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We present a technique for semiautomated segmentation of human prostates using suprapubic
ultrasound(US) images. In this approach, a speckle reducing anisotropic diffusion(SRAD) is
applied to enhance the images and the instantaneous coefficient of variation(ICOV) is utilized for
edge detection. Segmentation is accomplished via a parametric active contour model in a polar
coordinate system that is tailored to the application. The algorithm initially approximates the pros-
tate boundary in two stages. First a primary contour is detected using an elliptical model, followed
by a primary contour optimization using an area-weighted mean-difference binary flow geometric
snake model. The algorithm was assessed by comparing the computer-derived contours with con-
tours produced manually by three sonographers. The proposed method has application in radiation
therapy planning and delivery, as well as in automated volume measurements for ultrasonic diag-
nosis. The average root mean square discrepancy between computed and manual outlines is less
than the inter-observer variability. Furthermore, 76% of the computer-outlined contour is less than
1 s manual outline variance away from “true” boundary of prostate. We conclude that the methods
developed herein possess acceptable agreement with manually contoured prostate boundaries and
that they are potentially valuable tools for radiotherapy treatment planning and
verification. © 2004 American Association of Physicists in Medicine. [DOI: 10.1118/1.1809791]
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I. INTRODUCTION

Radiation therapy is accepted as a standard of care for
tate cancer, whether it is delivered externally, via confor
radiation therapy, or interstitially via implantation of rad
active seeds(brachytherapy). The high soft tissue contra
produced by ultrasound(US) imaging has made US a use
imaging modality for localization of the prostate in b
cases, with transrectal ultrasound(TRUS) imaging being
used in brachytherapy applications and suprapubic US i
ing in external beam therapy. Two systems are commerc
available for suprapubic prostate localization prior to d
radiation therapy delivery; the B-mode acquisition and
geting system(BAT™), (Nomos Corp., Sewickly, PA) and
the SonArray™(ZMed, Inc., Ashland, MA).

Contouring of the prostate is necessary for treatment
ning prior to brachytherapy and may be performed in ce
cases for real-time treatment planning.1 When suprapubic U
is used for daily localization of the prostate for external b
radiation therapy, the location is visualized interactively
the therapist and is not specifically contoured. Autom
contouring(or segmentation) of the prostate may prove to
useful to the degree that manual contouring is time con
ing and subjective.

In this paper we focus on application of a unique met
for semiautomatic segmentation of the prostate using s
pubic US images in the framework of active contour mod

We derived an active contour model in a polar coordinate

3474 Med. Phys. 31 (12), December 2004 0094-2405/2004/31 (
s-

-

-

-

-

system and applied it to US images that were enhance
speckle reducing anisotropic diffusion(SRAD).2 Edge detec
tion was facilitated by use of the instantaneous coefficie
variation (ICOV).2,3 To reduce the sensitivity of the acti
contour model, we incorporated the use of region-base
tive contours with area-weighted binary flow as the prim
optimization.4 We assessed the algorithm performance
comparing the computer-derived contours with manually
rived contours outlined by multiple sonographers. Our m
odology is unique in the following aspects:

(1) Our manual initialization requires a user to select o
two points near and outside the prostate volume, ins
of four control points exactly on the prostate bound
as with some existing semiautomatic method.20

(2) The technique uses a unique primary contour optim
tion that incorporates a region-based, area-weighte
nary flow model. This optimization is easy to implem
and has high precision in boundary location.

(3) A computationally efficient polar, parametric active c
tour model serves as the engine for final contour op
zation. Its efficiency is due to the fact that neither re
rameterization nor resampling is required.

(4) In the final optimization, SRAD is used for image
hancement and speckle filtering and the ICOV is use
derive the image-based force for moving the polar ac

contour to the prostate boundary.

347412)/3474/11/$22.00 © 2004 Am. Assoc. Phys. Med.
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II. BACKGROUND

A number of methods have been proposed for the d
mination of the prostate boundary from ultrasound imag
These methods fall into three general classes: Pixel-by-
classification, edge detection and linking, and deform
shape/contour models.

A. Methods based on pixel-by-pixel classification

Prateret al. reported an approach6 for segmenting trans
rectal US images of the prostate by virtue of pixel-by-p
classification of the prostatic and nonprostatic tissues u
neural networks. The training of the networks requires ex
sive sets of pre-processed grayscale images and corres
ing manual segmentation maps.

A texture-based classifier7 has also been proposed
prostate segmentation, consisting of the creation of
texture-energy measure images followed by a clustering
cess and a probability labeling process. The drawbac
these two algorithms is that they often do not result
single, closed, contour for the prostate.

B. Methods based on edge detection and linking

The radial bas-relief(RBR)8 method of Liu et al. first
computes the difference between the input image and it
largement to form an edge strength image. Then a
processing is invoked based on morphological filtering
extract a “band-type,” incomplete prostate boundary whic
often connected by many spurious branches. Yet, the pro
boundary derived from this method possesses some am
ity. Using polar coordinate Fourier transform, Kwohet al.
proposed a harmonic method9 to trim the result of the RBR
algorithm. However, use of the harmonic method is not
sible when the RBR boundary is not a single-valued func
of the polar angle.

Pathak et al. proposed an edge-guided interac
method10 for prostate boundary delineation. The image c
trast and speckle are initially improved via the “STICK
algorithm and anisotropic diffusion. Then Canny’s edge
tector and manual edge linking are applied to form a clo
contour based ona prior knowledge of the prostate.

