
 

 

Segm entat ion of the Brain  

from  MR I m ages 

 

Jenny Caesar 
 

LiU-IMT/IM20-EX--05/402--SE 

Linköping 2005 

 

 

 

 

 



 

 II



 

 

 

Linköpings tekniska högskola 
Institutionen för medicinsk teknik 

 

Rapportnr:  

LiU-IMT/MI20-EX--05/402--SE 
 
Datum: 2005-06-02 

 
Svensk 
titel 
 

 

 

Engelsk 
titel 
 

 

Segmentation of the Brain from MR Images 

Författare 

 
Jenny Caesar 

 
Uppdragsgivare:  

KTH,  

Avdelningen för Neuronik 

 

Rapporttyp: 

Examensarbete 
Rapportspråk:  

Engelska 

 

 
Sammanfattning (högst 150 ord). 

Abstract (150 words) 

 

KTH, Division of Neuronic Engineering, have a finite element model of the head. However, 

this model does not contain detailed modeling of the brain. This thesis project consists of 

finding a method to extract brain tissues from T1-weighted MR images of the head. The 

method should be automatic to be suitable for patient individual modeling. 

A summary of the most common segmentation methods is presented and one of the methods 

is implemented. The implemented method is based on the assumption that the probability 

density function (pdf) of an MR image can be described by parametric models. The 

intensity distribution of each tissue class is modeled as a Gaussian distribution. Thus, the 

total pdf is a sum of Gaussians. However, the voxel values are also influenced by intensity 

inhomogeneities, which affect the pdf. The implemented method is based on the 

expectation-maximization algorithm and it corrects for intensity inhomogeneities. The result 

from the algorithm is a classification of the voxels. The brain is extracted from the classified 

voxels using morphological operations. 

 
Nyckelord (högst 8) 

Keyword (8 words) 

MR images, automatic segmentation, voxel classification, intensity inhomogeneities,  

the expectation-maximization algorithm 

 
Bibliotekets anteckningar: 

 

 

 

 III



 



 

 

 

 

Abstract  
KTH, Division of Neuronic Engineering, have a finite element model of the head. However, 

this model does not contain detailed modeling of the brain. This thesis project consists of 

finding a method to extract brain tissues from T1-weighted MR images of the head. The 

method should be automatic to be suitable for patient individual modeling. 

A summary of the most common segmentation methods is presented and one of the methods 

is implemented. The implemented method is based on the assumption that the probability 

density function (pdf) of an MR image can be described by parametric models. The intensity 

distribution of each tissue class is modeled as a Gaussian distribution. Thus, the total pdf is a 

sum of Gaussians. However, the voxel values are also influenced by intensity 

inhomogeneities, which affect the pdf. The implemented method is based on the expectation-

maximization algorithm and it corrects for intensity inhomogeneities. The result from the 

algorithm is a classification of the voxels. The brain is extracted from the classified voxels 

using morphological operations. 

  



 

 

 

 

 II



 

 

 

 

Acknow ledgem ents 
Firstly, I would like to thank the staff at KTH, Division of Neuronics, for suggesting this 

thesis project to me and thus leading me onto the path of medical image processing.  Thanks 

my supervisor at KTH, Johnson Ho, and the rest of the staff for providing a stimulating work 

environment for me. Thank you also for making me feel welcome and, not to forget, for 

making me laugh. 

Thanks to my opponent Samuel Axelsson for suggesting improvements to my report. 

A huge thank you to my supervisor Andreas Wrangsjö! Your ideas and supervision have 

helped me immensely during the work on this thesis project. Also, your support and 

encouragement has meant a great deal to me. 

 

 III



 

 IV



Table of Contents 

1 . I nt roduct ion .............................................................................. 1  
1 .1 . Background .............................................................................................. 1  
1 .2 . Assignm ent .............................................................................................. 1  
1 .3 . Out line ..................................................................................................... 3

 

2 . Segm entat ion, Classificat ion, and Labeling ................................ 5
 

3 . MR I m ages................................................................................. 7  
3 .1 . W eight ing................................................................................................. 7  

3.1.1. T1-weighted I mages .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
3.1.2. T2-weighted I mages .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

3 .2 . Pat ient  Dependency ................................................................................. 8  
3 .3 . Art ifacts ................................................................................................... 8  

3.3.1. I ntensity I nhom ogeneit ies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
3.3.2. The Part ial Volume Effect .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

 

4 . Segm entat ion Methods ............................................................ 1 1  
4 .1 . Features ................................................................................................. 1 1  
4 .2 . Manual Segm entat ion ............................................................................. 1 2  
4 .3 . Thresholding .......................................................................................... 1 2  
4 .4 . At las- Based Methods .............................................................................. 1 2  
4 .5 . W atershed .............................................................................................. 1 3  
4 .6 . Region Grow ing ...................................................................................... 1 3  
4 .7 . Act ive Contours ...................................................................................... 1 4  
4 .8 . Classifiers............................................................................................... 1 4  
4 .9 . Clustering ............................................................................................... 1 5  
4 .1 0 . Markov Random  Fields ......................................................................... 1 5  
4 .1 1 . Fuzzy Connectedness ........................................................................... 1 6

 

5 . W hy an Autom at ic Method? ..................................................... 1 7
 

6 . The Chosen Method.................................................................. 1 9
 

7 . Theory for  the I m plem ented Method ....................................... 2 1  
7 .1 . Preprocessing ........................................................................................ 2 2  

7.1.1. Removal of Background Voxels ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
7 .2 . Modeling the I ntensit ies Em it ted by One Tissue ..................................... 2 2  
7 .3 . Modeling the I ntensity Distr ibut ion ........................................................ 2 3  
7 .4 . Voxel Classificat ion ................................................................................ 2 6  

7.4.1. Soft  Classificat ion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
7.4.2. Est imat ion of the Gaussian Parameters θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
7.4.3. Est im at ion of the Bias Field β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
7.4.4. The Expectat ion-Maxim izat ion Algorithm .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
7.4.5. Hard Classificat ion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

7 .5 . Segm entat ion of the Brain Using Morphological Operat ions ................... 3 2  
7.5.1. Dilat ion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
7.5.2. Erosion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
7.5.3. Opening .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
7.5.4. Closing.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 

 

 V



8 . I m plem entat ion ....................................................................... 3 5
8 .1 . Preprocessing ........................................................................................ 3 5  

8.1.1. Removal of Background Voxels ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
8.1.3. I nit ializat ion of the EM Algorithm .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

8 .2 . Voxel Classificat ion ................................................................................ 3 6  
8.2.1. Modeling the Bias Field ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
8.2.2. Spat ial Filter ing of the Classificat ions.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

8 .3 . Segm entat ion of the Brain Using Morphological Operat ions ................... 3 8

 

9 . Results..................................................................................... 3 9  
9 .1 . Synthet ic I m ages ................................................................................... 3 9  

9.1.1. Bias Correct ion.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
9 .2 . MR I m ages ............................................................................................. 4 2  

9.2.1. Removal of Background Voxels ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
9.2.2. Voxel Classificat ion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
9.2.4. The Number of Classes.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
9.2.5. I nit ializat ion of the EM Algorithm .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
9.2.6. Bias Correct ion.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
9.2.7. Spat ial Filter ing of the Soft  Classificat ions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

9 .3 . Segm entat ion of the Brain...................................................................... 5 0

 

1 0 . Discussion.............................................................................. 5 3  
1 0 .1 . Preprocessing ...................................................................................... 5 3  

10.1.1. Logarithm ic Transformat ion of the I ntensit ies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
10.1.2. I nit ializat ion of the EM algorithm .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
10.1.3. The Number of Classes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

1 0 .2 . Voxel Classificat ion .............................................................................. 5 4  
10.2.1. Spat ial Considerat ions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
10.2.2. Bias Correct ion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

1 0 .3 . Segm entat ion of the Brain.................................................................... 5 5  
1 0 .4 . Extensions of the Method ..................................................................... 5 6  
1 0 .5 . Validat ion ............................................................................................. 5 6

 

1 1 . Conclusions............................................................................ 5 7
 

1 2 . References ............................................................................. 5 9  
 

 

 

 

 VI



1 . I nt roduct ion 

1 .1 . Background 

At KTH, Division of Neuronic Engineering, a finite element model of the head has been 

developed (Kleiven, 2002). The finite element model is used to model biological tissues to be 

able to observe how they are affected by for example trauma to the head. The model can thus 

be used to predict injury by performing numerical calculations of for example pressure and 

strain in brain tissues. 

The finite element model, see Figure 1.1, includes for example white matter, gray matter, 

cerebrospinal fluid (CSF), bone, major blood vessels, and meninges. However, the model 

does not have a very detailed geometry. 

 

Figure 1.1. Finite element model of the head.  

1 .2 . Assignm ent  

The aim of in this thesis project is to find and implement a method for segmentation of MR 

images of the head. The tissues resulting from the segmentation are to be used in a finite 

element model of the head.  

It is outside the scope of this thesis project to find all the tissues in the finite element model. 

The primary goal is to extract the brain, i.e. white matter, gray matter, and intracerebral CSF, 

and to detect the convolutions of the brain as well as possible. Thus, the aim is to obtain a 

more detailed geometrical description of the brain.  

