
1874 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 6, NOVEMBER 2014

Segmentation of the Blood Vessels and Optic Disk

in Retinal Images
Ana Salazar-Gonzalez, Djibril Kaba, Yongmin Li, and Xiaohui Liu

Abstract—Retinal image analysis is increasingly prominent as a
nonintrusive diagnosis method in modern ophthalmology. In this
paper, we present a novel method to segment blood vessels and
optic disk in the fundus retinal images. The method could be used
to support nonintrusive diagnosis in modern ophthalmology since
the morphology of the blood vessel and the optic disk is an impor-
tant indicator for diseases like diabetic retinopathy, glaucoma, and
hypertension. Our method takes as first step the extraction of the
retina vascular tree using the graph cut technique. The blood vessel
information is then used to estimate the location of the optic disk.
The optic disk segmentation is performed using two alternative
methods. The Markov random field (MRF) image reconstruction
method segments the optic disk by removing vessels from the optic
disk region, and the compensation factor method segments the op-
tic disk using the prior local intensity knowledge of the vessels. The
proposed method is tested on three public datasets, DIARETDB1,
DRIVE, and STARE. The results and comparison with alternative
methods show that our method achieved exceptional performance
in segmenting the blood vessel and optic disk.

Index Terms—Graph cut segmentation, optic disk segmentation,
retinal images, vessel segmentation.

I. INTRODUCTION

T
HE segmentation of retinal image structures has been of

great interest because it could be used as a nonintrusive

diagnosis in modern ophthalmology. The morphology of the

retinal blood vessel and the optic disk is an important struc-

tural indicator for assessing the presence and severity of retinal

diseases such as diabetic retinopathy, hypertension, glaucoma,

hemorrhages, vein occlusion, and neovascularization. However,

to assess the diameter and tortuosity of the retinal blood vessel

or the shape of the optic disk, manual planimetry has commonly

been used by ophthalmologists, which is generally time con-

suming and prone to human error, especially when the vessel

structures are complicated or a large number of images are ac-

quired to be labeled by hand. Therefore, a reliable automated

method for retinal blood vessel and optic disk segmentation,
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which preserves various vessel and optic disk characteristics, is

attractive in computer-aided diagnosis.

An automated segmentation and inspection of retinal blood

vessel features such as diameter, color, and tortuosity as well

as the optic disk morphology allows ophthalmologists and eye

care specialists to perform mass vision screening exams for early

detection of retinal diseases and treatment evaluation. This could

prevent and reduce vision impairments, age-related diseases,

and many cardiovascular diseases, as well as reduce the cost of

the screening.

Over the past few years, several segmentation techniques have

been employed for the segmentation of retinal structures such

as blood vessels and optic disks and diseases like lesions in

fundus retinal images. However, the acquisition of fundus retinal

images under different conditions of illumination, resolution

and field of view (FOV), and the overlapping tissue in the retina

cause a significant degradation of the performance of automated

blood vessels and optic disk segmentations. Thus, there is a need

for a reliable technique for retinal vascular tree extraction and

optic disk detection, which preserves various vessel and optic

disk shapes. In the following segment, we briefly review the

previous studies on the blood vessel segmentation and optic

disk segmentation separately.

II. RELATED WORKS

Two different approaches have been deployed to segment the

vessels of the retina: the pixel-processing-based methods and

tracking-based methods [1].

The pixel-processing-based approach performs the vessel

segmentation in a two-pass operation. First, the appearance of

the vessel is enhanced using detection processes such as mor-

phological preprocessing techniques and adaptive filtering. The

second operation is the recognition of the vessel structure using

thinning or branch-point operations to classify a pixel as a vessel

or background (Bg). These approaches process every pixel in

the image and apply multiple operations on each pixel. Some

pixel processing methods use neutral networks and frequency

analysis to define pixels in the image as vessel pixels and Bg

pixels. Typical pixel processing operations are shown by Hoover

et al. [2], Mendoca et al. [3], Soares et al. [4], Staal et al. [5],

Chaudhuri et al. [6], and Zana et al. [7].

The second set of approaches for vessel segmentation are re-

ferred to as vessel tracking, vectorial tracking, or tracing [1]. In

contrast to the pixel-processing-based approaches, the tracking

methods detect first initial vessel seed points, and then track

the rest of the vessel pixels through the image by measuring

the continuity proprieties of the blood vessels. This technique is

used as a single-pass operation, where the detection of the vessel
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structures and the recognition of the structures are simultane-

ously performed.

The tracking-based approaches included semiautomated trac-

ing and automated tracing. In the semiautomated tracing meth-

ods, the user manually selects the initial vessel seed point. These

methods are generally used in quantitative coronary angiogra-

phy analysis and they generally provide accurate segmentation

of the vessels. In fully automated tracing, the algorithms auto-

matically select the initial vessel points and most methods use

Gaussian functions to characterize a vessel profile model, which

locates a vessel point for the vessel tracing. They are computa-

tionally efficient and more suitable for retinal image processing.

Examples of the tracking-based approaches are presented by Xu

et al. [8], Maritiner-perez et al. [9], Staal et al. [5], and Zhou

et al. [10].

Both pixel processing and tracking approaches have their own

advantages and limitations over each other. The pixel process-

ing approaches can provide a complete extraction of the vascular

tree in the retinal image since they search all the possible ves-

sel pixels across the whole image. However, these techniques

are computationally expensive and require special hardware to

be suitable for large image dataset. The presence of noise and

lesions in some retinal images causes a significant degrada-

tion in the performance of the pixel processing approaches as

the enhancement operation may pick up some noise and le-

sions as vessel pixels. This could lead to false vessel detection

in the recognition operation. On the other hand, the tracking

approaches are computationally efficient and much faster than

the pixel processing methods because they perform the vessel

segmentation using only the pixels in the neighborhood of the

vessels structure and avoid the processing of every pixel in the

image. Nevertheless, these methods lack in extracting a com-

plete vascular tree in the case where there are discontinuities in

the vessel branches. Furthermore, the semiautomated tracking

segmentation methods need manual input, which requires time.