Aarnink et al. implemented an integrated-edge-ba
method11,12 for the prostate contour determination. After
input image is compressed and smoothed, the gradien
the second derivative of the image are calculated. Then,
sible edges for the prostate boundary are located by
crossing detecting the second derivative of the image;
the edge strength assumes the value of the gradient m
tude. Finally, a post-processing is performed to extrac
prostate contour based ona prior knowledge of the prosta
in ultrasound images. However, the methodology show
tendency to underestimate the prostate volume.

C. Methods based on deformable shape/contour
models

Cosío and Davies reported the use of a point distribu
13
model (PDM), a flexible shape template, for prostate seg-
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mentation. A genetic model fitting is used to optimize a
function that nominally corresponds to an optimal pros
shape. Though this approach always yields closed bo
aries, the PDM is subjective to dependence on the sele
of the training set.

Lodak et al. developed a semiautomatic algorithm5 for
contouring the prostate in two-dimensional(2D) ultrasound
imagery based on the discrete dynamic contour m
(DDC).14 The DDC contour evolves as each vertex on
contour moves under the action of internal, external,
damping forces. Equilibrium is achieved nominally when
ery vertex resides on the prostate boundary. The initializ
of the algorithm requires manually selecting four con
points on the prostate boundary. The algorithm incorpo
a tool that allows a user to edit incorrect vertices.

Wang et al. described a method15 for segmenting three
dimensional(3D) ultrasound images. A 3D data set is sub
vided into a sequence of evenly spaced parallel or radia
slices. Each slice is segmented and all segmented slices
together to get volumetric segmentation. A fully 3D ext
sion to the 2D DDC-based segmentation has been rep
by Hu et al.16

The active contour or “snake” models of Kasset al.17 are
a class of energy minimization-based segmentation
niques. The basic snake model is a parametric, closed
that evolves under the influence of internal forces, im
based external forces, and constraint forces. When an
curve is placed close to the target boundary, the curve
evolve to fit the boundary of target. Knollet al. developed
multiscale segmentation18 algorithm for prostate TRUS sca
using a snake with shape constraints. The initial conto
obtained by comparing two or three training prostate mo
against a rough edge map. In practice, however, to cope
wide anatomic variety in prostatic images acquired f
multiple viewing angles for different patients, the set of
training models needs to be extended to contain a varie
shapes. As a result, the initialization method could bec
computationally expensive due to its multiscale nature.

Most snake models depend heavily on local edge in
mation. In contrast, region-based contour models are a
ternative, energy-minimizing class of models19,20 that exploit
regional information. Examples of region-based snake
the binary flow model21 by Yezzi et al. and theactive con
tours without edgesof Chanet al. These models excel ov
active contour models in cases where high image nois
low contrast precludes movement of the edge-based co
Furthermore, region-based contours are less likely to be
sitive to the initialization of the contour, are allowed
evolve topologically and are advantageous over param
curve segmentation in this respect. To facilitate topolog
changes during curve evolution, the curves in region-b
models are represented implicitly by level sets. Propose
Osher and Sethian,22 the level set curve is computed by fin
ing the intersection of a three-dimensional surface with
plane of zero height. Tsaiet al. extended the region-bas
binary flow model to include a shape-based constraint r

sented by a point distribution model formulated with level
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sets23 and reported good visual results for 2D and 3D p
tate contouring.

III. METHODS AND MATERIALS

Figure 1 illustrates the processing modules and data
used in our method for semiautomated prostate segm
tion. It consists of three primary modules that yield suc
sively more accurate estimates of the prostate boundary
manual initialization results in an elliptical contour appro
mation represented a level set function. This is used as
into the primary(first-order) optimization that uses an are
weighted mean-difference binary flow(AMBF) model. The
resulting approximate contour is then used to initialize a
lar active contour model wherein the fully optimized cont
is produced.

A. Initialization

1. Manual initialization and elliptical model

The algorithm is initialized by manually selecting t
points in the input US image: One near and outside the u

FIG. 2. The manual initialization and resulting elliptical model are sh
for two prostates in(a) and (b). The manual initialization points are sho
by bead-like markers. In(c) and (d) we display the result of applying th

AMBF model to obtain a primary approximation to the prostate boundary.
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left part of the prostate and the other near and outsid
lower right part of the prostate so that the prostate is
closed as tightly as possibly by a reference rectangle
upper left and lower right vertices being the chosen po
This is the only user input required in the segmentation
cess. The objective of the primary delineation is to obta
very general approximation of the prostate boundary l
tion. For simplicity, we chose an ellipse as an approxima
of the prostate contour. Within the reference rectangle

inscribed elliptic contour,CW 0, is generated. Figures 2(a) and
2(b) show two examples of the primary delineation by
elliptic model. The bead-like markers are the points spec
by user.

Ultrasound signals are high in dense media and at t
interfaces in which the density and other acoustic prope
differ. Because the prostate is surrounded by fat, muscle
vascular tissues, acoustic reflections at these interface
relatively strong and create an ultrasound image tha
good contrast between the differing tissues. A typical su
pubic US image is shown in Fig. 3. The bladder appea
the large anechoic(i.e., black) region due to the lack o
acoustic reflection in the urine, and the smaller circula

FIG. 3. A full size test suprapubic US image wherein the bladder an

FIG. 1. Flow chart of the methodolog
used to delineate the prostate bou
ary in ultrasound imagery.
prostate can be seen.
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gion inferior to the bladder is the prostate. The instantan
coefficient of variation employed in our algorithm finds
physical interfaces of adjacent tissues.