The method should be suitable for patient individual modeling, which implies that a method 

of minimal user interactivity is desirable, i.e. an automatic method. 
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The images used are T1-weighted gray scale MR images of normal brains. The three-

dimensional image volume consists of slices of images. Examples of axial (horizontal) slices 

from an MR volume are presented in Figure 1.2. The image volume is made up of voxels, 

which are the three-dimensional equivalent of pixels. The coronal (from the front) and sagittal 

(from the side) views of the MR volume are shown in Figure 1.3.  

The assignment thus consists of finding an appropriate automatic method for extracting the 

brain tissues from T1-weighted MR images, and of implementing this method. 

 

Figure 1.2. T1-weighted axial image slices of the head. 

 

Figure 1.3. Coronal and sagittal view of an MR volume. 
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1 .3 . Out line 

Chapters 2-5 contain general background information on segmentation of MR images. 

Chapter 2 explains the concepts segmentation, classification, and labeling. In chapter 3 

characteristics of MR images are described. Chapter 4 gives an overview of the most common 

segmentation methods and chapter 5 describes why an automatic method is to be preferred. 

Chapter 6 gives an introduction to the chosen method, while in chapter 7 the theory behind 

the method is accounted for. In chapter 8 important details on the implementation of the 

method are described. The results obtained with the implemented method are presented in 

chapter 9 and the results and the method are discussed in chapter 10. 
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2 . Segm entat ion, 

Classificat ion, and Labeling 

Segmentation implies the division of an image into different objects or regions. Which, and 

how many, these regions are, depend on what the resulting segmentation will be used for. As 

an example, if the assignment is to make a surface model of a human head it is of no interest 

to find the contours of the brain. In that case the regions are background and head. In the 

scope of this thesis the regions are brain, and non-brain, with non-brain being background, 

CSF, bone, skin, muscle and adipose tissue etc. The brain region consists of the subregions 

white matter, gray matter, and intracerebral CSF. 

The concepts segmentation and classification are often used interchangeably in the literature 

but there is an actual difference in the meaning of the two words.  

Segmentation implies the division of an image into different connected regions that do not 

overlap. Thus, the union of all the regions is the image itself. A region often has a similar 

intensity or a distinct boundary (Pham et al, 2000).  

Classification is the division of the image but each class does not have to be connected 

spatially. The voxels are classified as belonging to one of a number of classes. A difficulty of 

classification may be to determine the number of classes (Pham et al, 2000).  

Labeling means that the segmented regions or classes are associated with what they represent 

– in other words to tell what each region resulting from the segmentation represents (Pham et 

al, 2000). The result from a segmentation is object 1, 2, 3 etc. The result from a labeling of 

this segmentation would be to assign for example object 1 = background, object 2 = brain, 

object 3 = CSF etc.  

Labeling can be performed by an expert or a computer program after the segmentation or 

classification. In classification sometimes labeling can be included in the classification step 

since it may be known from the start which class represents what (Pham et al, 2000). Also, 

when using atlas-based methods classification is performed automatically. 
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3 . MR I m ages 

Which segmentation technique to be chosen depends on the properties of the image being 

segmented. Different imaging techniques bring out different anatomical structures in the head. 

MR images contain different information than for example CT images. CT images are better 

at depicting bone, for example fractures. A fracture can be very difficult or impossible to 

detect in an MR image. On the other hand, MR imaging generate images of high contrast 

between soft tissues in the body.  

This chapter aims to give an understanding of the important characteristics of MR images. It 

includes a description of some of the acquisition techniques for obtaining images of different 

contrast between tissues. It also describes certain characteristics of MR images that have to be 

taken into consideration when segmenting the image. This report does not contain an account 

of the physics behind MR imaging. 

The MR signal emitted by a structure depends on the composition of the tissue and also on the 

imaging technique, i.e. the operator can choose to bring out certain characteristics of the 

tissues by using a certain imaging technique. 

3 .1 . W eight ing 

MR images can be acquired using different techniques. The resulting images highlight 

different properties of the depicted materials. The most common weightings are T1 and T2, 

which highlight the properties T1-relaxation and T2-relaxation respectively.  

Selection of the most appropriate weighting is important for a successful segmentation. The 

properties of the tissues that are to be segmented have to be known to make a well-founded 

decision (Pham et al, 2000). 

3.1.1. T1-weighted I m ages  

The images in this thesis work are T1-images. T1-images show high contrast between tissues 

having different T1-relaxation times. Tissues with long T1-relaxation time emit little signal 

and thus they will be dark in the resulting image. In T1-images air, bone and CSF have low 

intensity, gray matter is dark gray, white matter is light gray, and adipose tissue has high 

intensity. T1-images have high contrast between white matter and gray matter. 

3.1.2. T2-weighted I m ages 

In T2-images, white matter and gray matter are gray and have similar intensities. CSF is 

bright, while bone, air, and fat appear dark. As opposed to T1-images, T2-images have high 

contrast between CSF and bone. The contrast between white matter and gray matter is not as 

good as in T1-images. 
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3 .2 . Pat ient  Dependency 

Using MR imaging, different patients give rise to images with different image properties. The 

intensities in the MR images are patient dependant. The gray level of the tissues might for 

example be very different from person to person. However, MR images share some common 

characteristics and the general appearance of the histogram is similar for different patients, 

even though the gray levels might be shifted.  

3 .3 . Art ifacts 

A variety of artifacts may appear in MR images. Since the artifacts change the appearance of 

the image they may also affect the performance of a segmentation algorithm. The most 

important artifacts in image segmentation are intensity inhomogeneities and the partial 

volume effect. 

3.3.1. I ntensity I nhom ogeneit ies  

Intensity inhomogeneities are not always visible to the human eye, but can nonetheless have 

negative influence on automatic segmentation. This may manifest itself by for example 

making intensities in one part of the image brighter or darker than another part. It is often 

caused by the radio frequency (RF) coils. Different methods exist to compensate for the 

inhomogeneities. The inhomogeneity is often modeled as a field that varies smoothly over the 

image. The inhomogeneity field is often thought to be a multiplicative field, which means that 

the true voxel intensity is multiplied by the value of the field in that voxel. There are methods 

which remove the inhomogeneities during segmentation. For example Wells et al (1996) and 

van Leemput et al (1999) alternate estimation of the inhomogeneity field with classification to 

obtain inhomogeneity corrections. 

3.3.2. The Part ial Volum e Effect  

The partial volume effect occurs when a voxel cannot be accurately assigned to one tissue 

type. This is because the intensity in the voxel originates from more than one 

tissue. It occurs because one voxel contains many body cells and the signal emitted from these 

cells make up the detected intensity in this voxel.  

The partial volume effect is most apparent at edges between different tissues. It may 

deteriorate the sharpness of the edges between tissues. The partial volume effect can be a 

significant problem in brain segmentation since the brain has a complex folded surface.  

Another concern is the classification of such voxels, i.e. to which of the tissues should it be 

assigned. One way of dealing with partial volume effects is by using so called soft 

segmentation. Soft segmentation, as opposed to hard segmentation, means that a voxel may 

belong to more than one tissue class. Some methods perform soft segmentation by finding the 

probabilities that a voxel belongs to different tissues (Pham et al, 2000). 
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The partial volume effect is caused by the fact that we have a limited resolution in the images. 

Smaller voxel sizes reduce the partial volume effect since the probability that more than one 

tissue type is contained in the same voxel is reduced. 
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4 . Segm entat ion Methods 

This chapter aims to give an overview over the most common segmentation techniques. The 

chapter does not cover all existing segmentation techniques, but hopefully gives an overview 

over the most common methods that exist today for segmenting MR images. 

Different studies have been made in the field of segmentation of MR head images but no 

universally agreed best method exists. Different kinds of segmentation methods approach the 

segmentation problem in different ways. Different methods also base the segmentation on 

different features in the image, e.g. intensity or gradient. The choice of what method that 

should be chosen should be based on what tissues that are to be segmented, since different 

methods are better suited for segmenting different tissues. 

Segmentation methods can be divided into groups depending on different criteria. One aspect 

is the level of user interactivity. The groups are then manual methods, which require a high 

level of user interactivity, computer-aided semiautomatic methods, and completely automatic 

methods (Shan et al, 2002).  

Segmentation methods can also be thought of as being region-based (segmentation) or 

pixel/voxel-based (classification). Region-based methods find connected regions. A region 

may have some common property like intensity or texture, or have well defined boundaries, 

or a characteristic shape. In voxel-based segmentation, or classification, individual voxels are 

assigned to different objects. Some voxel-based methods only take the current voxel value 

into account, while other methods also include the influence of voxels in a neighborhood 

(Pham, 2000). Voxel-based segmentation methods can be more susceptible to intensity 

inhomogeneities because they often are based only on the intensity values and not on other 

information like gradient (Pham et al, 2000). 

4 .1 . Features 

The segmentation of an image is based on features that are extracted from the image. The 

most obvious feature that can be found in an image is the intensity. In a single image, as in 

this thesis project, the intensity is one feature. For multispectral images, e.g. both T1 and T2, 

the intensity is several features. This represents that each voxel has several different 

intensities, i.e. one intensity per image. 