The optic nerve head is described as the brightest round area

in the retina where the blood vessels converge with a shape

that is approximately elliptical and has a width of 1.8 ± 0.2 mm

and height 1.9 ± 0.2 mm [11]. The convergence feature of blood

vessels into the optic disk region is generally used to estimate the

location of the optic disk and segment it from the retinal image.

But the intrusion of vessels in the optic disk region constitutes

computational complexity for the optic disk segmentation as it is

breaking the continuity of its boundary. To address this problem,

several methods have been employed such as those presented

by Chrastek et al. [12], Lowell et al. [13], Welfer et al. [14], and

Aquino et al. [15].

Chrastek et al. [12] presented an automated segmentation of

the optic nerve head for diagnosis of glaucoma. The method

removes the blood vessel by using a distance map algorithm;

then, the optic disk is segmented by combining a morphologi-

cal operation, Hough transform, and an anchored active contour

model. Lowell et al. [13] proposed a deformable contour model

to segment the optic nerve head boundary in low-resolution

retinal images. The approach localizes the optic disk using a

specialized template matching and a directionally sensitive gra-

dient to eliminate the obstruction of the vessel in the optic disk

Fig. 1. Vessel segmentation algorithm.

region before performing the segmentation. Welfer et al. [14]

proposed an automated segmentation of the optic disk in color

eye fundus image using an adaptive morphological operation.

The method uses a watershed transform marker to define the

optic disk boundary, and the vessel obstruction is minimized by

morphological erosion.

These techniques are performed using morphological opera-

tions to eliminate the blood vessels from the retinal image. How-

ever, the application of morphological operations can modify the

image by corrupting some useful information.

In our optic disk segmentation process, the convergence fea-

ture of vessels into the optic disk region is used to estimate its

location. We then use two automated methods [Markov random

field (MRF) image reconstruction and compensation factor] to

segment the optic disk.

The rest of the paper is organized as follows. The blood vessel

segmentation is discussed in Section III. Section IV provides the

detailed description of the optic disk segmentation. Section V

presents the experimental results of our method with compar-

isons to other methods. Conclusions are drawn in Section VI.

The preliminary results of the three components of the approach,

namely the blood vessel segmentation, optic disk segmentation

using the graph cut and MRF, respectively, were presented sep-

arately in [16]–[18]. More details of the approach can be found

in the Ph.D. thesis [19].

III. BLOOD VESSEL SEGMENTATION

Blood vessels can be seen as thin elongated structures in the

retina, with variation in width and length. In order to segment

the blood vessel from the fundus retinal image, we have imple-

mented a preprocessing technique, which consists of an effective

adaptive histogram equalization and robust distance transform.

This operation improves the robustness and the accuracy of the

graph cut algorithm. Fig. 1 shows the illustration of the vessel

segmentation algorithm.

A. Preprocessing

We apply a contrast enhancement process to the green channel

image similar to the work presented in [20]. The intensity of the

image is inverted, and the illumination is equalized. The result-

ing image is enhanced using an adaptive histogram equalizer,
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Fig. 2. Preprocessing. (a) h = 45, r = 3, (b) h = 45, r = 6, (c) h = 81, r =
3, (d) h = 81, r = 6, (e) distance map, and (f) sample of a vessel with arrows
indicating the vessel gradients.

given by

IEnhanced =

⎛
⎝ ∑

p ′∈R(p)

s (I (p) − I (p′))

h2

⎞
⎠

r

· M (1)

where I is the green channel of the fundus retinal color image, p

denotes a pixel, and p
′
is the neighborhood pixel around p. p

′
∈

R(p) is the square window neighborhood with length h. s(d) =
1 if d > 0, and s(d) = 0 otherwise with d = s (I (p) − I (p′)).
M = 255 value of the maximum intensity in the image. r is

a parameter to control the level of enhancement. Increasing

the value of r would also increase the contrast between vessel

pixels and the Bg as seen in Fig. 2. The experimental values of

the window length was set to h = 81 and r = 6.

A binary morphological open process is applied to prune the

enhanced image, which discards all the misclassified pixels in

Fig. 2(d). This approach significantly reduces the false positive,

since the enhanced image will be used to construct the graph for

segmentation.

A distance map image is created using the distance transform

algorithm. This is used to calculate the direction and the magni-

tude of the vessel gradient. Fig. 2(e) and (f) shows the distance

map of the whole image and a sample vessel with arrows in-

dicating the direction of the gradients, respectively. From the

sample vessel image, we can see the center line with the bright-

est pixels, which are progressively reduced in intensity in the

direction of the edges (image gradients). The arrows in Fig. 2(f)

are referred to as vector field, which are used to construct the

graph in the next sections.

B. Graph Construction for Vessel Segmentation

The graph cut is an energy-based object segmentation ap-

proach. The technique is characterized by an optimization op-

eration designed to minimize the energy generated from a given

image data. This energy defines the relationship between neigh-

borhood pixel elements in an image.

TABLE I

WEIGHT ASSIGNMENT OF THE EDGES IN THE GRAPH

A graph G (ν, ǫ) is defined as a set of nodes (pixels) ν and a set

of undirected edges ǫ that connect these neighboring nodes. The

graph included two special nodes, a foreground (Fg) terminal

(source S) and a Bg terminal (sink T ). ǫ includes two types

of undirected edges: neighborhood links (n-links) and terminal

links (t-links). Each pixel p ∈ P (a set of pixels) in the graph

presents two t-links {p, S} and {p, T} connecting it to each

terminal, while a pair of neighboring pixels {p, q} ∈ N (number

of pixel neighbors) is connected by an n-link [21]. Thus,

ǫ = N
⋃

p∈P

{{p, S}, {p, T}, ν = P ∪ {S, T}}. (2)

An edge e ∈ ǫ is assigned a weight (cost) We > 0. A cut is

defined by a subset of edges C ∈ ǫ, where G (c) = 〈ν, ǫ\C〉
separating the graph into Fg and Bg with C defined as |C| =∑

e∈C We

The max-flow algorithm is used to cut the graph and find the

optimal segmentation. Table I assigns weight to the edges ǫ in

the graph [21], where

K = 1 + maxp∈P

∑

{p,q}

Bp,q , (3)

and F and B represent the subsets of pixels selected as the

Fg and Bg, respectively. Thus, F ⊂ P and B ⊂ P such that

F ∩ B = ⊘. Bp,q defines the discontinuity between neighbor-

ing pixels, and its value is large when the pixel intensities. λ > 0
is a constant coefficient, which we will define in the energy for-

mulation of the graph.