B. Primary optimization

The objective of the primary optimization is to move
initial elliptical contour closer to the prostate boundary lo
tion in a computationally efficient manner. Since the pros
boundary appears noisy and often discontinuous in u
sound image suffering from speckle, region-based a
contours are well suited for this purpose for their insens
ity to local edge information and initialization. Howev
they typically require a weighted curvature term to prev
the contour from evolving into nonanatomical shapes du
the presence of noise. Use of this term is undesirable be
an application-specific weight parameter has to be inco
rated into the model and it requires a complex implicit
cretization scheme. The use of the curvature term ma
avoided by smoothing the input image, although this
produce a position bias. We therefore derived a new m
that overcomes these problems.

1. Area-weighted mean-difference binary flow
model (AMBF )

The AMBF model is a region-based active contour
does not depend on image edge features. It is derive
minimizing the following cost functional

EsCW d = −
1

2

AuAv

A
su − vd2, s1d

of a closed curveCW , whereAu and Av are, respectively, th

areas of the regions inside and outside the curveCW ;A=Au

+Av, the area of the image;u and v are the means of th

Gaussian-filtered imageĨg inside and outside the curveCW ,

respectively.Ĩg= I ^ gs is the convolution of the input imag
I and a 2D Gaussian kernelgs having a standard deviations.
Filtering at an empirically derived standard deviation o
allows us to preserve the prostate edges while minim
noise and producing an anatomically appropriate contou

Using a level set representation and the regulariza
method of Chan and Vese19 we find that the segmentin

curveCW is the zero-level set of a functionfsx,y; t→`d that
is a steady state solution to the following partial differen
equation:

5
] f

] t
= d«sfd

1

A
su − vdFAvsĨg − ud + AusĨg − vdG

F −
1

2
sAu − Avdsu − vdG ,

fsx,y;0d = f0sx,yd in V,

d«sfd
] f

] nW
= 0 on ] V,

6 s2d
where
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Au =E E
V

H«sfsx,ydddxdy, s3d

Av =E E
V

f1 − H«sfsx,yddgdxdy, s4d

u = s1/Aud E E
V

Ĩgsx,ydH«sfsx,ydddxdy, s5d

v = s1/Avd E E
V

Ĩgsx,ydf1 − H«sfsx,yddgdxdy, s6d

H«szd= 1
2f1+s2/pdarctansz/«dg (i.e., the regularized Heav

side function19), d«szd=dH«szd /dz (i.e., the regularized Dira
function19), « is a small parameter;V and ]V are, respec
tively, the image domain and its boundary,nW denotes th
exterior normal to]V ,]f /]nW denotes the normal derivati
of f on ]V.

The partial differential equation(2) is solved numericall
using a Jacobi iterative method. Choosing a sufficie
small time stepDt and a grid sizeh in both x and y direc-
tions, we discretize the time and space coordinates
t=nDt , sn=0,1,…), x= ih , y= jh , si =0,1,… ,M −1, j
=0,1,2,… ,N−1), whereMh3Nh is the area of the imag

domain. LetĨg,i,j = Ĩgsih , jhd and fi,j
n =fsih , jh ;nDtd. The al-

gorithm is as follows: Knowingfn, we first comput
Ausfnd , Avsfnd , usfnd andvsfnd using(3)–(6), respectively
Then, we computefn+1 using the following update equati
system

fi,j
n+1 − fi,j

n

Dt
= dhsfi,j

n d
1

A
fusfnd − vsfndghAvsfndfĨg,i,j − usfndg

+ AusfndfĨg,i,j − vsfndg − s1/2d

3fAusfnd − Avsfndgfusfnd − vsfndgj. s7d

The initial level set function is set to

fi,j
0 = hÎsi − roundsxc/hdd2 + a2/b2s j − roundsyc/hdd2 − a,

s8d

wherea, b, xc, and yc are the two half(major/minor) axes
and the center coordinates of the initial elliptical cont
respectively, and roundsxd indicates roundingx to the neares
integer. We used the model parameters:h=1, Dt=0.1, and
s=4. As the first-order optimizer, the update equation(7)
does not proceed until convergence is reached but
when the area of the region inside the contour differs f
that of the initial ellipse by 20%. This stopping criterion w
determined empirically and allows the contour to mov
sufficiently close to the prostate boundary while preven
erroneous small contours from emerging.

From the resulting level set function,fsx,yd, the primary

optimal contour is obtained by
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C = hsx,yd P Vufsx,yd = 0j. s9d

Figures 2(c) and 2(d) show the two examples of the prima
contour optimization, initialized by the ellipses shown
Figs. 2(a) and 2(b), respectively. For the primary optimiz
tion, the AMBF fully employs the observation that the m
jority of the prostate appears hypoechoic relative to the
pattern of the neighboring normal tissues.