Other features can be derived from the intensity values. The voxel values in a neighborhood 

of a voxel or the average intensity in the neighborhood can be useful if one wants to include 

contextual information to the feature, i.e. that the classification of a voxel also depends on the 

neighboring voxels. Gradient images are often used because they give specific information 

about where discontinuities in the image intensity exist. These discontinuities are often 

boundaries between tissues. 

Features can be used alone or as a combination of several features. For example, a 

combination of intensity and gradient might be used, or a combination of intensity and 

average neighborhood intensity. The choice of what features to use is important since the 

features determine the outcome of the segmentation.  
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The methods described in this chapter can be used alone but are also used in various 

combinations to obtain better segmentation results. 

4 .2 . Manual Segm entat ion 

The most commonly used, and conceptually simplest, method is manual segmentation. 

Manual segmentation implies that a user decides the segmentation, for example by drawing 

the contours of the different objects directly in the image. The user thus decides what image 

voxels to assign to the different objects. This requires that an expert performs the 

segmentation, i.e. someone who has extensive knowledge about the anatomy of the regions 

being segmented. The performance will depend on the complexity of the shapes being 

segmented. It might for example be complicated to delineate the contours of the convolutions 

of the brain accurately. Manual segmentation is almost always a region-based segmentation 

technique. 

4 .3 . Thresholding 

Thresholding is a voxel-based segmentation method. By thresholding an image the image is 

transformed into a binary image. Voxels with intensities lower than the threshold value are set 

to zero and voxels with intensities higher than the threshold value are set to one.  

The thresholds should be chosen so that they separate tissues from each other. Thresholds can 

be found by various methods. They can be chosen manually by a user or in a more automatic 

manner by a computer program. Thresholding is often based on the image histogram. The 

histogram shows how the intensities in the image are distributed. Thresholds are often chosen 

as the minima in the histogram. In Brummer et al (1993) the choice of thresholds is based on 

the assumption that the intensities of a particular tissue has a Rayleigh distribution. Shan et al 

(2002) base the thresholds on the assumption that the intensities of a tissue have a Gaussian 

distribution. The distribution is fitted to the image histogram and the thresholds are chosen at 

appropriate distances from the distribution mean value. 

4 .4 . At las- Based Methods 

Atlas-based segmentation is based on that an atlas of the tissues exists, i.e. the atlas is a map 

of where different tissues are located in the image. This map is registered to the medical 

image being segmented. After registration, the segmentation and labeling of the image is 

completed. 

The difficulty in atlas-based segmentation is the registration of the image, i.e. to fit the map to 

the image being segmented. The result of atlas-based methods depends on the registration 

method. 

Also probabilistic atlases can be used in segmentation. A probabilistic atlas consists of 

probabilities of certain tissues occurring at certain positions.  

The performance of atlas-based methods, but also methods based on probabilistic atlases, 

depend on the quality of the atlas being used. Anatomic variability in the tissue being 
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segmented, limit the usefulness of atlases. If the tissue varies a lot between individuals, as is 

the case with the brain, it can be difficult to obtain a good match between the atlas and the 

image. 

4 .5 . W atershed 

The watershed transform is another region-based segmentation approach. The performance of 

this algorithm does not depend on the complexity of the shapes that are segmented. To get an 

understanding of how watershed segmentation works it can help to see the image as a 

landscape with valleys, hills, and plateaus. The intensity value in the image is then 

proportional to the altitude. Thus high intensity values are peaks etc. Then imagine that rain 

falls on the landscape and creates pools of water. Where two pools meet there is a watershed 

that separates the two pools. The watersheds thus separate different objects from each other. 

The number of objects resulting from the segmentation depends on how many local minima 

that exist in the image. In other words, water starts to collect at each local minimum and each 

local minimum will give rise to one object in the segmentation result. Often, the watershed 

transform is performed on the gradient image (Grau et al, 2004). 

However, watershed segmentation has several drawbacks when used on medical images. 

Firstly, oversegmentation is often a problem. Oversegmentation means that too many objects 

have been segmented, i.e. the image is divided into too many different regions. It occurs due 

to too many local minima in the image. The watershed transform is also sensitive to noise, 

and may have difficulties in finding thin structures, and in finding regions which are separated 

with a boundary of lower contrast than other boundaries in the proximity. For example the 

gray matter-white matter boundary has lower contrast than the gray matter-CSF boundary 

which might cause problems (Grau et al, 2004). 

However, refinements of the watershed segmentation algorithm have been made to improve 

the performance. For example, the concept of markers has been introduced to remove 

oversegmentation. Grau et al (2004) have developed a method that is automatic and performs 

well for white matter-gray matter segmentation. 

4 .6 . Region Grow ing 

Region growing aims at finding regions that share some common characteristic feature. First a 

seed point is selected. The neighboring voxels are then compared to the seed voxel and added 

to the region if they fulfill some criteria of similarity. The neighboring voxels to this region 

are then investigated and compared until the growing stops. The stopping criteria could for 

example be relative intensity value to the seed point or gradient value. The choice of seed 

points and criteria of similarity affect the final outcome of a region growing algorithm (Clarke 

et al, 1995). 

If partial volume effects are present or if there are small connections between objects, it can 

cause the objects to combine into one larger region. Noise can also affect the segmentation 

negatively (Pham et al, 2000). 
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4 .7 . Act ive Contours 

Active contours is a method to find the contours of objects. It can be performed in 2D, also 

called snakes, or in 3D which is called active surfaces. The idea is to place a contour, or 

snake, in the image. This snake is then supposed to find the contours of the searched object in 

an automatic manner. The snake is affected by different forces so that it changes its shape to 

fit the contour of the object that one wants to find. To picture the snake one can think of a 

rubber band that changes its shape and size to fit the contour of an object.  

In the basic snake model there are internal and external forces that affect the snake. The 

internal forces tries to make the contour smaller and the external forces counteracts the 

internal force. The external forces are due to the image itself. It is often the gradient image. 

How much the different forces affect the snake determines how flexible the snake is. For 

example if it should be able to delineate the convolutions it has to be very flexible.  

The problem in active contours is to find the optimal parametric contour c(s).  

  ))(),(()( sysxsc =
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There are internal and external forces affecting every point on the contour. The so called 

energy of a point on the contour can be written as: 

  ei

Ei is the energy due to the internal forces and Ee is the energy due to the external forces. The 

total energy of the contour is: 

  dsscEscEdsscEE ei )))(())((())((
00
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 The optimal snake is then found by minimizing the total energy of the contour, i.e.: 

  
)(sc

When using active contours, the contour changes its shape until a local minimum of the 

energy function E is reached (Denzler & Niemann, 1999). 

The difficulty with active contours is that the choice of the parameters, which decide how 

much the different forces should affect the contours, is not always straightforward. Fine 

tuning by the user is often needed to get the best results on different sets of images. 

4 .8 . Classifiers 

A classifier is a voxel-based classification method. It assigns voxels to different classes 

depending on how well the voxels agree with the features of a set of voxels that are 
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characteristic for that class. This is a supervised method since the class specific voxels have to 

be chosen before the segmentation is performed. A common classifier is the k-nearest-

neighbor classifier (kNN). The voxel that is to be classified is compared to the training data 

and the k number of data that are closest to the features of the voxel determine what class the 

voxel is assigned to. Another common classifier is Bayes’ classifier which assumes that the 

distribution of the voxel intensities have a parametric intensity distribution. A common 

assumption about the distribution in MR images is that the voxel intensities of a certain tissue 

are normally distributed around a tissue-specific mean intensity. Since an image contains 

several tissues the intensity distribution of the entire image, i.e. the histogram, can be thought 

of as being a mixture of Gaussians distributions. The parameters of the Gaussians are 

determined by training data that are selected in advance. Wells et al (1996) use Bayes’ 

classifier in a method which also includes inhomogeneity corrections. Bayes’ classifier can 

also perform soft segmentations by allowing voxels to be assigned to more than one Gaussian 

(Pham et al, 2000).  

4 .9 . Cluster ing 

Clustering is very similar to classifiers only that it is an unsupervised method. That means that 

no training data is used. Instead algorithms that interleave classification and estimation of 

class specific properties are used. Common algorithms for clustering are K-means 

(ISODATA), fuzzy c-means, and the Expectation-Maximization (EM) algorithm. The class 

specific property in K-means is a mean value that is determined iteratively for each class. 

Then the voxels are assigned to the mean which they are closest to. Fuzzy c-means is a 

generalization of K-means where soft segmentations are allowed (Pham et al, 2000). The EM 

algorithm, used by for example van Leemput et al (1999), is the clustering equivalent to 

Bayes’ classifier. It alternates soft classification and estimation of the Gaussian parameters 

(Pham et al, 2000). van Leemput et al (1999) have also included inhomogeneity correction 

and Markov random fields in their method.  

One difficulty with clustering is the choice of initialization of the algorithms. The iterations 

have to start with either an estimate of the classifications or of the class specific properties. 

Often the initialization affects how well the clustering algorithm performs (Pham et al, 2000). 

