Segmentation of the prostate from suprapubic ultrasound images
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We present a technique for semiautomated segmentation of human prostates using suprapubic
ultrasound(US) images. In this approach, a speckle reducing anisotropic diffuss&AD) is

applied to enhance the images and the instantaneous coefficient of va&iw) is utilized for

edge detection. Segmentation is accomplished via a parametric active contour model in a polar
coordinate system that is tailored to the application. The algorithm initially approximates the pros-
tate boundary in two stages. First a primary contour is detected using an elliptical model, followed
by a primary contour optimization using an area-weighted mean-difference binary flow geometric
snake model. The algorithm was assessed by comparing the computer-derived contours with con-
tours produced manually by three sonographers. The proposed method has application in radiation
therapy planning and delivery, as well as in automated volume measurements for ultrasonic diag-
nosis. The average root mean square discrepancy between computed and manual outlines is less
than the inter-observer variability. Furthermore, 76% of the computer-outlined contour is less than

1 o manual outline variance away from “true” boundary of prostate. We conclude that the methods
developed herein possess acceptable agreement with manually contoured prostate boundaries and
that they are potentially valuable tools for radiotherapy treatment planning and
verification. © 2004 American Association of Physicists in MedicifizOl: 10.1118/1.1809791

Key words: prostate segmentation, active contour, level set, speckle reduction, instantaneous co-
efficient of variation

I. INTRODUCTION system and applied it to US images that were enhanced via
speckle reducing anisotropic di1‘fusi<ﬁ!§RAD).2 Edge detec-

Radiation therapy is accepted as a standard of care for profon was facilitated by use of the instantaneous coefficient of
tate cancer, whether it is delivered externally, via conformavariation (ICOV).*® To reduce the sensitivity of the active
radiation therapy, or interstitially via implantation of radio- contour model, we incorporated the use of region-based ac-
active seedgbrachytherapy The high soft tissue contrast tive contours with area-weighted binary flow as the primary
produced by ultrasoun@US) imaging has made US a useful optimization? We assessed the algorithm performance by
imaging modality for localization of the prostate in both comparing the computer-derived contours with manually de-
cases, with transrectal ultrasoun@RUS) imaging being  rjved contours outlined by multiple sonographers. Our meth-

used in brachytherapy applications and suprapubic US ima@b‘dology is unique in the following aspects:
ing in external beam therapy. Two systems are commercially

available for suprapubic prostate localization prior to daily(1) Our manual initialization requires a user to select only
radiation therapy delivery; the B-mode acquisition and tar-  two points near and outside the prostate volume, instead
geting system BAT™), (Nomos Corp., Sewickly, PAand of four control points exactly on the prostate boundary
the SonArray™(ZMed, Inc., Ashland, MA. as with some existing semiautomatic mettidd.
Contouring of the prostate is necessary for treatment plan2) The technique uses a unique primary contour optimiza-
ning prior to brachytherapy and may be performed in certain  ion that incorporates a region-based, area-weighted bi-

_Casesc;‘(;r re(:jal_—ltlrre trleatmentflﬁnnﬁw‘glhen fsuprapublcl ll')JS nary flow model. This optimization is easy to implement
is used for daily localization of the prostate for external beam ' o high precision in boundary location.

radiation therapy, the location is visualized interactively by . - : .
. . o 7(3) A computationally efficient polar, parametric active con-
the therapist and is not specifically contoured. Automatic . i o
tour model serves as the engine for final contour optimi-

contouring(or segmentationof the prostate may prove to be . - : )
zation. Its efficiency is due to the fact that neither repa-

useful to the degree that manual contouring is time consum- = e ]
ing and subjective. rameterization nor resampling is required.

In this paper we focus on application of a unique method4) In the final optimization, SRAD is used for image en-
for semiautomatic segmentation of the prostate using supra- hancement and speckle filtering and the ICOV is used to
pubic US images in the framework of active contour models.  derive the image-based force for moving the polar active
We derived an active contour model in a polar coordinate  contour to the prostate boundary.
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Il. BACKGROUND mentation. A genetic model fitting is used to optimize a cost

A number of methods have been proposed for the detefunction that nomi_nally corresponds to an optimal prostate
mination of the prostate boundary from ultrasound imageryShape. Though this approach always yields closed bound-
These methods fall into three general classes: Pixel-by-pixéifies, the PDM is subjective to dependence on the selection
classification, edge detection and linking, and deformabl@f the training set.