2. Vectorization of binary contour

Since the AMBF model4 produces only a binary conto
mask, we must produce the required vectorized curvr0

=fr0su0dr0su1d¯r0suN−1dgT for input into the full optimiza
tion module. Initially, an edge-tracing algorithm is applied
the binary contour mask to obtain an ordered sequence
Cartesian coordinateshsxj ,yjd u j =1,2,… ,Mj for all contour
pixels. The Cartesian coordinates of these pixels are
transformed into polar coordinateshsr j ,w jd u j =1,2,¯ ,Mj
by r j =Îsxj −xcd2+syj −ycd2 and w j =arctansyj −yc/xj −xcd
with 0øw j ø360°, where the polar coordinate system is c
tered atxc=s1/Mdo j=1

M xj andyc=s1/Mdo j=1
M yj. The sequenc

is then sorted such that it is properly aligned with the
element possessing the least polar angle and the las
possessing the largest polar angle. Finally, the sequen
evenly sampled in the angular direction through linear in
polation to obtain ther0=fr0su0dr0su1d¯r0suN−1dgT.

C. Final optimization

Once an approximation of the prostate boundary has
made through manual initialization and primary optim
tion, the algorithm proceeds to further optimize the con
by matching it to the prostate boundary location and smo
ing it. To this end, use of local edge information and bou
ary smoothness constraint becomes essential in order to
ment an anatomically realistic boundary. The optimiza
method we derived is a parametric, polar active con
model dedicated to convex, closed shapes that are ass
by most prostates. To effectively distinguish prostate e
from the speckle-induced phantom edges, the image fea
used to attract the contour are measured by the ICOV2,3 edge
strength computed from an SRAD2,3 processed input imag
(see Appendices A and B for a brief description of ICOV
SRAD). In the following, we describe the polar active c
tour model and its numerical implementation.

1. Polar active contour model

Traditional active contours17,24are typically formulated i
rectangular coordinate systems. Since the prostate is co
in the axial trans-abdominal US images, we develope
active contour model in a polar coordinate systemsr ,ud
whose originO8 is near the center of the prostate. This p
model renders approximately 50% reduction in the algor
complexity compared with rectangular snakes(see Sec. V).

The relationship between the Cartesian coordinate sy
sx-o-yd and the polar coordinate systemsr-u-O8d is illus-

W
trated in Fig. 4.Rc denotes the position vector of pointO8,
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the origin of the polar coordinate system, in the Carte

system.RW andrW represents, respectively, the position vec
of a point P on the contour in the Cartesian system and
polar system. In the polar coordinate system, we defi
radial segmenting curver=rsud ,uP f0,2pg, that minimizes
the following energy functional:

Esrd =E
0

2p

hsasud/2dfr8sudg2 + sbsud/2dfr9sudg2

+ EextsRW c + rsudêrdjdu, s10d

wherea andb are parameters that impose the elasticity
rigidity of the snake, respectively, andr8sud andr9sud denote
the first and second derivatives of the curversud with respec
to angleu. The external energy functionEext is derived from
the input imageI as the negative value of a particular e
strength measure called ICOV so that it takes on sm
values near structure boundaries.êr= êx cosu+ êy sinu where
êx and êy are unit vectors in thex and y direction, respec
tively. Using the calculus of variations, we find that an ac
contour that minimizes(10) should satisfy the Euler equ
tion:

d

du
fasudr8sudg −

d2

du2fbsudr9sudg −
] Eext

] r
= 0. s11d

The first two terms in(11) comprise the contour internal(i.e.,
smoothing) forces, while the last term represents the exte
image-based force that moves the contour toward the i
edges.

The solution to(11) is determined by treatingr as a func
tion of time t as well asu. Then the partial derivative ofr
with respect tot is set equal to the left-hand side of(11),
yielding

ṙsu,td =
]

] u
fasudr8su,tdg −

]2

] u2fbsudr9su,tdg −
] Eext

] r
,

s12d

whereṙ=]r /]t, andrsu ,t=0d=r0sud. To compute the parti
derivative ofEext, which is given in the Cartesian coordin

FIG. 4. Geometry of the polar coordinate system.
system we use the chain rule to obtain
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] Eext

] r
= cossud

] Eext

] x
+ sinsud

] Eext

] y
. s13d

In a traditional parametric active contour,17,24 the externa
image-based energy for grayscale imagery is designed

Eextsx,yd = − i ¹ fĨgsx,ydgi2, s14d

whereĨgsx,yd is the Gaussian filtered gray-scale value of
input imageI. For ultrasound imagery, however, Gauss
filtering and gradient edge detection are not suitable du
the presence of signal-dependent speckle noise. We,
fore, chose to use SRAD as our filter and the ICOV e
detector. Further, we propose that the external energy b
fined as the negative value of the ICOV edge strength

Eextsx,yd = −
us1/2di ¹ Ĩ si2 − s1/16ds¹2Ĩ sd2u

fĨ s + s1/4d¹2Ĩ sg2
, s15d

where Ĩ s is the SRAD-filtered, echo intensity imageId.
SRAD requires the echo signal intensity as its input. H
ever, the available B-scan image is the log-compressed
sion of the echo intensity image. Therefore, B-scan data
be decompressed to recover an estimate of the echo int
in order to be processed via SRAD. To do this, we sim
took Id=expsI /Dd, the exponential of the B-scan data
vided by a constantD. Then we chose a value ofD such tha
the speckle statistics of the decompressed image mimic
theoretical statistics of intensity of fully developed spec
(see Appendix C). Empirically, we found thatD=25 (unit:
the reciprocal of the logarithm ofId sinceI is dimensionless)
for the US imagery used.