4 .1 0 . Markov Random  Fields 

One disadvantage of classifiers and clustering is that they do not include contextual 

information, i.e. the classification of a voxel is totally independent of all the other voxels. One 

way of dealing with this is by using Markov random fields (MRFs). In MRFs the 

classification of a voxel depends on its neighboring voxels. An example of this is that the 

voxel being classified has a high probability of belonging to the same class as its neighboring 

voxels, or that certain tissues never are in contact with each other, like for example skin and 

brain. MRFs have been used with the assumption that the underlying tissue distributions are 

parametric (Zhang et al, 2001), i.e. describable by for example Gaussians, and also by 

nonparametric intensity distributions (Held et al, 1997). Since the brain has a complex 

boundary it is preferable not to include too many neighbors in the MRF model (Held et al, 

1997). MRFs are often less susceptible to noise than classifiers and clustering methods due to 

the inclusion of contextual information (Pham et al, 2000). A difficulty is that it may be 
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problematic to choose the dependencies of neighboring voxels, i.e. how much the 

neighborhood should affect the classification (Pham et al, 2000). 

4 .1 1 . Fuzzy Connectedness 

Even though an object consists of voxels that have different intensities, the appearance to a 

viewer is that they form one object. Thus, the images are fuzzy and Udupa & Saha (2003) 

suggest that this can be taken care of by means of fuzzy connectedness. Fuzzy connectedness 

is related to region growing in that it is a fuzzy variant of region growing (Pham et al, 2000). 

Fuzzy connectedness finds how strongly voxels in the image are connected to each other. The 

connections between every pair of voxels in the image are calculated and from that the 

strongest connection between two voxels is found. Fuzzy connectedness consists of finding 

the strength of the connection between every pair of voxels. Affinity is a local relationship of 

two voxels. It is determined by how far apart two voxels are, on their surrounding intensities, 

and on object specific intensities. Fuzzy connectedness is the global fuzzy relationship 

between two voxels. It is the strongest of all the paths between two voxels (Udupa & Saha, 

2003). 

Fuzzy connectedness is a large optimization problem, but computations have become much 

faster with dynamic programming (Udupa & Saha, 2003). 
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5 . W hy an Autom at ic Method? 

This chapter aims to give an understanding why it is desirable to use an automatic 

segmentation method instead of a method that requires user interactivity. 

Different segmentation methods require different levels of user interactivity. There are 

manual methods, which require a high level of user interactivity, computer-aided 

semiautomatic methods, and completely automatic methods (Shan et al, 2002). The aim in 

this thesis is to implement a method that needs minimal user interactivity. This section 

presents arguments to why an automatic method should be chosen in favor of a manual 

method. 

Methods that need user interactivity often suffer from intra- and interobserver variability 

(Clarke et al, 1995). Interobserver variability means that the segmentation result will not be 

objective, i.e. different users will make different choices that affect the segmentation process. 

Intraobserver variability means that the same user will make different choices on different 

occasions that will affect the performance of the segmentation algorithm.  

In manual segmentation the user has to take a great part in the segmentation by for example 

drawing the contours of the brain on the images, i.e. the user chooses where the contours are 

located. Obviously, this kind of approach leads to segmentation results that depend very much 

on the user. In other words, different users will choose different contours and thus there is a 

great risk for interobserver variability. Manual methods may also suffer from intraobserver 

variability. 

In semiautomatic methods the user interactivity is not as extensive as in manual methods. The 

user might for example be required to choose some seed points or set some parameter values. 

The results of such segmentations can also vary from time to time and from user to user. The 

use of an automatic method, however, removes these risks. An automatic method applied on 

the same image several times will produce the same result every time.  

Also, manual and semiautomatic methods often require a trained expert to perform the 

segmentations. That is someone who has extensive knowledge of the anatomy being 

segmented and the segmentation technique being used. 

Another drawback of manual delineation of brain contours is that it is a difficult task to 

perform due to the complexity of the shape of the brain. It may be an impossible task even for 

a trained expert to perform good segmentations of the convolutions of the brain. 

A very important drawback of manual methods is that they are labor intense. Especially if 

there are many slices and sets of images, it will take considerable time for the user to perform 

the segmentation (Shan et al, 2002). An automatic method on the other hand only takes up 

computer power and does not require the user to be there during the segmentation procedure. 

A drawback of automatic methods is that they do not always produce meaningful 

segmentations, i.e. the segmented regions may not correspond to different tissues (Clarke et 

al, 1995). This is due to the fact that the method cannot make use of all the information that 

exists about the image, such as anatomical knowledge. It can also be difficult to find 
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completely automatic initializations to the automatic methods that work well for different sets 

of images. 
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6 . The Chosen Method 

As Pham et al (2000) mention, the choice of the best segmentation technique is not an easy 

task. Considerations should be taken to for example which tissues that are to be found and 

what kind of images that are available. 

When segmenting an image it is advantageous to make use of as much previous knowledge as 

possible about the image and the structures that are depicted. This can be properties of the 

imaging modality, and spatial knowledge about the structures, e.g. the brain is in the middle 

part of the head and it is surrounded by CSF and bone. 

The method that has been implemented in this thesis project is based on a clustering technique 

which uses an EM classifier. EM classifiers have shown good results by others, e.g. Wells et 

al (1996), van Leemput et al (1999), and Kapur et al (1996). The method uses the assumption 

that voxel intensities emitted from a specific tissue is distributed around a specific tissue mean 

value. 

Since intensity inhomogeneities are very common in MR images, it is important to choose an 

algorithm that is able to compensate for this. Wells et al (1996) and van Leemput et al (1999 

have incorporated inhomogeneity correction in the EM algorithm. 

The method was also chosen due to the fact that it is an automatic method. Many of the 

segmentation techniques described earlier require some level of user interactivity. However, 

several of the methods described earlier may work for this particular task, but one method had 

to be chosen and this method seemed most suitable. 
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7 . Theory for  the I m plem ented 

Method 

This chapter explains the theory behind the method that has been implemented in this thesis 

project. The method is based on a statistical model of how the intensities in MR images are 

distributed. It is made up of: 

1. Preprocessing 

2. Voxel classification 

3. Segmentation of the brain using morphological operations 

 

The method used in this thesis is based on the assumption that the voxel intensities in the 

image can be described by parametric models. This is the same as saying that the probability 

density function (pdf) can be described by parametric models. Alternatively, the pdf could be 

described by the histogram which is a nonparametric way of describing the pdf. The 

histogram of a T1-weighted MR image of the head is presented in Figure 7.1. 

 

Figure 7.1: Histogram of a T1-image of the head. 
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7 .1 . Preprocessing 

7.1.1. Rem oval of Background Voxels 

The first high peak in the histogram in Figure 7.1 corresponds to the background noise. The 

background, which is the surroundings of the head, does not emit any signal. Hence these 

intensities are only due to measurement noise. Even though the surroundings of the head do 

not emit any signal, they will give rise to Rayleigh distributed noise of low intensity 

(Brummer, 1993; van Leemput et al, 1999), see Figure 7.2. The background voxels thus affect 

the image histogram and make the distributions of the tissues not as distinct. The number of 

background voxels is quite large. Hence, if most of these voxels were to be removed from the 

image the relative amount of head voxels would be higher (Brummer 1993). This improves 

the appearance of the histogram and may improve the segmentation. Since the background 

voxel intensities only arise due to noise, they are not affected by intensity inhomogeneities 

(van Leemput et al, 1999). 

 

Figure 7.2: The background voxels have a Rayleigh distribution. 

7 .2 . Modeling the I ntensit ies Em it ted by One 

Tissue 

In this section a model for the voxel intensities is set up according to the reasoning in Prima et 

al (2001). The model shows how the voxel intensities depend on the tissue type they belong 

to, on noise, and on intensity inhomogeneities.  

In MR images a first assumption is often made that each tissue type emits a specific intensity, 

i.e. gives rise to a specific voxel intensity. This is however not quite true due to several 
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reasons. First there is biological noise due to the fact that tissues are not perfectly 

homogenous – they contain for example smaller structures and blood vessels. Due to the 

biological noise, the emitted intensities from a tissue are not the same, but distributed around 

a tissue specific mean value. With this way of thinking, the signal xi in voxel i belonging to 

tissue Γi can be expressed as: 

  
bio

meabio

iii nmx += Γ

where mΓi is the mean intensity that tissue Γi emits and ni
bio

 is the biological noise in voxel i. 

Noise may also appear in the signal due to the nature of MR images, i.e. due to the way the 

image is acquired. In MR images it is also very common with artifacts such as intensity 

inhomogeneities. Even though an inhomogeneity field may not affect the perception of the 

image at a visual inspection, it may affect or even ruin automatic segmentation. The 

inhomogeneity field is often modeled as a multiplicative field. The bias field in voxel i is bi. 

In the model below, measurement noise, n
mea

, is also included in the model: 

  iiii nnmbx ++= Γ )(

From this general model different researchers have made different simplifications and 

assumptions before using the model in segmentation algorithms. A common assumption is to 

model the intensity xi in voxel i belonging to tissue Γi as normally distributed around ii mb Γ⋅ , 

i.e.: 
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where  is white Gaussian noise depending on the class Γin i. 