The graph cut technique is used in our segmentation because

it allows the incorporation of prior knowledge into the graph

formulation in order to guide the model and find the optimal

segmentation. Let us assume A = (A1 , Ap , . . . , AP ) is a binary

vector set of labels assigned to each pixel p in the image, where

Ap indicate assignments to pixels p in P . Therefore, each as-

signment Ap is either in the Fg or Bg. Thus, the segmentation is

obtained by the binary vector A and the constraints imposed on

the regional and boundary proprieties of vector A are derived

by the energy formulation of the graph defined as

E (A) = λ · R (A) + B (A) (4)

where the positive coefficient λ indicates the relative importance

of the regional term (likelihoods of Fg and Bg) RA against the

boundary term (relationship between neighborhood pixels) BA .

The regional or the likelihood of the Fg and Bg is given by

R (A) =
∑

p∈P

Rp (Ap) (5)
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Fig. 3. Retinal blood vessel segmentation using the traditional graph. (a) Seeds
initialization of the input image, (b) λ = 20, (c) λ = 50, and (d) λ = 100.

and the boundary constraints are defined as

B (A) =
∑

p,q∈N

Bp,q · φ (Ap , Aq ) (6)

where φ (Ap , Aq ) = 1 for Ap 
= Aq and 0 otherwise,

Bp,q = exp(−
(Ip − Iq)2

2σ2
) ·

1

dist(p, q)
. (7)

Rp (Ap) specifies the assignment of pixel p to either the Fg

or the Bg. Bp,q defines the discontinuity between neighboring

pixels, and its value is large when the pixel intensities Ip and Iq

are similar and close to zero when they are different. The value

of Bp,q is also affected by the Euclidean distance dist(p, q)
between pixels p and q.

During the minimization of the graph energy formulation

in (4) to segment thin objects like blood vessels, the second

term (boundary term) in (4) has a tendency to follow short

edges known as “the shrinking bias” [22]. This problem causes

a significant degradation of the performance of the graph cut

algorithm on thin elongated structures like the blood vessels.

Fig. 3 shows an example of the blood vessel segmentation using

the traditional graph formulation [23]. From Fig. 3, it can be

seen that the blood vessel segmentation follows short edges,

and tends to shrink in the search for the cheapest cost. It can

also be noticed that λ in (4) controls the relation between the

boundary and regional terms. Increasing the value of λ, the

likelihood of the pixels belonging to the Fg and Bg (t-links)

gains strength over the regional term (n-links), which slightly

improves the segmentation result as shown in Fig. 3(d).

To address the aforementioned problem, the segmentation of

blood vessels using the graph cut requires a special graph for-

mulation. One of the methods used to address the shrinking bias

problem is to impose an additional connectivity prior, where the

user marks the constraint connectivity [22]. In order to achieve

full automated segmentation, we used the method presented

in [23], which overcomes the “shrinking bias” by adding the

mechanism of vectors flux into the construction of the graph.

Fig. 4. Flux of vectors v passing through a given surface S.

The incorporation of vectors flux can improve edge alignment

and allows the segmentation of thin objects like blood vessels

by keeping a balance between shrinking (length) and stretching

(vectors flux) along the boundary. Fig. 4 shows a flux of vectors

v passing through a given surface S. Our method takes the image

gradients of rough blood vessels from the preprocessing step as

vectors v shown in Fig. 2(f), and the flux (magnitude and direc-

tion) of these vectors is incorporated into the graph construction

and optimized. Thus, the shrinking effect of the minimization

energy on the boundary term is equilibrated with the spreading

effect of vectors v flux.

It has been shown in [23] that the class of the Finsler metrics

can describe geometric proprieties of the discrete cut metric on

regular grids and the Finsler length can be represented by the

sum of two terms. Those terms represent the symmetric and

antisymmetric parts of the cut metric. The symmetric part of

the cut defines the standard geometric length of contour and it

is independent of its orientation. The antisymmetric part of the

cut metric represents the flux of a given vector field through the

contour [23].

To address “the shrinking bias” problem shown in Fig. 3,

we have constructed a graph consisting of a symmetric part g+

(shrinking) and an antisymmetric part g− (stretching) by incor-

porating the flux of vector v into the graph construction. The

symmetric part g+ of the graph corresponds to a cut geometric

length and is related directly to the n-link connections and the

antisymmetric part g− is equal to the flux of the vector field v

over the cut geometric and it is used to derive the t-links. Thus,

the blood vessels can be segmented by keeping a good balance

between shrinking and stretching (flux) throughout the image

boundary.

1) Symmetric Part of the Graph: It is used to assign weights

on the n-link connections (edges between neighboring pixels).

Let us consider a neighbor system of a graph described by a

set of edges ek , where 1 ≤ k ≤ N , for N number of neighbors.

Let us define ek as the shortest vector connecting two pixels in

the direction of k, W+
k (p) as the weight of the edge ek at pixel

p, and W̃+
k (p) as a set of the edge weights at pixel p for all

directions. The corresponding edge weights are defined by

ω+ =
1

2
D × g+ (8)

where D is an N × N matrix with entries defined as

Dii = −
sin(αi+1 − αi−1)

sin(αi+1 − αi)sin(αi − αi−1)
(9)
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Fig. 5. Neighborhood system for a grid in the graph.

Dij =

⎧
⎨
⎩

1

sin (αj − αi)
if j + 1 ± 1 mod N

0 for other entries

where αk is the angle of the edge ek with respect to the positive

axis X as shown in Fig. 5.