2. Numerical implementation

Equation(12) is a general formulation of the parame
polar active contour model in which two model parame
are allowed to vary with angle. In practice, however,a is
usually set to a positive constant andb is usually zero. Usin
these assumptions, Eq.(12) is implemented as follows. Fir
select a time step sizeDt and an angle increment ofh to
quantize the time variable and the angle variable as:t=nDt,
(n=0,1,2,…) and u= ih , si =0,1,2,… ,N−1d, where h
=2p /N. Let ui = ih andri

n=rsih ,nDtd be an approximation o
rsu ,td. The external force can then be made discrete in
radial direction −]Eext/]r as follows:

Fi
n = −UFcosui

] Eext

] x
+ sinui

] Eext

] y
GU

xc+ri
n cosui, yc+ri

n sin ui

,

s16d

wherexc andyc are the Cartesian coordinates of the origin
the polar coordinate system. If the origin of the Carte
coordinate system is at the upper left corner of the image

approximate(12) using
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e

ri
n+1 − ri

n

Dt
=

a

h2fri %1
n − 2ri

n + riQ1
n g −

b

h4fsri %2
n − 2ri %1

n + ri
nd

− 2sri %1
n − 2ri

n + riQ1
n d + sri

n − 2riQ1
n + riQ2

n dg

+ Fi
n, s17d

where % and Q are moduloN addition and subtraction, r
spectively. The difference equations(17) can be written in
the following matrix form:

rn+1 = rn − ArnDt + FDt, s18d

where

rn = 3
r0

n

r1
n

A
rN−1

n
4, F = 3

F0
n

F1
n

A
FN−1

n
4 ,

and

A = 3
c b a a b

b c b a a

a b c b a

�

a b c b a

a a b c b

b a a b c

4
being a N3N symmetric pentadiagonal matrix witha
=b /h4, b=−s4b /h4+a /h2d, andc=6b /h4+2a /h2. Equation
(18) is an explicit update equation that requires a sufficie
small time step for obtaining a stable numerical solution
is usually very slow to converge. For the sake of nume
stability when the time stepDt=1 is used, an implicit upda
equation can be formulated as

rn+1 = rn − Arn+1 + F or rn+1 = sI + Ad−1srn + Fd,

s19d

where I is the identity matrix. Given an initial contourr0

=fr0su0dr0su1d¯r0suN−1dgT, Eq. (19) is iterated until th
maximum of the absolute values of the differences of
consecutive solutions is smaller than a predefined valu
this implementation, we setDt=1, N=72, andb=0. As for
the determination ofa parameter, we utilized the followin
approach. Assuming that the segmenting contourrsud has
been found, we know thatasud satisfies the following Eule
equation

d

du
fasudr8sudg =

] Esrsud,ud
] r

, s20d

under the condition that bsud;0. Denoting fsud
=]Esrsud ,ud /]r , psud=r9sud /r8sud and qsud= fsud /r8sud,
we can rewrite(20) as

a8sud + asudpsud = qsud, s21d

which is a first-order ordinary differential equation with

solution
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asud =
e0

uhexpfe0
upsvddvgjqsuddu

expfe0
uexpfpsudgdug . s22d

We have dropped the arbitrary integration constant in
numerator of(22). In practice, the segmenting curve can
be solved until parameterasud is known. We therefore use
the first-order optimized contour for this purpose, assum
that the final contour is near to this. The constant elast
parameter used in our numerical update Eq.(19) is then
taken as the average of(22) over all possible angles.

D. Experimental evaluation of the segmentation
algorithm

We validated our methodology by comparing semia
matically segmented prostate contours to those determ
manually by three trained sonographers. Manual outli
was accomplished using a commercial graphics soft
package(Paintshop™, JASC, Inc.). The segmented regio
were interpreted as the prostate by radiologists and son
phers at our institution. The images were acquired as pa
the patients’ clinical management of prostate cancer, w
included acquisition of CT scans of the region, followed
spatial registration of the US images with CT-derived c
tours of the prostate boundary. This registration was
formed using our Department’s BAT(Nomos Corp.
Sewickly, PA) US system. As such, confidence that the
mented hypoechoic region indicated the prostate glan
very high.

The resulting manual segmentations were binary ima
with each pixel representing either the contour or not. S
the computer-derived contours were described in a pola
ordinate system, it was necessary that we transform
manual contours into the same polar coordinate system
choose a common polar coordinate system whose origin
located at the average of the centers of mass of all o
manual contours. We then converted the binary manual
tours into a vectorized form in the same manner as desc
in Sec. III B 2. The average manual contour for a given p
tate image is given by r̄=s1/Kdoi=1

K ri where ri

=fri0,ri1,… ,ri,N−1gT is the vectorized prostate bound
segmented by theith observer andK is the number of ob
servers (i.e., K=3). The interobserver variability of th
manual contours is given by the standard deviations
=fs0,s1,¯ ,sN−1gT wheres j =fs1/Kdoi=1

K sri j − r̄ jd2g1/2. Sta-
tistically, r̄ and s characterize the center and the sprea
the partially overlaid boundaries outlined by multiple obs
ers, respectively. The region between contoursr̄−s and r̄
+s forms a band of varying width that centers the m
manually derived contour, which we will refer to as thes
manual outline variance band or the 1s band for short.