A slightly different approach, used by for example Wells et al (1996) and van Leemput et al 

(1999), is to perform a logarithmic transformation of the voxel intensities to make the bias 

field additive instead of multiplicative. In this model the values of the log-intensities are 

assumed to be normally distributed. Hence  is white Gaussian noise depending on the 

class Γ
in

i. 

  iiiiieieiiieiei nnmbnmbxy ΓΓΓ ++=++=+⋅== μβ)(loglog)(loglog

This means that the log-intensity yi in voxel i belonging to tissue Γi is normally distributed 

around ii Γμβ .  

The implemented method estimates an additive bias field and thus the model using a 

logarithmic transformation of the intensities is used.  

7 .3 . Modeling the I ntensity Dist r ibut ion 

In the previous section a model for the voxel intensities emitted by a tissue is described. To 

extend this, a parametric model for how the intensities in the image are distributed is set up, 

based on the tissue model. As is mentioned previously, each tissue emits a signal which is 
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normally distributed around a specific tissue mean, but distorted by a bias field. This is the 

same as saying that the probability that class Γi has generated voxel value yi at position i that 

is affected by the bias field βi, is a Gaussian distribution centered around the mean value 

iiμ β+

)),((),(),,|( yGyGyp

Γ : 

 iiiiiiiiiiii ΓΓΓΓΓΓ β = − μ − β σ = − μ + β σθ  (7.1) 
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and iii ΓΓΓ σ,  , i.e. the Gaussian parameters, θ μ

and βi is the bias field in voxel i.  

Another way to explain this is that after the voxel intensity yi has been corrected for by the 

bias field βi in that voxel, the probability that a certain tissue class has emitted this bias 

corrected intensity yi - βi is a normal distribution centered around the tissue mean iΓμ , i.e.: 

 ),)((),,|( iiiiiiii yGyp ΓΓΓΓ β = − β − μ σθ  

Since the bias corrected intensity distribution of each tissue class is modeled by a normal 

distribution centered around the tissue mean, there are as many normal distributions as there 

are classes. Hence each voxel value has one probability of belonging to each of the classes.  

However, it is useful to have an expression for the probability of a voxel intensity regardless 

of its class. This probability is describes by the pdf of the voxel intensities. Hence, what is 

wanted is the marginal probability for the voxel intensity, ignoring information about the 

class. The marginal probability for an event A, to ignore information about a second event B, 

is found from the joint probability of these events. It is found by integrating or summing the 

joint probability over the ignored event B, i.e. the marginal probability for A is: 

  ∑=
B

BAPAP ),()(

An expression for the probability of intensity yi independent of class Гi is sought. Hence the 

expression for the marginal probability becomes:  

  ∑
Γ

Γ=
i
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where θ is the parameters for all the Gaussian distributions. 

The problem is that there is no expression for the joint probability of yi and Гi given. 

However, the joint probability for two events A and B can also be expressed as: 

 )()|()()|(),( APABPBPBAPBAP ⋅=⋅=  (7.2) 
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and hence: 
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which gives: 
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The first factor in the sum is the Gaussian distribution for a class, as expressed in (7.1). The 

second factor ii θ βΓ  can be simplified, since the probability of a certain tissue does not 

depend on θ and βi. This is because θ and βi are parameters in the model for the distribution of 

voxel intensities, and the probability of a certain tissue class is in reality independent of the 

model. The probability of a tissue class is actually decided by the anatomy of the patient, i.e. 

on what the relative amount of this tissue that is found in this particular patient. Hence: 

 )(),|( iii pp =Γ β Γθ  (7.3) 

which gives: 
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Thus, the probability of a voxel is a weighted sum of normal distributions that is also affected 

by a bias field. This probability is the sum of the voxel’s probabilities of belonging to each of 

the classes, since these class probabilities for the bias corrected voxel values are a Gaussian 

distribution each. The factors of the sum are weighted by the so called class prior. A prior is 

known or assumed information about an event before the event has occurred. In this case it is 

the probability of a tissue, i.e. the relative amount of a tissue. 

This is an expression for the pdf for one voxel. An expression for the whole image is obtained 

by assuming that the voxel intensities are statistically independent of each other, as in Wells 

et al (1996) and van Leemput et al (1999). The pdf for the whole image, y, is then the product 

of the pdfs for all the voxels, using the rule for statistically independent samples: 

 )()(),( BPAPBAP ⋅=      , A and B statistically independent   

which gives: 
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i

iN ypyyypyp βθβθβθ ∏==  (7.5) 

The assumption that the voxels are independent of each other can be thought of being rather 

erroneous, since it is obvious that the intensity in one voxel depends on the voxels 

surrounding it. However, by making this assumption, the only thing that occurs is that a lot of 

spatial information that exists in the image is not used. To include spatial considerations, one 

solution can be to use a Markov random field model. 
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7 .4 . Voxel Classificat ion 

The classification problem is to, given a voxel intensity, find the tissue type that this voxel 

most probably belongs to. What is wanted is thus the probabilities that each voxel belongs to 

each of the classes. This is the probabilities that voxel value yi at position i belongs to the 

different classes Γi. Hence, there are as many probabilities as there are classes. These 

probabilities, that represent a soft classification of the tissues, are what are wanted from the 

voxel classification step. However, to solve this problem it has to be sorted out what is given 

in this problem and which the unknown variables are. 

The only given information in this problem are the voxel intensities. Also known is the 

assumption that the pdf of the intensities are a sum of Gaussian distributions affected by a 

bias field. 

7.4.1. Soft  Classificat ion  

However, what is wanted are the classifications, i.e. the probabilities that each voxel belongs 

to each of the classes. An expression for this can be obtained from the pdf for voxel intensity 

(7.4) using Bayes’ rule (7.6). By rearranging the expression for joint probabilities (7.2), 

Bayes’ rule can be derived: 
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Setting A = yi and B = Γi, the expression for the classifications of the voxels becomes: 
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Using (7.3) and (7.4) in this expression gives: 

 
∑
Γ

Γ⋅Γ
==Γ

i

iiii

iiii

ii

iiiii

iii
pypyp

yp
)(),,|(),|(

),,|(
βθβθ

βθ
Γ⋅ΓΓ⋅Γ pyppyp )(),,|(),|(),,|( βθβθβθ

 (7.7) 

However, the problem is that to be able to perform these classifications the Gaussian 

parameters, the bias field, and the voxel values have to be known. This is not the case, but 

expressions for estimating the parameters θ, and the bias field β are needed. 

7.4.2. Est im at ion of the Gaussian Param eters θ 

The parameters can be estimated as in Wells et al (1996) by manually selecting areas of 

voxels belonging to each tissue. The mean and standard deviation are then calculated from the 

intensity distribution of the voxels in this selected region. However, this method is user 

dependent, and the aim of this thesis is to find an automatic method. 
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An expression for the Gaussian parameters θ can be derived in the same way as the 

expression for the soft classification of the voxels, i.e. by using Bayes’ rule (7.6). However, 

the classification is only based on the voxel value in the voxel being classified, and the 

estimation of θ should be based on all the voxel values in the image. Hence, Bayes’ rule (7.6) 

is used on the pdf for the entire image (7.5), which gives: 
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Since the best estimate for θ is sought, the aim is to maximize this probability. Hence, the 

denominator  is a normalizing constant which can be ignored. Also, since the parameters 

θ are independent of the bias field, the expression can be simplified and the estimation  

becomes: 

θ

 ) (7.8) )(),|((maxarg)),|((maxarg θβθβθθ
θθ
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This is a maximum a posteriori (MAP) estimation of θ . It requires that a prior θp

)|()|( BApABL =
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 for the 

parameters is known. The MAP estimation can thus be used if there is knowledge about the 

probabilities for various parameter values. 

However, there are cases when there is no knowledge about the prior, or when it might be 

best not to make any assumptions about the prior, i.e. if it is undesirable to give certain 

parameter values a higher probability of being chosen. Then another similar method called 

maximum likelihood (ML) estimation can be used, as is done by van Leemput et al (1999). It 

does not include any assumptions about the prior. 

The likelihood function is a conditional probability that is a function of the second “given” 

argument with the first argument held fixed, i.e.: 

  

In this problem it will be: 
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Once again, the parameters  that maximize the likelihood function are wanted. This means 

that the parameters θ that maximize the pdf for the image are sought: 

θ

  (7.9) )),|((maxarg)),|((maxarg βθβθθ
θθ

ypyL ==

As can be seen, this expression is very similar to the MAP expression (7.8). The only 

difference being the prior. 

Since a maximum is searched, the derivative of the ML, or MAP, expression is equal to zero 

in this point. Hence, the estimates  is found by differentiating the ML, or MAP, expression 

with respect to the searched parameters and setting the partial derivatives equal to zero. The 

calculations are shown for the ML estimation, but the MAP calculations are similar. 