In our implementation, we consider a grid map of 16 neigh-

bors with edges ek , k = 1, 2, . . . , 16 as shown in Fig. 5. For each

pixel p in the green channel image, the edge weight W̃+
k (p) is

computed according to (8). g+ is calculated using the pixel

intensity difference between two given nodes by

g+ = K · exp

(
−(Ip − Iq )

2

σ2

)
. (10)

g+ has a high value for pixels of similar intensities, when

Ip − Iq < σ. However, if the pixels are very different Ip − Iq >

σ, the value of g+ is small, which represents a poor relation

between the pixels; hence, they belong to different terminals

[24].

2) Antisymmetric Part of the Graph: We used the term an-

tisymmetry because the flux (stretching) of the vector field v

over the cut geometric balanced the shrinking of blood vessels

during the segmentation. This antisymmetric part of the graph

is defined by the flux of the vector field v over the cut geomet-

ric. It is used to assign weights on the t-links (edges between

a given pixel and the terminals) to balance the shrinking effect

seen in Fig. 3. Specific weights for t-links are obtained based on

the deposition of vector v. Different decompositions of vector

v may result in different t-links whose weights can be inter-

preted as an estimation of divergence. In our implementation,

we decomposed the vector v along grid edges with the n-links

oriented along the main axes, i.e., in the X- and Y -directions.

Thus, vector v can be decomposed as v = vxux + vyuy , where

ux and uy are unit vectors in the X- and Y -directions, respec-

tively. This decomposition leads to the t-link weights defined

as

tp =
δ2

2
[
(
vright

x − vleft
x

)
+

(
vup

y − vdown
x

)
] (11)

where vright
x and vleft

x are the components of vector v in the

X-direction taken at the right and left neighbors of pixel P ,

Fig. 6. Vessel segmentation using the decomposition of vector v: (a) input
retinal image, (b) blood vessel segmentation using horizontal (X -axis) de-
composition of vector v, (c) blood vessel segmentation using vertical (Y -axis)
decomposition of vector v, and (d) blood vessel segmentation result using the
decomposition of vector v along the X- and Y-axes.

respectively. vup
y and vdown

y are in the Y -direction of vector v

taken at the top and down neighbors of pixel P . δ is the size of

the cell in the grid map (see Fig. 5). We add edge (s → p) with

weight C ∗ (−tp) if tp < 0, or edge (p → t) with weight C ∗ tp

otherwise. The parameter C is related to the magnitude of the

vector v; thus, the pixels in the center of the blood vessel have a

higher connection to the source (Fg) than the pixels in the edge

of the blood vessels. Because the distance map is calculated on

the pruned image and vector v is only defined for the pixels

detected as blood vessels in the rough segmentation, for the rest

of the pixels in the image, the initialization of t-link weights

is set as (p → s) with weight t = 0 and (p → t) with weight

t = K, where K is the maximum weight sum for a pixel in the

symmetric construction. Fig. 6 shows the segmentation results

of the blood vessels using different decomposition of the vector

v generating different t-link weights.

IV. OPTIC DISK SEGMENTATION

The optic disk segmentation starts by defining the location

of the optic disk. This process used the convergence feature of

vessels into the optic disk to estimate its location. The disk area

is then segmented using two different automated methods (MRF

image reconstruction and compensation factor). Both methods

use the convergence feature of the vessels to identify the position

of the disk. The MRF method is applied to eliminate the vessel

from the optic disk region. This process is known as image

reconstruction and it is performed only on the vessel pixels to

avoid the modification of other structures of the image. The

reconstructed image is free of vessels and it is used to segment

the optic disk via graph cut. In contrast to MRF method, the

compensation factor approach segments the optic disk using

prior local intensity knowledge of the vessels. Fig. 7 shows

the overview of both the MRF and the compensation factor

methods.
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Fig. 7. (a) MRF image reconstruction method diagram and (b) compensation
factor method diagram.

A. Optic Disk Location

Inspired by the method proposed in [14], which effectively

locates the optic disk using the vessels, we use the binary image

of vessels segmented in Section III to find the location of the

optic disk. The process iteratively traces toward the centroid of

the optic disk. The vessel image is pruned using a morphological

open process to eliminate thin vessels and keep the main arcade.

The centroid of the arcade is calculated using the following

formulation:

Cx =
K∑

i=1

xi

K
Cy =

K∑

i=1

yi

K
(12)

where xi and yi are the coordinates of the pixel in the binary

image and K is the number of pixels set to 1 (pixels marked as

blood vessels) in the binary image.

Given the gray scale intensity of a retinal image, we select 1%

of the brightest region. The algorithm detects the brightest region

with the most number of pixels to determine the location of the

optic disk with respect to the centroid point (right, left, up, or

down). The algorithm adjusts the centroid point iteratively until

it reaches the vessel convergence point or the center of the main

arcade (center of the optic disk) by reducing the distance from

one centroid point to next one in the direction of the brightest

region, and correcting the central position inside the arcade

accordingly. Fig. 8 shows the process of estimating the location

of the optic disk in a retinal image. It is important to notice that

the vessel convergence point must be detected accurately, since

this point is used to automatically mark Fg seeds. A point on

the border of the optic disk may result in some false Fg seeds.

After the detection of the vessel convergence point, the image

constrained a region of interest (ROI) including the whole area

of the optic disk to minimize the processing time. This ROI is

set to a square of 200 × 200 pixels concentric with the detected

optic disk center. Then, an automatic initialization of seeds (Fg

and Bg) for the graph is performed. A neighborhood of 20 pixels

of radius around the center of the optic disk area is marked as

the Fg pixels, and a band of pixels around the perimeter of the

image are selected as the Bg seeds in Fig. 9.

B. Optic Disk Segmentation With MRF Image Reconstruction

The high contrast of blood vessels inside the optic disk pre-

sented the main difficulty for its segmentation as it misguides

the segmentation through a short path, breaking the continuity

of the optic disk boundary. To address this problem, the MRF-

Fig. 8. Optic disk detection. (a) Retinal image green channel with 1% of the
brightest region selected in green color, (b) binary segmented blood vessel,
(c) binary segmented blood vessel after pruning, and (d) sequence of points
from the centroid to vessel convergence point (optic disk location).