We used three types of metrics to evaluate the pe
mance of the proposed segmentation algorithm.(1) The root
mean square error(RMSE) in distance between th
computer-derived contour and the average manual con
given by RMSE=Îs1/Ndo j=0

N−1sr̂su jd− r̄ jd2 where hr̂su jd u j
=0,1,2,… ,N−1j denotes a vectorized, computer-deri

boundary.(2) The errors in estimates between the manual

Medical Physics, Vol. 31, No. 12, December 2004
d

-
f

-

s

,

-
e
e
s

-
d

-

r,

and computer-derived areas, including fractional area d
ence(FAD), fractional false positive(FFP), fractional false
negative(FFN), and fractional true positive(FTP) areas.5 Let
Rm andRc be the regions enclosed by the mean manual
line and computer-derived outline, respectively; and de
the area of regionR by AsRd. By definition, we have tha
FAD = uAsRcd−AsRmdu /AsRmd , FFP=uAsRcøRmd−AsRmdu /
AsRmd , FFN=uAsRcøRmd−AsRcdu /AsRmd and FTP
= uAsRcùRmdu /AsRmd. (3) The 1s-band snaxel ratio, define
as the ratio of the number of computer-derived boun
points that are located in the 1s band to the total number
boundary pixels,N. This metric is intended to indicate t
accuracy of the computer-derived boundary relative to
manual segmentation.

The US unit used for collecting test images was a Dia
ics model 100-02816-00 with a 4.0/50 curved linear a
probe operated at 3.5 MHz. The ultrasound was perfo
with a patient lying on a couch. The ultrasound probe
scanned on the patient’s abdomen in two dimensions to
a sonographer to see the prostate in two different pla
Either a transverse(horizontal) or sagital (vertical) ultra-
sound image was captured and displayed on a com
screen. The frame acquired from the ultrasound equip
was then digitized and transformed into a 6403480 bitmap
array quantified on 256 gray levels. Our trial data set con
of 27 axial, trans-abdominal US images from six patie
When selecting test images, we followed a subjective c
rion regarding the quality of image: Test image should
manually segmented with reasonable interobserver var

FIG. 5. Prostate segmentation by the polar ICOV snake. The white con
in (a) and (b) are the computer-derived segmentation. The region bet
the square and triangle marked curves corresponds to the 1s manual outline
variance around the mean of manual outlines.(c) and(d) show the compute
segmentation overlaid on the SRAD processed images, corresponding(a)

and (b), respectively.
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ity, because it is impossible to make a reliable evaluatio
the computer-derived contouring unless reliable ground
data can be made available.

IV. RESULTS

Figure 5 shows the segmentation results from two
ample images(the same ones previously used to illustrate
manual initialization and primary contour optimization) with
the proposed method. In Figs. 5(a) and 5(b) the contour
r±s, which correspond to the 1s manual outline varianc
around the average(or mean) of manually outlined contou
r, and are also shown for the comparison of the result o
proposed method with manual outlining. Figures 5(c) and
5(d) illustrate the computer-delineated contours supe
posed on the SRAD processed images.

Table I summarizes the quantitative comparison of
computer based method and the manual segmentation
first column of the table numbers images and the se
column lists the average inter-observer variability(AIOV ) of
the segmentations of multiple observers, which is define
AIOV= hs1/KNdoi=1

K o j=1
N fri j − r̄ jg2j1/2. The AIOV serves as

TABLE I. Quantitative performance of the propose
inside the 1-standard deviation and 2-standard
results.

Interobserver
Image (AIOV ) RMSE FA
No. (mm) (mm) (%

1 0.64 0.89
2 0.86 0.9 1
3 0.92 0.93
4 0.98 0.75
5 0.99 0.89
6 1 1.29 1
7 1.03 0.95
8 1.05 1.94
9 1.08 0.89

10 1.09 1.44
11 1.13 1.36
12 1.17 2.09 1
13 1.19 1.15
14 1.2 0.87
15 1.22 0.77
16 1.23 1.3
17 1.26 0.92
18 1.27 0.84
19 1.29 0.58
20 1.55 0.89
21 1.59 1.9
22 1.72 0.98
23 1.87 1.37
24 2.15 0.8
25 2.19 1.71
26 2.23 1.25
27 3.34 1.65 1

Ave. 1.38 1.16
Std. 0.57 0.41
natural, subjective measure of the quality of image: The
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f

e
d

poorer the image quality, the more discrepancy in ma
segmentation of the prostate will occur, resulting in a la
AIOV value. As can be seen, the images sorted in asce
order of their AIOV values, meaning that image numbe
small are of higher quality than those numbered big.
third column indicates the RMSE of the computer-extra
prostate contour with the ground truth being the mean o
manual segmentations. Note that the root mean squar
crepancy between the computed contour and the mean
manual contours is less than the interobserver variabilit
AIOV, on average. To better appreciate the table, we plo
the AIOV and RMSE for all test images, as shown in Fig
From this plot we see that the distance metric is relati
insensitive to the image quality measured by the AIOV.
fourth to seventh column of Table I give the fraction a
difference, false positive, false negative and true positiv
eas. By plotting a bar chart, Fig. 7, with these data, it is
to see that the FTP are greater than 80% for all images
both FFP and FFN are less than 20%. Statistically, we
obtained an average value of 92.3% with a standard d
tion of 4.0% for FTP, compared with a mean sensitivity(Cs,

thod. Snaxel ratio refers to the fraction of contour points
ation error margins, based on the manual segmentation

