown that employing Gated Scale Pooling instead of Max
Pooling achieves superior results. Furthermore, our experiments
also indicate strongly competitive results when compared with
other crack segmentation techniques.

Index Terms—Crack Segmentation, Deep Learning, CNN,
Pooling

I. INTRODUCTION

Deep learning based methods can achieve state of the

art results in many different computer vision tasks such as

detection and segmentation [1]–[3]. The assessment of surface

cracks in their severity is an important task. Untreated they

may grow in size and critically impact the integrity of the

structure, which can lead to downtime if repairs are needed

and surfaces cannot be used [4]. This labour and time intensive

surface inspection task is commonly carried out manually,

often through a trained inspector, through either analysing

images or carrying out an inspection at the target location

[4], [5]. However, manual labelling of faults is very prone to

human subjectivity [5].

Cracks in surfaces usually differ in color and texture from

their background. These features are able to be picked up and

exploited through deep learning based methods, which allows

automation of this task. The task of semantic segmentation

consists of labelling each pixel in an image with its corre-

sponding class. Therefore, crack segmentation can be handled

as a binary classification task, where every pixel in an image

is labelled to either belong or not belong to a crack.

Many approaches to segment cracks from backgrounds have

been proposed in previous literature, though the majority are

non deep learning based. However, several comparisons in [6]–

[11] confirm that approaches which include deep learning out-

perform previous conventional approaches such as threshold-

ing [5], mathematical morphology [12] or path based methods

[13], [14]. Available public data, which includes images of

cracks and their segmentation masks, is sparse. To compensate

for this training data deficit, available data is often augmented.

This augmentation includes patch based approaches [9], [11],

[15], [16] as well as flipping and cropping [6], [11].

Fully Convolutional Neural Networks (FCN) are a branch

of Convolutional Neural Networks (CNN) that do not employ

fully connected layers. These types of networks are often

used for semantic segmentation tasks [2], [3], [6]. Deeper

layers in these networks learn denser features who are then

upsampled to generate segmentation masks. To combat the

loss of spatial information in deeper layers, skip-connections

between the down and upsampling parts were introduced in

U-Net [3]. These connections allow the direct propagation of

features from the encoder to the decoder part, skipping several

successive layers.

Although pooling in CNN introduces rotation invariance

whilst at the same time reducing the computational effort

required [17], it also discards spatial information which may

be important. To counteract this, several works focus on

retaining and preserving these features during pooling [18]–

[20].

In this paper we present a FCN architecture, based on U-

Net, for crack segmentation. We introduce a new adaptable

pooling function, Gated Scale Pooling (GS Pooling), which

aims to retain spatial information. It learns an adaptive mixing

proportion that combines Max Pooling with Stacked Pooling

[20], an operation which pools features from multiple scales

and merges them. This algorithm is trained and tested on the

Crackforest (CFD) [21], CrackTree [22] and AigleRN [23]

datasets, showing its ability to effectively segment surface

cracks. We present the results using several popular metrics

used in crack segmentation, ensuring that fair evaluation in

future work is made possible.
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Fig. 1. Our proposed U-Net based architecture for crack segmentation. Pooling uses our proposed Gated Scale Pooling operation. The number of filters used
during 1 × 1 convolutions is equivalent to the number of output classes, two in this binary crack segmentation case.

II. APPROACH

A. U-Net

This work makes use of an architecture which is modelled

following U-Net [3]. It consists of an encoder and a decoder

part, that are connected through shortcut connections. The

encoder part follows the common architecture of CNN, using

successions of convolutional, activation and pooling layers.

Every pooling layer in this architecture reduces the spatial

dimensions of the feature map by a factor of two. The decoder

part of this architecture mirrors the encoder part. However,

instead of using pooling operations, transposed convolutions

are used which upscale the feature map by a factor of two.

Through use of the shortcut connections between the encoder

and decoder, spatial information is retained in deeper layers

which would otherwise be lost due to the pooling operation.

An illustration of our architecture is shown in Fig. 1.

In detail, this architecture makes use of seven convolutional

blocks, four in the encoder and three in the decoder section. In

the encoder section these blocks are connected through three

pooling operations, after which the number of filters in each

block is doubled. In the decoder path, after each upsampling

operation, the number of filters is halved. Furthermore, the

input into each decoder convolutional block consists of the

concatenation of the opposite convolutional block in the en-

coder section, as well as the upsampled feature map from the

previous block.

To allow the features extracted at each scale to influence the

segmentation output we employ a multi scale fusion, following

the Deep Supervision approach [24], [25]. This means that the

output of the last convolutional block of the encoder part, as

well as the output from all the convolutional blocks in the

decoder part are each being fed through a 1 × 1 linear trans-

formation with two filters. These four feature maps are then

upsampled using bilinear interpolation, to match the spatial

dimensions of the input. This is followed by concatenating

these feature maps along the channel dimension and applying

another 1 × 1 linear transformation with two filters. To obtain

the final segmentation map through this feature map we then

apply a Softmax activation function, whose output represents
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Fig. 2. Convolutional block in this architecture.

the confidence scores whether a pixel belongs to a crack or

not.