Fig. 9. Optic disk detection. (a) ROI image, (b) initialization of the foreground
F, and the background B of the ROI image.

based reconstruction method presented in [25] is adapted in our

study. We have selected this approach because of its robustness.

The objective of our algorithm is to find a best match for some

missing pixels in the image; however, one of the weaknesses

of the MRF-based reconstruction is the requirement of inten-

sive computation. To overcome this problem, we have limited

the reconstruction to the ROI, and using prior segmented retina

vascular tree, the reconstruction was performed in the ROI. An

overview diagram of the optic disk segmentation with the MRF

image reconstruction is shown in Fig. 7.

Let us consider a pixel neighborhood w(p) defined as a

square window of size W , where pixel p is the center of the

neighborhood. I is the image to be reconstructed and some

of the pixels in I are missing. Our objective is to find the

best approximate values for the missing pixels in I . So, let

d(w1, w2) represent a perceptual distance between two patches

that defines their similarity. The exact matching patch corre-

sponds to d(w′, w(p)) = 0. If we define a set of these patches

as Ω(p) = {ω′ ⊂ I : d(ω′, ω(p)) = 0}, the probability density

function of p can be estimated with a histogram of all center

pixel values in Ω(p). However, since we are considering a finite

neighborhood for p and the searching is limited to the image

area, there might not be any exact matches for a patch. For
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Fig. 10. MRF reconstruction applied to retinal images. Top: original gray-
scale images. Bottom: reconstructed images using the MRF-based method.

this reason, we find a collection of patches, whose match falls

between the best match and a threshold. The closest match is

calculated as ωbest = argminω d(ω(p), ω) ⊂ I . All the patches

ω with d(ω(p), ω) < (1 + ǫ)d(ω(p), ωbest) are included in the

collection ω′. d(w′, w(p)) is defined as the sum of the abso-

lute differences of the intensities between patches, so identical

patches will result in d(w′, w(p)) = 0. Using the collection of

patches, we create a histogram and select the one with the high-

est mode. Fig. 10 shows sample results of the reconstruction.

The Fgs and the Bgs seeds are initialized in the reconstructed

image, which are then used in graph cut formulation to segment

the optic disk. Similar to Fig. 9, the initialization of the Fgs and

Bgs seeds is performed using the reconstructed image.

The graph cut algorithm described in Section III-B is used

to separate the Fg and the Bg by minimizing the energy func-

tion over the graph and producing the optimal segmentation of

the optic disk in the image. The energy function of the graph

in (4) consists of regional and boundary terms. The regional

term (likelihoods of Fg and Bg) is calculated using (5), while

the boundary term (relationship between neighboring pixels) is

derived using (6). A grid of 16 neighbors N is selected to create

links between pixels in the image Im. The max-flow algorithm

is used to cut the graph and find the optimal segmentation.

C. Optic Disk Segmentation With a Compensation Factor

In contrast to the MRF image reconstruction, we have in-

corporated the blood vessels into the graph cut formulation by

introducing a compensation factor V ad. This factor is derived

using prior information of the blood vessel.

The energy function of the graph cut algorithm generally

comprises boundary and regional terms. The boundary term

defined in (6) is used to assign weights on the edges (n-links) to

measure the similarity between neighboring pixels with respect

to the pixel proprieties (intensity, texture, and color). Therefore,

pixels with similar intensities have a strong connection. The

regional term in (5) is derived to define the likelihood of the

pixel belonging to the Bg or the Fg by assigning weights on the

edges (t-link) between the image pixels and the two terminals

Fig. 11. Optic disk segmentation with the compensation factor V ad method:
(a) V ad = 20, (b) V ad = 100, (c) V ad = 150, and (d) V ad = 250.

Bg and Fg seeds. In order to incorporate the blood vessels into

the graph cut formulation, we derived the t-link as follows:

Slink =

{
− lnPr (Ip\ Fgseeds) if p 
= vessel

− lnPr (Ip\ Fgseeds) + V ad if p = vessel
(13)

Tlink =

{
− lnPr (Ip\Bgseeds) if p 
= vessel

− lnPr (Ip\Bgseeds) if p = vessel
(14)

where p is the pixel in the image, Fgseeds is the intensity distribu-

tion of the Fg seeds, Bgseeds represents the intensity distribution

of the Bg seeds, and V ad is the compensation factor given as

V ad = maxp∈vessel{− ln Pr (Ip\Bgseeds)}. (15)

The intensity distribution of the blood vessel pixels in the

region around the optic disk makes them more likely to belong

to Bg pixels than the Fg (or the optic disk pixels). Therefore, the

vessels inside the disk have weak connections with neighboring

pixels making them likely to be segmented by the graph cut as

Bg. We introduce in (13) a compensation vector to all t-links

of the Fg for pixels belonging to the vascular tree to address

this behavior. Consequently, vessels inside the optic disk are

classified with respect to their neighborhood connections instead

of their likelihood with the terminals Fg and Bg seeds. Fig. 11

shows sample of images segmented by the compensation factor.

The segmentation of the disk is affected by the value of V ad,

and the method achieves poor segmentation results for low value

of V ad. However, when the value of the V ad increases, the

performance improves until the value of V ad is high enough to

segment the rest of the vessels as Fg.

V. RESULTS

For the vessel segmentation method, we tested our algorithm

on two public datasets, DRIVE [5] and STARE [2] with a total

of 60 images. The optic disk segmentation algorithm was tested

on DRIVE [5] and DIARETDB1 [26], consisting of 129 images

in total. The performances of both methods are tested against a

number of alternative methods.

The DRIVE consists of 40 digital images which were captured

from a Canon CR5 nonmydriatic 3CCD camera at 45◦ FOV. The

images have a size of 768 × 584 pixels. The dataset includes
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masks to separate the FOV from the rest of the image. It included

two sets of hand-labeled images (set A and set B) for the blood

vessel. Set A offers the manually labeled images for all the

images in the dataset, whereas set B provides the manually

labeled images for half of the dataset. To test our method, we

adopt the set A hand labeling as the benchmark. We manually

delimited the optic disk to test the performance of the optic disk

segmentation algorithm.