FFP FFN FTP Snaxel
(%) (%) (%) ratio s1sd

3.6 11.1 89.1 0.59
1.9 16.7 83.6 0.68
6.7 3.1 97.1 0.76
7.6 2.2 97.9 0.7
4.4 5.6 94.6 0.68

18.9 1.3 98.7 0.68
7.9 8.2 92 0.7
4.9 9.4 90.8 0.43
0.5 10.7 89.7 0.76
2.6 8.7 91.5 0.37

12.7 3.5 96.6 0.46
1.5 14.3 85.9 0.32
2.8 8.3 91.9 0.81
5.4 5.5 94.6 0.65
6.9 4.3 95.8 0.95
3.5 7.4 92.7 0.57
4.1 7.8 92.3 0.76
1.2 9.2 91.1 0.86
8.3 5.5 94.6 0.86

10.3 6.1 94 0.81
11.6 3.2 96.9 0.51
8.5 3.6 96.6 0.7
6 10.9 89.2 0.84
5.4 9.8 90.4 0.97
6.8 6 94.1 0.86
8.2 14.6 85.6 0.84
3.7 14.1 86.1 0.95
6.1 7.8 92.3 0.71
4.0 4.1 4.0 0.18
d me
devi

D
)

3.6
4.6
9
5.2
1.2
7.3
0.3
4.4
9.9
6
3.7
2.7
5.3
0.1
2.4
3.8
3.7
7.7
2.7
4.2
8.4
4.9
5
4.4
0.8
6.3
0.3
5.8
4.3
equal to FTP) of 94.5% with a 2.7% standard deviation re-
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ported by Ladaket al.5 In the work, Ladaket al. reported a
mean accuracysCad of 90.1% with a 3.2% standard dev
tion. SinceCa=1−sFFP+FFNd, our results have an equiv
lent average value ofCa of 86.1% and a standard deviati
5.6%. In terms of area error metrics, our results are
close to those of Ladaket al., considering the fact that the
have an extra editing process in their method. The ei
columns in Table I list the snaxel ratio of the number
snake points(or “snaxels”) inside the 1s band. On averag
76% of the computer generated contour is less thans
manual outline variance away from average manually
rived boundary.

FIG. 6. Bar plot of AIOV and RMSE, showing the performance of the
gorithm segmentation in images of different quality. The images are
bered in order of ascending AIOV or of descending image quality. From
plot we see that the performance of the algorithm in terms of distance m
is insensitive to the image quality within a range.

FIG. 7. Bar chart of area error metrics showing that the fractional true
tive area are greater than 80% for all images, and both fractional
positive area and false negative area fractions are less than 20%.
Medical Physics, Vol. 31, No. 12, December 2004
-

For an overall, visual assessment of the performanc
the algorithm, we plotted the manually-outlined mean p
tate boundary and the computer-derived boundaries from
best image(#1 in Table I) and the worst(#27 in Table I),
shown in Fig. 8. The prostate boundary delineated on im
of intermediate quality can be seen in Fig. 5 where the
and right column images are numbered 9 and 15 in Tab
respectively. We believe that Figs. 5 and 8 would allo
reader to make an independent, overall assessment
performance of the algorithm and to better appreciate
meaning of the quantification in Table I.

The segmentation algorithm was implemented inMATLAB

(Mathworks, Natick, MA) and achieved a processing rate
less than 7.5 s for a 1283128-pixels image on a PC with
Pentium 4(2.6 GHz) processor, specifically it takes appro
mately 2.5 s to compute the first-order optimized cont
slightly less than 2 s to execute the polar snake refine
and 3 s toextract an ICOV edge image. The amount of t
spent on manual initialization was not included becau
varies from user to user.

V. DISCUSSION

A. Advantages of polar active contour model

One advantage of the polar active snake model for p
tate segmentation is its efficiency. Consider that a con
tional parametric snake requires two update equations i
form of (19) that govern thex andy coordinates of the evol
ing contour. Throughout the iteration process, the matrA
changes frequently because the number of snake poi
allowed to vary in order to prevent the maximum dista
between two adjacent points from exceeding a pre-spe
limit. The conventional parametric snake is inherently s
due to the frequent matrix inversionssI +Ad−1. These inver
sions can be computationally expensive if the object bo
ary is large. The number of computations is increased fu
by the fact that updates ofx and y require multiplication
with all elements of the matrixsI +Ad−1 and that the evolvin
contour needs to be re-parameterized often. In contras
polar snake model does not require re-parameterizatio
cause the number of snake pointsN is fixed. The computa

−1

FIG. 8. Comparison of the manual mean and the computer-derived pr
segmentation on the best image(a) (image no. 1 in Table I) and the wors
image(b) (image no. 27 in Table 27) in terms of AIOV value. The manu
contours are solid; the dashed contours are computer-derived.
tion of the matrix inversesI +Ad is performed only once
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and there exists only one update equation. These prop
of the polar snake model decrease the computational
approximately by half.