Each convolutional block features a 1 × 1 linear transfor-

mation, four 3 × 3 convolutions, followed by ReLu activation

functions, as well as a residual connection [26] as proposed

in the architecture in [27]. This is illustrated in Fig. 2.

The convolutional layers in this architecture make use of

partial convolution based padding [28]. This approach weighs

output features next to borders during a convolution, based on

the ratio of zero padded features to the ratio of features on the

kernel position during the sliding window operation. It aims

to improve convergence as well as improve performance of

the network, compared to using zero padding.

B. Gated Scale Pooling

In this work we introduce Gated Scale Pooling . This

pooling operation is based on Gated Max-Average [19] and

Stacked Pooling [20]. Stacked Pooling is used to provide scale

invariance by subsequently max-pooling a feature map using

differently sized kernels and strides, followed by extracting

an elementwise average from the output of each pooling

operation. The Gated Max-Average Pooling learns a gating

mask which combines the Average and Max Pooling operation.
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Fig. 3. Gated Scale Pooling operation, combining Stacked Pooling (all three
blocks) with conventional Max Pooling (first block). The Gate Operation uses
a gating mask on the input, followed by squashing the result through a Sigmoid
activation function. This gating operation then combines the output of those
two pooling operation on a per-channel basis.

Expanding upon that, we propose to include Stacked Pooling

instead of Average Pooling, thus creating GS Pooling. The aim

of GS Pooling is to automatically adapt to the features being

pooled, whilst at the same time providing scale insensitivity.

Due to making use of an adaptive gate, which learns the

parameters during training, the optimal mixing proportion of

Max Pooling and Stacked Pooling is chosen. During training

and inference the gating mask gates the input features on a

per-channel basis, which is equivalent to applying a depthwise

convolution with one filter per channel on the input. This

gating mask output is then put through a Sigmoid function

σ(z) = 1

1+e−z to squash its values into a range of [0,1]. Let

x be the input into the pooling operation p. Generating the

pooled output can then be denoted as:

p(x) = M(x)σ(g(x)) + S(x)(1− σ(g(x))) (1)

with M , S, g representing the Max Pooling, Stacked Pooling

and gating operation respectively. This pooling operation is

illustrated more clearly in Fig. 3, where the first pool block

represents the conventional Max Pooling operation and all

three of these pool blocks and their combination through the

elementwise-mean represent Stacked Pooling.

III. EXPERIMENTS AND RESULTS

A. Metrics

In previous works on Crack Segmentation, multiple different

metrics are used to compare the performance of algorithms.

The works in [9], [16], [21], [22] make use of F1-Score F1,

Recall RE and Precision PR for a fixed confidence threshold.

However, we report our results following the metrics in [6],

[7], [29]: F1 on a fixed threshold ODS (Optimal Dataset

Scale), Recall REODS and Precision PRODS on this fixed

threshold, as well as the average F1 for the best threshold on

each image OIS (Optimal Image Scale), calculated through

using all confidence thresholds t ∈ [0.01, 0.99] with intervals

of 0.01. These metrics are calculated as follows:

ODS = max
{

F1t : ∀t ∈ {0.01, ..., 0.99}
}

(2)

OIS =
1

Nimg

Nimg
∑

i

max
{

F1it : ∀t ∈ {0.01, ..., 0.99}
}

(3)

with Nimg representing the total number of images on which

evaluation is run.

As in [6], [16] we consider a pixel being correctly classified

if the prediction lies withing a threshold of two pixels to a

corresponding ground truth pixel.

B. Datasets

To investigate the ability of this architecture to generalize

well across multiple datasets, it is trained and tested on three

different datasets:

• Crackforest (CFD) [21] This dataset consists of 117

images of size 480×320 pixels (one image was discarded

as the ground truth was incorrect). The ratio of crack to

non-crack pixels is 1:61.

• CrackTree [22] It contains 206 images of size 800× 600
pixels. These images also extensively include shadows

and low contrast. The ratio of crack to non-crack pixels

is 1:312.

• AigleRN [23] AigleRN is a small dataset consisting of

38 images. Half of these images are of size 991 × 462
whilst the other half is of size 311 × 462. The ratio of

crack to non-crack pixels is 1:139.

All of these datasets include their annotated binary ground

truth segmentation map.

C. Implementation and Training

For comparison purposes we follow the train/test split for

CFD and AigleRN proposed in [16]. CFD is split into 71 train

and 46 test images, whereas AigleRN is split into 24 train and

14 test images. Our proposed split for CrackTree consists of

130 train and 76 test images.