The STARE dataset consists of 20 images captured by a Top-

Con TRV-50 fundus camera at 35◦ FOV. The size of the images is

700 × 605 pixels. We calculated the mask image for this dataset

using a simple threshold technique for each color channel. The

STARE dataset included images with retinal diseases selected

by Hoover et al. [2]. It also provides two sets of hand-labeled im-

ages performed by two human experts. The first expert labeled

fewer vessel pixels than the second one. To test our method, we

adopt the first expert hand labeling as the ground truth.

The DIARETDB1 dataset consists of 89 color images with 84

of them containing at last one indication of lesion. The images

were captured with a digital fundus camera at 50◦ FOV and had

a size of 1500 × 1152 pixels. Hand-labeled lesion regions are

provided in this dataset by four human experts. However, the

DIARETDB1 dataset only includes the hand-labeled ground

truth of lesions but not the blood vessels and the optic disk.

For this reason, we were unable to compare the performance

of the blood vessel segmentation on the DIARETDB1 dataset.

Nevertheless, we were able to create the hand-labeled ground

truth of an optic disk to test the performance of the optic disk

segmentation.

To facilitate the performance comparison between our method

and alternative retinal blood vessels segmentation approaches,

parameters such as the true positive rate (TPR), the false positive

rate (FPR), and the accuracy rate (ACC) are derived to measure

the performance of the segmentation [5]. The ACC is defined

as the sum of the true positives (pixels correctly classified as

vessel points) and the true negatives (nonvessel pixels correctly

identified as nonvessel points), divided by the total number of

pixels in the images. The TPR is defined as the total number

of true positives, divided by the number of blood vessel pixels

marked in the ground true image. The FPR is calculated as

the total number of false positives divided by the number of

pixels marked as nonvessel in the ground true image. It is worth

mentioning that a perfect segmentation would have an FPR of 0

and a TPR of 1. Our method and all the alternative methods used

the first expert hand-labeled images as a performance reference.

Most of the alternative methods use the whole image to mea-

sure the performance. In [5], all the experiments are carried out

on the FOV without considering the performance in the dark

area outside the FOV. The method in [3] measures the perfor-

mance on both the whole image and the FOV. The dark Bg

outside the FOV in the retinal image is easy to segment. It is

an advantage in measuring the true negatives pixels when the

whole image is considered. We have calculated the percentage

of pixels outside the FOV in the images for the two datasets,

which represents approximately 25% of the pixels in the whole

image. However, it does not affect all the measurement metrics,

except when the true negative value is involved (e.g., ACC). On

TABLE II

PERFORMANCE COMPARISON IN THE STARE DATASET

TABLE III

PERFORMANCE COMPARISON OF HEALTHY VERSUS DISEASE IMAGES

IN THE STARE DATASET

the other hand, most of the methods use the whole image to

measure their performance, making the comparison fair.

A. Results of the Blood Vessel Segmentation Algorithm

on the STARE Dataset

Tables II and III show performance comparison results of

our approach with recent alternative methods in terms of TPR,

FPR, and ACC on the STARE dataset. The performance results

of the second expert hand labeled and the method proposed by

Martinez-Perez et al. [9] and Staal et al. [5] are taken from [9].

The results of the methods proposed by Mendonca et al. [3]

and Hoover et al. [2] are taken from [3], and the approaches

of Chaudhuri et al. [6], Kaba et al. [27] Marin et al. [28], and

Zhang et al. [29] were generated from their original manuscripts.

The performance results of segmentation for Zhang et al. [29],

Chaudhuri et al. [6], and Soares et al. [30] on both healthy and
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Fig. 12. DRIVE dataset: (a) and (d) retinal images, (b) and (e) our segmenta-
tion results, and (c) (and e) manually labeled results.

unhealthy images were taken from [29]. The testing includes

all the 20 fundus images except the method proposed by Staal

et al. [5] which used 19 out of the 20 (ten healthy and nine

unhealthy) images.

In Table II, the second human expert hand-labeled image

is considered as the target performance level with average

TPR = 0.7887, given the first human expert hand-labeled im-

age as benchmark. Thus, our method needs an improvement of

10.64% in average true positive, whereas Mendon et al., Staal

et al., Chaudhuri et al., Hoover et al., Kaba et al., Martinez-

Perez et al., and Zhang et al. have a room of improvement

of 19.55%, 19.81%, 28.17%, 22.00%, 23.06%, 14.45%, and

17.74%, respectively.

Considering the value of average TPR as a performance mea-

sure, our proposed approach reaches better performance than

all the other methods. However, with the average ACC, our

method is only marginally inferior to the methods presented by

Staal et al. [5], Kaba et al. [27], Marin et al. [28], and Zhang

et al. [29], but as mentioned previously, Staal et al. [5] used 19

of the 20 images. Compared to the methods proposed by Hoover

et al. [2], Martinez-Perez et al. [9], and Chaudhuri et al. [6], our

approach outperforms the ACC of these techniques and it has

approximately the same value of ACC as Mendonca et al. [3].

Table III compares the performance of the healthy subject im-

ages against the unhealthy subject images on the STARE dataset.

The results of the experiments show that the unhealthy ocular

images cause a significant degradation of the performance of

automated blood vessel segmentation techniques. An overview

of the results shows that in both healthy and unhealthy images,

our proposed method achieves a better overall average TPR per-

formance than all the other methods. However, the average ACC

value is comparable to the performance of Soares et al. [30] and

Zhang et al. [29]. It outperforms the ACC of Mendonca et al. [3],

Hoover et al. [2], and Chaudhuri et al. [6] in both healthy and

unhealthy images.

Figs. 12 and 13 show the segmented images and the man-

ually labeled images for the DRIVE and the STARE datasets,

respectively.

Fig. 13. STARE dataset: (a) and (d) retinal images, (b) and (e) our segmenta-
tion results, and (c) and (e) manually labeled results.