B. Constant elasticity a versus angle-dependent
elasticity a„u…

In this paper, we assumed a constant elasticity for
polar active contours. In some applications, we deal with
segmentation of the prostate in the presence of wide, bl
edge gaps along its boundary. Thanks to its region-b
AMBF model, the primarily optimized contour establish
the segment of boundary corresponding to the blurred e
to acceptable satisfaction. In the final optimization, howe
while the active contour evolves to converge to defin
edges, the portion of the contour bridging those wide e
gaps might be dragged away from correct positions du
the elasticity force of the contour. This problem could
solved by the use of an angle-dependent elasticity fun
asud such that the values ofasud are equal to zero in secto
spanning wide edge gaps. It could be worth while to dev
more advanced algorithm that exploits nonuniformasud in
the follow-on work.

C. Application limitation

Our algorithm was designed on the premise that the p
tate appears differently(either hypoechoic or hyperech)
relative to the echo pattern of the neighboring normal tiss
which are basically true in most cases.25 Anatomically, the
prostate is composed of three zones called the perip
zone (PZ), the central zone(CZ), and the transition zon
(TZ). The normal CZ and PZ exhibit homogeneous light
medium-gray scale and the TZ appears moderately hete
neously hypoechoic. Because of reflection and reverbera
the thick muscular bladder wall is generally rat
echogenic, appearing bright on ultrasound images. Du
their predominantly adipose composition, the peripros
tissues are generally quite echogenic. These image fe
aid in delineating the boundary of the prostate. When se
ing test images, we used a subjective criterion regardin
quality of image such that each test image could be man
segmented with reasonable interobserver variability. Ou
gorithm is able to detect and enhance differences in im
contrast while preserving and enhancing edge features.
while our edge enhancement facilitates segmentatio
noisy images, we still require some reasonable degre
contrast between adjacent tissues.

VI. CONCLUSIONS

We have presented a method for semiautomatic seg
tation of the prostate from transabdominal ultrasound im
that incorporates SRAD filtration and the ICOV edge de
tor. A unique polar active contour model was develope
order to reduce the computational complexity and rende
algorithm significantly more efficient than that using a c
ventional active contour model. Verification of the meth

was achieved by comparison to manual segmentations. Th

Medical Physics, Vol. 31, No. 12, December 2004
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computed segmentations agreed with the manual segm
tions to within 2 mm in distance error and to 10.3% in a
estimate error on average, and 76% of the computed ou
fell to within one standard deviation of the manual outlin
We conclude that the method is sufficiently accurate an
ficient to make it a potentially valuable tool when used
radiation therapy treatment planning and delivery veri
tion.
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APPENDIX A: INSTANTANEOUS COEFFICIENT OF
VARIATION (ICOV)

The instantaneous coefficient of variation(ICOV) is es-
sentially a localized measurement of the coefficient of v
tion that can be incorporated into an anisotropic diffu
partial differential equation(PDE). Let Isxd represent the ob
served echo intensity at locationx=sx,yd in a 2D coordinat
system. The ICOV is defined by

qsxd =
us1/2di ¹ Isxdi2 − s1/16df¹2Isxdg2u1/2

fI + s1/4d¹2Isxdg
,

where¹ is the gradient operator,¹2 the Laplacian operato
i ·i the magnitude of gradient, andu ·u the absolute value.
has been shown that ICOV allows for balanced and
localized edge strength measurements in bright region
well as in dark regions of speckled imagery.

APPENDIX B: SPECKLE REDUCING ANISOTROPIC
DIFFUSION (SRAD)

The SRAD algorithm is a partial differential equat
(PDE) approach to speckle removal for ultrasonic image
hancement. It smoothes the imagery and enhances edg
inhibiting diffusion across edges and allowing isotropic
fusion on an intra-region basis. For images containing sig
dependent, spatially correlated multiplicative noise, SR
excels over the adaptive speckle filters and conventiona
isotropic diffusion techniques designed with additive n
models in mind.

Given an intensity imageI0sx,yd having no zero poin
over the image domainV, the output imageIsx,y; td is
evolved according to the following PDE:

] Isx,y;td/] t = divfcsqd ¹ Isx,y;tdg,

Isx,y;0d = I0sx,yd, s] Isx,y;td/] nWdu]V = 0,

where¹ is the gradient operator, div the divergence oper
]V denotes the border ofV , nW is the outer normal to the]V,

eand the diffusion coefficient is given by
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csqd = H1 +
fq2sx,y;td − q0

2stdg
q0

2stds1 + q0
2stdd J−1

,

whereqsx,y; td is the instantaneous coefficient of variat
as determined by(1), andq0std is the coefficient of variatio
measured in homogeneous speckle at instantt.

APPENDIX C: DECOMPRESSION OF
LOG-COMPRESSED DATA

Specifically, the value ofD can be determined iterative
by minimizing the Euclidean distance between a set of
malized moments computed using decompressed dat
the corresponding theoretical speckle moments for fully
veloped speckle. For instance, assuming an arbitrary
for D, we compute a set of normalized moments,kId

nl / kIdln

wheren=0.25, 0.5, 1.5, 2, 2.5, and 3, over a homogene
speckle region in the decompressed imageId= IdsDd. On the
other hand, the theoreticalnth normalized moment of full
developed speckle in intensity image is factorialn. Thus, we
can choose the value ofD* according to

D * = arg min
D

o
nPS

fkId
nli/kIdli

n − n ! g2,

whereS=h0.25,0.5,1.5,2,2.5,3j.
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