θ
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Using the expression for the pdf of the image (7.5) in the ML expression (7.9) gives: 
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To make the calculations simpler, a logarithmic transformation is performed. This makes the 

formula for the pdf of the image additive instead of multiplicative: 
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Since all the values for ii βθ  are in the interval [ ]
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1,0 , the logarithmic values will be in 

the interval ] . The new ML estimation for θ is thus: 
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Using this reasoning an estimate of the mean is found by setting the partial derivative of the 

minimization expression equal to zero. 

Finding iΓμ̂ : 
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Then Bayes’ rule (7.6) is used, in the opposite direction as when finding the expression for the 

classifications (7.7), which gives: 
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Since a minimum is searched this expression is set to zero, which gives: 
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Rearranging the terms gives an expression for the maximum likelihood estimate of iΓμ̂ : 
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The same approach is used to find an expression for iΓσ̂ : 
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Setting this to zero: 
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Rearranging the expression gives: 
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which leads to the following expression for the maximum likelihood estimate of iΓσ̂ : 
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 (7.11) 

However, these estimates require the knowledge of both the bias field and the classifications! 
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7.4.3. Est im at ion of the Bias Field β 

Finding an expression for β, the same reasoning can be used as when finding the estimate for 

θ – either a MAP estimation or an ML estimation can be made. The MAP estimation 

becomes: 

  (7.12) ))(),|((maxarg)),|((maxarg ββθθββ
ββ

pypyp ⋅==ˆ

ˆ

and the ML estimation: 
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yp=

For example, Wells et al (1996) use a MAP formulation for estimating the bias field. Their 

expression looks like the one above, except that θ is given and excluded from the expression. 

They model the prior for the bias field as a Gaussian centered on zero. 

van Leemput et al (1999) use an ML estimation to obtain estimates for the bias field. They use 

a parametric model for the bias field, modeling it as a linear combination of smooth basis 

functions. The ML estimation becomes an estimation of the parameters of the basis functions. 

The estimates of β will depend on the other searched variables, i.e. the classifications and the 

Gaussian parameters. Since all the searched variables depend on the values of the other 

variables, it implies the need for an iterative algorithm which estimates one of the unknown 

parameters while assuming the others as known. One such algorithm is the expectation-

maximization (EM) algorithm. 

7.4.4. The Expectat ion-Maxim izat ion Algorithm  

The expectation-maximization (EM) algorithm has been used by for example Wells et al 

(1996) and van Leemput et al (1999). It is an algorithm that finds the ML or MAP estimates 

for some parameters which depend on observed information, but also on some missing 

information. In this problem the observed information is the voxel values, the missing 

information is the soft classifications of the voxels, and the parameters are the Gaussian 

parameters θ, and the bias field β. The algorithm alternates between two steps – the E-step 

and the M-step.  

In the E-step the algorithm estimates the missing information, i.e. the classifications of the 

voxels, basing this estimation on estimates of the parameters θ and β. The expression for soft 

classification (7.7) is then used. 

The M-step then finds the ML or MAP estimates of the parameters, basing this estimation on 

the estimates of the soft classification. The estimation of β is then made using (7.12) or (7.13), 

and then the Gaussian parameters θ are estimated using (7.10) and (7.11). The algorithm is 

then iterated until some criterion for convergence is reached. 
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)(p iFor each iteration, the prior on tissue class, Γ , can also be estimated. It is the probability 

of a certain tissue. Hence the sum of the probabilities of the tissues is equal to one: 

  ∑
Γi

ip 1)( =Γ

Γ=Γ βθ

This parameter thus describes what proportion of the total amount of voxels that belong to 

tissue Γi. In the E-step the probability that each of the voxels belongs to tissue Γi is estimated. 

The sum of these probabilities is thus the probability of tissue Γi: 

  ∑
i

iiii ypp ),,|()(

However, to be able to use this algorithm it has to be initialized. It can either be initialized at 

the E-step, which requires an initial estimate of the parameters θ and β, or it can be initialized 

at the M-step, which requires an initial estimation of the soft classification. Good initialization 

of the EM algorithm is crucial since the algorithm only converges to a local minimum. 

Initialization at the E-step implies that an estimate of the distribution parameters and the bias 

field must be supplied. An estimate can often be obtained from the histogram, but it often 

requires some level of user interactivity. Zhang et al (2001) have developed a method for 

automatic initialization at the E-step. 

For initialization at the M-step an estimate of the voxel classifications is required. These 

estimates can be obtained with automatic methods from a probability map. A probability map 

contains the posterior probabilities of different tissues at all locations in the volume. There is 

thus one probability per tissue for each location. A probability map is an estimate of 

probability and location, usually calculated from a number of different images (van Leemput 

et al, 1999).  

There might be difficulties with the registration of the map, i.e. to associate the values in the 

probability map to the voxels in the image being segmented. Also the map may not reflect the 

biological diversity that exists and this can cause segmentation errors for tissues that vary a 

lot from the map. 

7.4.5. Hard Classificat ion 

One of the results from the EM algorithm is the soft classification of the voxels, i.e. 

 ),,|( iii yp θ βΓ

ˆ

 

To proceed, a hard segmentation of the voxels is wanted. To obtain the hard classification, 

each voxel is assigned to the class to which the voxel has the highest probability of belonging 

to, i.e.: 

  )),,|((maxarg iiii yp
i

βθΓ=Γ
Γ

This is a MAP classification of the voxels, since a prior was used in the soft classification. 
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7 .5 . Segm entat ion of the Brain Using 

Morphological Operat ions 

The brain cannot directly be separated from the classification of the voxels by for example 

finding the largest connected component in the image. This is because other tissues, e.g. 

muscle, are classified as brain tissue and there are thin connections between the brain and 

these other tissues. However, after the classification of the voxels has been performed, 

segmentation of the brain from the rest of the tissues is a rather simple problem, which can be 

performed using morphological operations. 

Morphological operations are simple operations used to process the binary images. They 

manipulate the shape of the objects in the image. The most common morphological operations 

are dilation, erosion, opening, and closing. 

7.5.1. Dilat ion 

Dilation implies that object areas are expanded along the border to the background. This 

means that background voxels closer than a given distance, r, to an object voxel are converted 

into object voxels. An example of dilation is presented in Figure 7.3. 

 

Figure 7.3. Example of dilation; Original image and dilated image. 

Conditional dilation implies that background voxels are only converted to object voxels 

depending on whether they are object voxels in a mask image. An example of conditional 

dilation is presented in Figure 7.4. There are also conditional variants for erosion, opening 

and closing. 

 

Figure 7.4. Example of conditional dilation; Original image, mask image, and conditionally dilated image. 
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7.5.2. Erosion 

Erosion implies that object areas are shrunk along the border to the background. This means 

that all object voxels closer than a given distance, r,  to a background voxel are converted into 

background voxels. An example of erosion is presented in Figure 7.5. 

 

Figure 7.5. Example of  erosion; Original image and eroded image. 

7.5.3. Opening 

Opening is erosion followed by dilation. The effect of opening is that thin connections 

between objects are removed. By having the same distance r for both erosion and dilation, 

most of the original image is preserved. An example of opening is presented in Figure 7.6. 

 

Figure 7.6. Example of opening; Original image and opened image. 

7.5.4. Closing 

Closing is dilation followed by erosion. The effect of closing is that cracks and holes in the 

objects are filled. By having the same distance r for both dilation and erosion, most of the 

original image is preserved. An example of closing is presented in Figure 7.7. 

 

Figure 7.7. Example of closing; Original image and closed image. 
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8 . I m plem entat ion 

This chapter contains details on the implementation. The algorithm is developed in Matlab. It 

consists of: 

1. Preprocessing 

2. Voxel classification 

3. Segmentation of the brain using morphological operations  

8 .1 . Preprocessing 

In preprocessing all the steps before the EM algorithm are included. Finding estimates for the 

initialization of the algorithm is also regarded as preprocessing.  

8.1.1. Rem oval of Background Voxels 

The background voxels have been removed by creating a mask of the head and disregarding 

voxels that are not included in the mask, see Figure 8.1. The mask is created by first 

thresholding the image. The threshold is chosen as the midpoint between the two largest local 

maxima in the histogram. Morphological closing is then performed on the mask to get the 

mask to include most of the CSF in the brain. After these operations the image might still 

consist of several objects. The head is then found by finding the largest connected component 

in the image. To avoid that low intensity voxels inside the head are not included in the mask, 

flood fill operations from the corners of the image are performed. The voxels that are not 

filled after these operations are also assigned to the mask. The process of removing 

background voxels is visualized in Figure 8.1. All of the following segmentation steps are 

performed on the masked image. 

As an alternative, the background removal could have been made using active contours. 
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Figure 8.1. Background removal. 

8.1.3. I nit ializat ion of the EM Algorithm  

The EM algorithm is initialized on the E-step. Hence an estimate of the Gaussian parameters 

and the bias field must be provided. The bias field is initialized to zero, i.e. making the initial 

assumption that there is no bias field in the image. The means of the Gaussian distributions 

are estimated manually by inspection of the histogram. The Gaussian standard deviations are 

set equally for all classes. The tissue prior is simply divided equally over the classes, giving 

each class equal initial probability.  

8 .2 . Voxel Classificat ion 

The EM algorithm is implemented according to the description in the previous chapter. The 

only exception is a slightly different model for the bias field. 