B. Results of the Blood Vessel Segmentation Algorithm

on the DRIVE Dataset

The performance of the segmentation of our method on the

DRIVE dataset is compared with alternative methods: Zhang

et al. [29], Soares et al. [30], Zana et al. [7], Garg et al. [31],

Perfetti et al. [32], and Al-Rawi et al. [33] taken from [29]. The

results of the second human expert B and the method proposed

by Niemeijer et al. [34], Mendonca et al. [3], and Staal et al. [5]

were acquired from [3]. The results of the methods proposed by

Cinsdikici et al. [35] and Jiang et al. [36] were generated from

Marin et al. [28], and finally, the results of the methods by Ricci

et al. [37], Soares et al. [30], and Martinez-Perez et al. [9] were

acquired from their original manuscripts.

The second human expert B hand-labeled image [3] is con-

sidered as the target performance level with average (TPR =
0.7761 and ACC = 0.9473) given the first human expert A

hand-labeled image as reference (benchmark). Table IV shows

the performance of our method against the aforementioned

methods on the DRIVE dataset. Our method needs an overall

improvement of 2.49% and 0.61% in average TPR and average

ACC, respectively.

On the other hand, with an average TPR of 0.7512, our method

achieves better performance than all the other methods with

respect to the average TPR value. The average accuracy achieved

with our approach on DRIVE outperforms Jiang et al. [36],

Cinsdikici et al. [35], Zana et al. [7], Garg et al. [31], Zhang

et al. [29], and Martinez et al. [9]. But it is marginally inferior to

the methods proposed by Al-Rawi et al. [33], Ricci et al. [37],

and Mendonca et al. [3], and it is comparable to Soares et al.

[30], Marin et al. [28], Niemeijer et al. [34], and Staal et al. [5].

It is important to note that the methods presented by Ricci

et al. [37], Soares et al. [30], Marin et al. [28], Niemeijer

et al. [34], and Staal et al. [5] used supervised techniques that

generally depend on the training datasets; thus to achieve good

results, classifier retraining is required before performing any

experimentation on new datasets.

An overview of the testing results on DRIVE shows that our

method offers a reliable and robust segmentation solution for
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TABLE IV

PERFORMANCE COMPARISON IN THE DRIVE DATASET

blood vessels. It is clearly observed that our approach reaches

better performance in terms of the average TPR.

C. Results of Optic Disk Segmentation on the DIARETDB1

and DRIVE Datasets

The performance results of our approach are compared to

the alternative methods: the adaptive morphological approach

by Welfer et al. [14], the traditional graph cut technique by

Boykov et al. [24], and the topology cut technique proposed

by Zeng et al. [38]. Unfortunately, it was not possible to test

our method against a large number of alternative methods, since

most of the methods do use a unique benchmark to measure

the results of the optic disk segmentation; therefore, this makes

the comparison of the results difficult. Further comparison is

made between our two optic disk segmentation methods (the

compensation factor and the MRF image reconstruction). All

the methods are tested on the same datasets (DIARETDB1 and

DRIVE) of 109 fundus retinal images in total, including those

with a discernable optic disk.

The optic disk segmentation performance is evaluated by the

overlapping ratio Oratio and the mean absolute distance (MAD).

The overlapping ratio is defined to measure the common area

between the optic disk region in the ground truth and the op-

tic disk region segmented by our method. It is defined by the

following formulation:

Oratio =
G

⋂
S

G
⋃

S
(16)

where G represents the true optic disk boundary (manually la-

beled region) and S is the optic disk boundary segmented by

Fig. 14. (a) Optic disk segmentation results of DIARETDB1 images: first row
topology cut, second row graph cut, third row compensation factor algorithm,
fourth row MRF image reconstruction algorithm, and fifth row hand labeled.
(b) Optic disk segmentation results of DRIVE images: first row topology cut,
second row graph cut, third row compensation factor algorithm, fourth row MRF
image reconstruction algorithm, and fifth row hand labeled.

our method. MAD is defined as

MAD (Gc , Sc) =
1

2

{
1

n

n∑

i=1

d(gci , S) +
1

m

m∑

i=1

d(sci , G)

}

(17)

where Gc and Sc are the contours of the segmented regions

of the ground truth and our algorithm, respectively. d(ai , B) is

the minimum distance from the position of the pixel ai on the

contour A to the contour B. A good segmentation implies a high

overlapping ratio and a low MAD value.

The sensitivity of our method on DIARETDB1 and DRIVE

is defined as

Sensitivity =
Tp

Tp + Fn
(18)

where Tp and Fn are the number of true positives and the

number of false negatives, respectively. The sensitivity indicates

the detection of the Fg pixels by the segmentation method.

Fig. 14(a) and (b) show the optic disk segmentation results

of topology cut technique [38], traditional graph cut technique

[24], and both our methods: the optic disk segmentation with

the compensation factor and the optic disk segmentation with

the MRF image reconstruction on DIARETDB1 and DRIVE,

respectively. Considering the ground truth images, it is clear

that both our methods perform better than alternative methods:

topology cut technique [38] and traditional graph cut technique

[24]. The topology cut technique achieved acceptable results

in the brighter images, characterized by vessels that are more

likely to belong to the Fg (similar intensity as the optic disk).

However, the traditional graph cut technique tends to segment

only the brightest region of the disk; this is due to the intrusion

of the blood vessels in the optic disk region, which misguide the

segmentation algorithm to follow a short path.

Table V shows the performance of our proposed methods

with alternative methods on the DIARETDB1 images. The
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TABLE V

PERFORMANCE COMPARISON ON THE DIARETDB1 DATASET

TABLE VI

PERFORMANCE COMPARISON ON THE DRIVE DATASET

compensation factor V ad and the MRF image reconstruc-

tion segmentation algorithms achieve the overlapping ratios of

0.7594 and 0.7850, and outperform the approaches in [14], [24],

and [38]. However, considering the performance in terms of a

mean absolute distance, MRF image reconstruction algorithm

reaches the lowest value 6.55 and performs better than all the

other methods. Both our methods achieve the highest average

sensitivity with 87.50% for the MRF image reconstruction and

86.75% for the compensation factor V ad in 96.7% on the DI-

ARETDB1 images.