We employ a patch training and testing process, using a

patch size of 48 × 48 pixels. During training, patches are

randomly extracted from each image using a ratio of 60%

patches, that contain at least one crack pixel, to 40% patches

without crack pixels. For each image in CFD and CrackTree

we extract 2000 and 3000 patches respectively. We utilize

a dynamic extraction approach in AigleRN, as it contains

differently sized images and the ratio of cracks to non crack

pixels is much higher than in the two other datasets. In this

approach, the number of patches to extract from each image

is chosen based on the total number of crack pixels in one

specific image relatively to the total amount of crack pixels

in the training dataset. Therefore, more training patches are

extracted from images whose total number of crack pixels is

higher. The total number of patches to extract from this dataset

is set to 72,000. Image preprocessing before training on all

datasets is done using histogram equalization, normalization

and gamma adjustment.

On each dataset the architectures are trained for 25 epochs.

During training SGD is applied for optimization, utilising a

learning rate of 0.001 and a momentum of 0.9. The loss

function is chosen to be sum of Binary Cross Entropy and

Dice Loss [30] and the batch size is set to 32.



TABLE I
RESULTS ON CFD.

Method OIS ODS PRODS REODS

Ours, GS Pooling 95.84% 94.92% 95.84% 94.02%
Ours, Max Pooling 95.72% 94.76% 95.89% 93.66%

CNN [16] - 92.44% 91.19% 94.81%
Crackforest [21] - 85.71% 82.28% 89.44%

TABLE II
RESULTS ON CRACKTREE.

Method OIS ODS PRODS REODS

Ours, GS Pooling 88.60% 87.63% 88.93% 86.37%
Ours, Max Pooling 88.32% 87.01% 87.84% 86.19%

TABLE III
RESULTS ON AIGLERN.

Method OIS ODS PRODS REODS

Ours, GS Pooling 90.64% 90.24% 89.33% 91.17%
Ours, Max Pooling 89.75% 89.05% 86.89% 91.31%

CNN [16] - 89.54% 91.78% 88.12%

D. Results

To evaluate the performance of our architecture with GS

Pooling we implement two models based on the previously de-

scribed architecture: one including GS Pooling as the pooling

operation (Ours, GS Pooling) and one that uses Max Pooling

as the pooling operation (Ours, Max Pooling). The patch based

testing process extracts a patch at every possible position in

an image, utilising a sliding window with a stride of 1 in

the height and width dimension. After feeding these patches

through the trained network, the output segmentation map is

generated by averaging all prediction results at each possible

pixel position in each image.

Table I, Table II and Table III present the results on the

CFD, CrackTree and AigleRN datasets respectively.

The results on all datasets indicate that making use of GS

Pooling instead of Max Pooling achieves a higher perfor-

mance, ranging from 0.89% and 1.19% in OIS and ODS on

AigleRN to 0.29% and 0.61% on CrackTree as well as a slight

improvement of 0.13% in OIS and 0.16% in ODS on CFD.

Furthermore, the results in Table I and Table III show that

this architecture outperforms previous state of the art results in

those datasets on the ODS by 2.48% on CFD metric and 0.7%

on AigleRN. However, it is to note that the competing CNN

method [16] did not provide source code, therefore we make

use of the results reported in their work. In addition to that,

we assume that the results of the competing CNN [16] as well

as the Crackforest [21] method have been generated using the

best possible confidence threshold, therefore we report them

under the ODS metric. Fig. 4 shows the crack segmentation

results on a sample image from each dataset. As it can be seen,

the majority of cracks in images are segmented. However,

as seen in the predictions, the algorithm may interpret some

noise as a crack, especially when the color is similar to that

of cracks.

IV. CONCLUSION

Detecting and labelling surface cracks is a task which

benefits from automation through computer vision methods.

In this work we presented an U-Net based Convolutional

Neural Network architecture for semantic segmentation of

road cracks. In addition to that we also introduced a novel

pooling function, Gated Scale Pooling. This pooling function

aims to retain relevant spatial information from multiple scales

through combining two pooling operations, Max Pooling and

Stacked Pooling, using an adaptive mixing proportion. We

employ an image-patch based training and testing process,

training and evaluating this model on three datasets. Our

results indicate that our architecture incorporating Gated Scale

Pooling outperforms the same architecture with Max Pooling

in all three of the datasets. Furthermore, we obtain new state

of the art results in the two datasets, where results from other

works were available. We observe that the results of this model

achieve satisfactory segmentation results on all three datasets,

indicating that this architecture generalizes well.

In the future we aim to study how augmentation as well as

different patch sizes affect the results on crack segmentation.

Moreover, we plan on conducting experiments studying the

effects of utilizing Gated Scale Pooling in other network

architectures and domains.
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