8.2.1. Modeling the Bias Field 

To obtain an estimate of the bias field in one voxel, the expression for the pdf of one voxel 

(7.4) is used together with Bayes’ rule (7.6), which gives: 
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As is mentioned previously, simplifications can be made since the bias field is independent of 

the Gaussian parameters and the tissue class. Also, since a maximum estimate is wanted, the 

denominator is just a normalizing constant which can be ignored. Hence: 

  (8.1) ))(),,|((maxarg iiiii pyp
i
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ˆˆ

ˆˆ

Originally this expression will give one contribution to the bias field from each of the tissue 

classes. However, to simplify, a MAP estimate of the most probable class is performed before 

estimating the bias field: 

  ))(),,|((maxarg iiiii pyp
i

ββθβ
β

⋅Γ=

The estimate for the bias field in a voxel is the maximum of a normal distribution, since: 

  ))(),((maxarg))(),,|((maxarg iiiiiiiiii pyGpyp
ii

βσβμββθβ
ββ

⋅−−=⋅Γ= ΓΓ

The maximum of a normal distribution is simply the mean value of the distribution, i.e. when: 

 iiiy μ β+=

ˆ

Γ  

Rearranging this expression gives an estimate of the bias field in voxel i: 

  iii y Γ−= μβ

The bias field in a voxel is thus approximated as the difference between the intensity value in 

that voxel and the mean of the tissue that this voxel belongs to. 

However, the bias field is not a local feature since it varies slowly across the image. Thus, a 

large spatial low pass filter is applied to the bias field estimates to make the bias field slowly 

varying across the image. This filter is applied slice by slice, since intensity offsets are 

common between slices. 

To avoid that the bias field introduces a DC level in the image, the prior for the bias field is 

chosen as a zero mean uniform distribution. 

8.2.2. Spat ial Filter ing of the Classificat ions 

Since there are no spatial considerations taken when classifying the voxels using the EM 

algorithm, the result may become rather granular. Because the resulting brain from this 

segmentation is to be used in a finite element model, it may be desirable to make the classes 

appear less granular. To obtain the smoothing of classes, a local spatial low pass filter can be 

applied to the soft classification images, before the hard segmentation is performed. 
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8 .3 . Segm entat ion of the Brain Using 

Morphological Operat ions 

Morphological operations are applied to the resulting classification in accordance with Kapur 

et al (1996). First a morphological erosion is applied because the thin connections between 

the brain and the other tissues have to be removed. In this new binary image, the brain is 

found as the largest connected component in the image. Conditional dilation is then 

performed of the largest connected component to obtain the final segmentation result. 
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9 . Results  

This chapter presents the obtained results when applying the implemented algorithm on T1-

images and synthetic images.  

9 .1 . Synthet ic I m ages 

The voxel classification has been applied to synthetic images affected by an additive bias 

field. The original image is affected by white Gaussian noise, and the second image is also 

affected by an additive bias field, see Figure 9.1. The bias field makes the image brighter to 

the left and darker to the right. Note that the images consist of 320320× pixels.  

 

Figure 9.1. The original image and the image affected by an additive bias field. 

The histograms for these images are shown in Figure 9.2. It can be seen that the distributions 

are not as clear in the histogram for the image affected by the bias field. 

 

Figure 9.2. Histogram for the original image and for the image affected by a bias field. 
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9.1.1. Bias Correct ion 

The image has been classified with and without bias correction. The resulting Gaussian 

distributions, Figure 9.3 and 9.4, give a hint that the classifications will be better with bias 

correction. The dotted lines are the Gaussian distributions and the thick line is the sum of 

these distributions. The thinner line is a histogram of the bias corrected intensity values. As 

can be seen, the bias correction makes the intensity distribution look more like a sum of four 

Gaussians. 

 

Figure 9.3. The Gaussian approximation without bias correction. 

 

Figure 9.4. The Gaussian approximation with bias correction. 
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If no bias correction is performed, there are a lot of errors in the classifications, see Figure 

9.5.  

      

Figure 9.5. The true classifications and the classifications without bias correction. 

When bias correction is applied, the classifications improve significantly, see Figure 9.6. 

      

Figure 9.6. The true classifications and the classifications with bias correction. 

The bias field that the algorithm has estimated is shown in Figure 9.7 next to the true bias 

field. 

      

Figure 9.7. The true bias field and the estimated bias field. 
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9 .2 . MR I m ages 

This section presents the results after the algorithm has been applied to T1-weighted images 

of the head. 

9.2.1. Rem oval of Background Voxels 

The background removal removes most of the background voxels. The MR image with and 

without background is presented in Figure 9.8.  

 

Figure 9.8.  The image before the background is removed and the image without background. 

The removal of the background voxels gives a more balanced histogram, see Figure 9.9. 

 

Figure 9.9: The histogram with and without background voxels. 
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9.2.2. Voxel Classificat ion 

The result of the EM algorithm is a mixture of Gaussians approximating the pdf for the bias 

corrected voxel intensities, see Figure 9.10. The dotted lines are the Gaussian distributions 

and the thick line is the sum of these distributions. The thinner line is a histogram of the bias 

corrected intensity values. 

 

Figure 9.10: The resulting Gaussians. 

The other result from the EM algorithm is the soft classification of the voxels. Each voxel is 

then assigned to the class that it most probably belongs to. An example of the original image 

and the resulting classification is shown in Figure 9.11. The different gray levels in the second 

image represent different classes. In this image there are six classes. From the darkest to the 

brightest, the classes represent mainly the following tissues: 

• Background 

• Bone 

• CSF 

• Gray matter  

• White matter 

• Adipose tissue 

Other tissues in the head are classified as either of these classes, e.g. muscle tissue is 

classified as gray matter. 
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Figure 9.11. The original image and the result of the classification. 

9.2.4. The Num ber of Classes 

The number of classes must be chosen as input to the EM algorithm. The algorithm has been 

tested with different number of classes. The class for background voxels is not included in the 

EM algorithm since these voxels have been identified in the preprocessing step. Figure 9.13 

shows the original image and the resulting classifications using four, five, and six tissue 

classes respectively. Using four tissue classes, CSF and gray matter are assigned to the same 

class. The difference between five and six tissue classes is not very significant. 
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Figure 9.13. The original image and the classifications using four, five, and six tissue classes respectively. 
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9.2.5. I nit ializat ion of the EM Algorithm  

The resulting classification depends on the initialization of the algorithm. Figure 9.14 shows 

how different the results from the same image can be when different initialization is used. For 

the first image, the mean values are based on the appearance of the histogram, and in the 

second image they are distributed equally between the minimum and maximum intensity. The 

other initialization parameters are the same for both. The failure of the second classification 

can also be seen in the resulting Gaussians in Figure 9.15. 

 

Figure 9.14. The resulting classifications using different initializations. 

 

Figure 9.15. The Gaussian mixture when poor initialization is used. 
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9.2.6. Bias Correct ion 

The algorithm with and without bias correction is applied to T1-weighted images. It can be 

seen that the MR image in Figure 9.16 is affected by intensity inhomogeneities. The bottom 

part is brighter, while the upper left corner is darker. 

 

Figure 9.16. An MR image affected by intensity inhomogeneities (BrainWeb; Cocosco et al, 1997; Kwan et al, 

1999; Kwan et al, 1996; Collins et al, 1998).  

The image is classified using the algorithm without bias correction, see Figure 9.17. It can be 

seen that the classification is not perfect. In the encircled parts white matter is classified as 

gray matter. 

  

Figure 9.17. The original image and the image classified without bias correction. 
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The image is also classified using the algorithm with bias correction, see Figure 9.18. The 

classifications have improved compared to the classifications without bias correction. As can 

be seen, the results have improved significantly in the encircled region.  

  

Figure 9.18. The original image and the image with bias correction. 

9.2.7. Spat ial Filter ing of the Soft  Classificat ions 

The spatial filtering of the soft classifications before the hard classification reduces the 

granularity in the image. This effect is shown in Figure 9.19 and 9.20 for two different MR 

images.  

 

Figure 9.19. The classifications without and with filtering of the soft classification before hard classification. 
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Figure 9.20. The classifications without and with filtering of the soft classification before hard classification. 

Due to the filtering of the soft classifications some misclassifications are corrected. For 

example, in the second image in Figure 9.20 some white matter voxels are classified as 

adipose tissue, but when spatial filtering is performed these voxels are correctly classified, see 

Figure 9.21. 

  

Figure 9.21 The filtering of the soft classifications correct some misclassified voxels. 
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9 .3 . Segm entat ion of the Brain 

The brain class, i.e. the classes for white matter and gray matter, is shown in Figure 9.22 and 

9.23. As can be seen in the images, many other tissues are included in the brain class, like for 

example meninges and muscle tissue. There are thin connections between the brain and other 

tissues. 

 

Figure 9.22. Axial slices of  the brain class.  

 

Figure 9.23. Coronal and sagittal views of the brain class. 

After morphological operations have been applied on the brain class only the brain remains. 