Table VI shows the performance results of our methods

with other alternative methods in terms of Oratio, MAD, and

Sensitivity on DRIVE images. An overview of the segmenta-

tion results shows that our proposed methods achieved the high-

est overlapping ratio with the minimum MAD value compared

to the traditional graph cut method [24] and the topology cut

method [38], except for the adaptive morphologic method [14],

which is marginally inferior to the compensation factor algo-

rithm in terms of MAD. However, an increase in the overlap-

ping ratio does not necessarily mean a decrease of MAD value.

Thus, the value of MAD alone is not enough to measure the

performance of segmentation results, but it provides a good ref-

erence of the contour matching with the ground truth contour

reference.

For further performance comparison, we used the cumula-

tive histogram to compare the overlapping ratio of our proposed

method against topology Cut [38] and graph cut [24]. This is

done by performing each segmentation method against the hu-

man expert hand labeled, and the cumulative histogram repre-

sents the frequency of the Oratio value. A perfect segmentation

is achieved when the value of Oratio = 1 and the area under the

curve is equal to zero. Figs. 15 and 16 show the plots of the cumu-

lative histograms of the overlapping ratio for topology cut [38]

and graph cut [24], compensation factor and MRF image recon-

struction on DIARETDB1 and DRIVE datasets, respectively.

The overview of the graphs shows that the compensation factor

and MRF image reconstruction methods achieve the minimum

Fig. 15. Cumulative histogram for the overlapping ratio of DIARETDB1
images.

Fig. 16. Cumulative histogram for the overlapping ratio of DRIVE images.

area under the graph; hence, our method outperforms all other

methods. In general, the MRF image reconstruction method

reaches better results on DRIVE images, while the compensa-

tion factor method produces better segmentation results on the

DIARETDB1 dataset.

Based on the assumption in Niemeijer et al. [39], which con-

siders a minimum overlapping ratio Oratio > 50% as a suc-

cessful segmentation, the compensation factor algorithm with

86.52% success performs better on DRIVE than DIARETDB1

and the segmentation of MRF image reconstruction with 90.00%
achieves better results than the compensation factor algorithm

on DRIVE.

VI. DISCUSSIONS AND CONCLUSION

We have presented a novel approach for blood vessels and

optic disk segmentation in retinal images by integrating the

mechanism of flux, MRF image reconstruction, and compensa-

tion factor into the graph cut method. The process also involves

contrast enhancement, adaptive histogram equalization, binary

opening, and distance transform for preprocessing.

We have evaluated the performance of vessel segmentation

against ten other methods including human manual labeling

on the STARE dataset and 15 other methods including hu-

man manual labeling on the DRIVE dataset. For the optic disk
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segmentation, we have evaluated the performance of our method

against three other methods on the DRIVE and DIARETDB1

datasets.

Tables II, III, and IV show performance comparison in terms

of the average TPR, FPR, and ACC. According to these results,

our vessel segmentation algorithm reaches acceptable results

and outperforms all other methods in terms of average TPR

on both STARE and DRIVE images. In terms of average ac-

curacy, our method outperforms Hoover et al. [2], Martinez-

Perez et al. [9], and Chaudhuri et al. [6] on STARE images.

On DRIVE, it performs better than Jiang et al. [36], Cinsdikici

et al. [35], Zana et al. [7], Garg et al. [31], Zhang et al. [29], and

Martinez et al. [9]. Nevertheless, our method is marginally infe-

rior to the methods presented by Staal et al. [5], Kaba et al. [27],

Marin et al. [28], and Zhang et al. [29] on STARE, and Al-

Rawi et al. [33], Ricci et al. [37], Mendonca et al. [3], Soares

et al. [30], Marin et al. [28], and Staal et al. [5] on DRIVE. Al-

though Soares et al. [30], Marin et al. [28], Staal et al. [5], and

Ricci et al. [37] seem to achieve higher accuracy, as supervised

techniques, they generally depend on the training datasets; thus

to achieve excellent results, classifier retraining is required be-

fore performing any experimentation on new datasets. Further

studies in [28] proved that these methods perform well when

both training and testing are applied on the same dataset, but

the performance deteriorates when the method is tested and

trained on different datasets. Since these methods are sensitive

to the training datasets, deploying them for practical use in reti-

nal blood vessel segmentation would need further improvement

as segmentation algorithms must work on retinal images taken

under different conditions to be effective.

Our proposed method incorporates the prior knowledge of

blood vessels to perform the segmentation, and it can be applied

on retinal images from multiple sources and under different

conditions without a need for training. This can be seen in the

results achieved by this method on both the STARE and DRIVE

datasets.

For the optic disk segmentation, Tables V and VI present

the performance of our method on DIARETDB1 and DRIVE

images. The results show that our methods of using the com-

pensation factor and the MRF image reconstruction achieved the

best overall performance. The results also show that the MRF

image reconstruction algorithm outperforms the compensation

factor algorithm by 2.56% and 11.5% on the DIARETDB1 and

DRIVE images, respectively. However, it is important to notice

that the MRF image reconstruction algorithm depends on the

vessel segmentation algorithm; for example, if the vessel seg-

mentation algorithm achieved a low performance on severely

damage retinal image, the reconstruction would not define a

meaningful optic disk region, and hence the segmentation will

fail.

Furthermore, the proposed method addresses one of the main

issues in medical image analysis, “the overlapping tissue seg-

mentation.” Since the blood vessels converse into the optic disk

area and misguide the graph cut algorithm through a short path,

breaking the optic disk boundary, to achieve good segmentation

results, the MRF image reconstruction algorithm eliminates ves-

sels in the optic disk area without any modification of the image

structures before segmenting the optic disk. On the other hand,

the compensation factor incorporates vessels using local inten-

sity characteristics to perform the optic disk segmentation. Thus,

our method can be applied in other medical image analysis ap-

plications to overcome “the overlapping tissue segmentation.”

Our future research will be based on the segmentation of reti-

nal diseases (lesions) known as “exudates” using the segmented

structures of the retina (blood vessels and optic disk). Thus, a Bg

template can be created using these structures. Then, this tem-

plate can be used to perform the detection of suspicious areas

(lesions) in the retinal images.
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