The resulting segmentations of the images above are presented in Figure 9.24 and 9.25, and a 

3D-visualization of the resulting brain is presented in Figure 9.27. However, the 

morphological segmentation may cause not only non-brain tissue but also brain tissue to 

become disconnected from the brain. This is seen in Figure 9.26. 
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Figure 9.24. Axial slices of the resulting brain. 

 

Figure 9.25: Coronal and sagittal views of the resulting brain. 

 

Figure 9.26. Some brain voxels are removed by the morphological operations. 
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Figure 9.27. 3D-visualization of the resulting brain. 
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1 0 . Discussion 

The performance of the method is discussed in this chapter and some improvements are 

suggested. 

The implemented method is applied to T1-weighted images of the head. The brain is 

segmented from the other tissues of the head in an automatic manner. The convolutions of the 

brain are detected and white matter, gray matter, and CSF are separated. The method works 

on images independent of their orientation (axial, coronal, or sagittal). 

1 0 .1 . Preprocessing 

Preprocessing is a crucial step for good convergence of the EM algorithm. Even though the 

main focus of this thesis work has not been on this aspect of the segmentation process, some 

problems have been found and are mentioned in this section. They deal with the logarithmic 

transformation of the voxel intensities and the initialization of the algorithm. 

10.1.1. Logarithm ic Transform at ion of the I ntensit ies 

Intensity inhomogeneities are often modeled as a multiplicative field, but the EM algorithm 

estimates an additive bias field. To obtain an additive bias field, a logarithmic transformation 

should be performed on the voxel intensities. However, good results have been obtained on 

the original intensities. This may partly be explained by the fact that gray matter and white 

matter have similar intensities and thus the multiplicative effect of the inhomogeneity field is 

not as large. If it is important that tissues having significantly different intensities, e.g. bone, 

also should be classified correctly, it may prove more important to perform the logarithmic 

transformation before classification of the voxels. 

The intensities of one class are often modeled as having a Gaussian distribution. However, in 

the model using logarithmic transformation of the intensities, the distribution model changes. 

To make the log-model resemble the original model better, it may work better if skewed 

distributions are introduced in the log-model, instead of Gaussian distributions. 

10.1.2. I nit ializat ion of the EM algorithm  

Since the EM algorithm only converges to a local minimum, the performance depends on the 

initialization, which is shown in the results.  This shows that the initialization is important for 

the results.  

Also, the initialization is not completely automatic, which is desired. To get the best and the 

most robust performance of the algorithm, efforts should be made to find better and more 

automatic initialization. It may be possible to find an automatic initialization at the E-step by 

using the cumulative histogram, see Figure 10.1. If the relative amount of each tissue type is 

known, the means and standard deviations can be calculated. 
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Figure 10.1. Suggestion of how to use the cumulative histogram to calculate the distribution parameters. 

The EM algorithm can also be initialized at the M-step instead of the E-step. Automatic 

initialization may then be performed, as described in van Leemput et al (1999), by using 

probability maps of the various tissues. However, this introduces a registration problem. 

10.1.3. The Num ber of Classes 

The algorithm has been initialized using different number of classes. The results are affected 

by the number of classes used. Four tissue classes and one background class is not enough 

since gray matter and CSF are classified as the same class. Thus the tissues in the brain cannot 

be separated from each other and the brain cannot be separated from the extracerebral CSF. 

Also there are thicker connections between the brain tissue and the muscle tissue. Using six 

tissue classes as opposed to five does not improve the classifications and is thus unnecessary. 

Five tissue classes and one background classify the image into different tissues. The brain 

tissues are separated from each other and there are only thin connections connecting the brain 

tissues to the muscle tissue. 

The parametric model used is never going to be an exact representation of the true intensity 

distribution. It may be argued that using more classes can make the model more exact. One 

idea is to introduce new classes to represent partial volume voxels. 

1 0 .2 . Voxel Classificat ion 

In the voxel classification the voxels are divided into different classes. However, in the EM 

algorithm no spatial relationships are included. It is also important to correct for image 

inhomogeneities. 
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10.2.1. Spat ial Considerat ions 

Since the implemented EM algorithm does not take any spatial considerations into account, a 

perfect segmentation is impossible to achieve, since the Gaussian distributions are 

overlapping. Some voxels will thus always be assigned to the wrong class. Also the resulting 

classifications may appear granular. With the knowledge that tissues are not granular but 

continuous, spatial dependency should be included in the method. One way of doing this is by 

the use of a Markov random field model. It is possible to incorporate MRFs in the EM 

algorithm, see for example van Leemput et al (1999). 

In this thesis work spatial considerations have been included using spatial low pass filters.  

This introduces spatial dependency between adjacent voxels. By the low pass filtering, the 

neighbors of a voxel voxels affect the classification in that voxel. The spatial filtering has 

shown to remove some of the granularity and also correct some of the misclassified voxels. 

However, it has not been validated that the results are improved with this method. The spatial 

filtering could introduce errors in the classification. Nonetheless, the classifications become 

less granular, which may be important for the finite element modeling of the tissues. 

10.2.2. Bias Correct ion 

Both the results from the synthetic image and the MR images show that the bias correction 

improves the classifications. The bias estimation could be improved to make the EM 

algorithm perform even better. 

There may be errors in the estimated bias field due to the partial volume effect. This is 

because these voxels belong to more than one class. The bias correction may be improved by 

removing partial volume voxels from the calculations of the bias field. This can be done by 

removing the voxels that have high values in the gradient image, since the gradient image 

often shows the boundaries between tissues. 

The bias estimate may also be improved by weighting the contribution of the bias field in a 

voxel by the inverse of the variance of the class that the voxel belongs to. This is because 

voxels belonging to a narrower distribution give a better estimate of the bias field (van 

Leemput et al, 1999).  

Another concern is that the filter size may not be optimal. However, different sizes have been 

tried and the one giving the best results was chosen. 

The algorithm has been applied to the original intensities. To better compensate for the 

multiplicative effect of the bias field, the algorithm should be performed on the log-

intensities. 

1 0 .3 . Segm entat ion of the Brain 

The brain is segmented from the other tissues using morphological operations. The 

segmentation is automatic, using the same morphological operations for the tested images. By 

using morphological operations brain voxels may be removed from the brain due to the fact 
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that morphological operations are simple operations. However, this loss of voxels is not very 

significant and does not affect the end results notably. 

The use of morphological operations has given good results on the segmented images. 

However, there might be images which have thicker connections between the brain and the 

other tissues. Then morphological operations may not be enough to separate the brain from 

the other tissues. Active contours may be a solution to this problem (Kapur et al, 1996). 

1 0 .4 . Extensions of the Method 

The existing method consists of voxel classification and brain segmentation. Some 

improvements to the method have already been suggested in the discussion. This section 

introduces some suggestions to possible extensions of the method.  

The resulting tissues are to be used in a finite element model of the brain. However, the 

complete finite element model should include more than these three tissues. The cranium and 

extracerebral CSF are included in the finite element model. The method could be extended to 

segment these tissues too. This can be done from the resulting classifications. However, the 

contrast between bone and CSF may be higher for other MR image weightings. If wanted 

other tissues like muscle and adipose tissue could also be segmented from the classifications 

to be included in the finite element model. 

This method has been applied to T1-weighted images of the head. However, an investigation 

of the most appropriate weighting might have been useful. According to Pham et al (2000) the 

extraction of the brain volume is particularly difficult for T1-images. This is due to that non-

brain tissues around the brain may have similar intensities. However, T1-images are often 

used due to the fact that they have high resolution even without longer acquisition times 

(Pham et al, 2000). Since the finite element model includes the cranium and extracerebral 

CSF, an extension of the method to extract bone and extracerebral CSF is wanted. Thus T1-

images might not be the best choice, since bone and CSF may have similar intensities. To 

separate CSF from bone T2-images might be better since they have high contrast between 

also bone and CSF, as well as between CSF and brain matter. However, the contrast between 

gray matter and white matter is better in T1-images. Thus, a combination of T1- and T2-

images might be appropriate. For example is the cerebrospinal fluid the parts which are bright 

in T2-images and dark in T1-images (Clarke et al, 1995). It is possible to extend the 

implemented method to include multichannel data, e.g. both T1- and T2-images. However, 

using multichannel data introduces a registration problem to the method. 

1 0 .5 . Validat ion 

The method should be applied to more images to see that the performance is acceptable on 

many images. Validation of the method can be done on both synthetic and real MR images. 

Applying the image on synthetic MR images, e.g. the images on BrainWeb (BrainWeb; 

Cocosco et al, 1997; Kwan et al, 1999; Kwan et al, 1996; Collins et al, 1998) can give a 

measure of the accuracy of the method. It is also important to validate the method on real MR 

images for example by comparisons with hand segmented images.  
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1 1 . Conclusions 

The implemented method segments the brain tissues from the other tissues of the head in an 

automatic manner. The convolutions of the brain are detected and white matter, gray matter, 

and CSF are separated. The method compensates for intensity inhomogeneities. However, 

improvements can be made to the algorithm to make it more robust and automatic. The 

initialization of the algorithm must be improved to make the method completely automatic. 

The bias field correction could also be improved to obtain better results. To obtain connected 

tissues it is important to include spatial considerations in the model. The method should also 

be evaluated using both synthetic and real MR images. 
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