shape/contour models. Lodak et al. developed a semiautomatic algorithrior
contouring the prostate in two-dimensior{@D) ultrasound
A. Methods based on pixel-by-pixel classification imagery based on the discrete dynamic contour model

_ (DDC).** The DDC contour evolves as each vertex on the
Prateret al. reported an approa?:ﬁor_ segmenting rans- - contour moves under the action of internal, external, and
rectal US images of the prostate by virtue of pixel-by-pixel g3 mning forces. Equilibrium is achieved nominally when ev-
classification of the prostatic and nonprostatic tissues usingyy yertex resides on the prostate boundary. The initialization
neural networks. The training of the networks requires extenaf the algorithm requires manually selecting four control

sive sets of pre-proces_sed grayscale images and correspo%—mts on the prostate boundary. The algorithm incorporates
ing manual segmentation maps. a tool that allows a user to edit incorrect vertices.

A texture-based classifiethas also been proposed for Wang et al. described a methdd for segmenting three-
prostate segmentation, consisting of the creation of fouEIimensiona(BD) ultrasound images. A 3D data set is subdi-
texture-energy measure imag.es followed by a clustering pr vided into a sequence of evenly spaced parallel or radial 2D
cess and a pro_bablllt)_/ labeling process. The drawbagk %jices. Each slice is segmented and all segmented slices stack
these two algorithms is that they often do not result in atogether to get volumetric segmentation. A fully 3D exten-
single, closed, contour for the prostate. : -

sion to the 2D DDC-based segmentation has been reported
by Hu et al®

The active contour or “snake” models of Kestsal."" are

The radial bas-reliefRBR)® method of Liuet al. first ~a class of energy minimization-based segmentation tech-
computes the difference between the input image and its emiques. The basic snake model is a parametric, closed curve
largement to form an edge strength image. Then a posthat evolves under the influence of internal forces, image-
processing is invoked based on morphological filtering tobased external forces, and constraint forces. When an initial
extract a “band-type,” incomplete prostate boundary which iurve is placed close to the target boundary, the curve will
often connected by many spurious branches. Yet, the prostagolve to fit the boundary of target. Knadt al. developed a
boundary derived from this method possesses some ambigmultiscale segmentatié?\algorithm for prostate TRUS scans
ity. Using polar coordinate Fourier transform, Kwet al.  using a snake with shape constraints. The initial contour is
proposed a harmonic methotb trim the result of the RBR  obtained by comparing two or three training prostate models
algorithm. However, use of the harmonic method is not posagainst a rough edge map. In practice, however, to cope with
sible when the RBR boundary is not a single-valued functionvide anatomic variety in prostatic images acquired from
of the polar angle. multiple viewing angles for different patients, the set of the

Pathak et al. proposed an edge-guided interactive training models needs to be extended to contain a variety of
method® for prostate boundary delineation. The image con-shapes. As a result, the initialization method could become
trast and speckle are initially improved via the “STICKS” computationally expensive due to its multiscale nature.
algorithm and anisotropic diffusion. Then Canny’s edge de- Most snake models depend heavily on local edge infor-
tector and manual edge linking are applied to form a closeghation. In contrast, region-based contour models are an al-
contour based oa prior knowledge of the prostate. ternative, energy-minimizing class of modgI&’that exploit

Aarnink et al. implemented an integrated-edge-basediegional information. Examples of region-based snakes are
method"*?for the prostate contour determination. After the e binary flow modét by Yezzi et al. and theactive con-

input image is compressed and smoothed, the gradient anRgys without edgesf Chanet al. These models excel over
the second derivative of the image are calculated. Then, poSi.tive contour models in cases where high image noise or

sible edges for the prostate boundary are located by zerqsy, conrast precludes movement of the edge-based contour.

crossing detecting the second derivative of the image; ang,thermore, region-based contours are less likely to be sen-

the edge strength assumes the value of the gradient magnizie 1o the initialization of the contour, are allowed to

tude. Finally, a post-process_lng is performed to extract the,qyye topologically and are advantageous over parametric
prostate contour based anprior knowledge of the prostate ;e segmentation in this respect. To facilitate topological
in ultrasound images. However, the methodology shows %hanges during curve evolution, the curves in region-based

tendency to underestimate the prostate volume. models are represented implicitly by level sets. Proposed by
Osher and Sethiaff,the level set curve is computed by find-
ing the intersection of a three-dimensional surface with the
plane of zero height. Tsadt al. extended the region-based
Cosio and Davies reported the use of a point distributiorbinary flow model to include a shape-based constraint repre-
model (PDM),*? a flexible shape template, for prostate seg-sented by a point distribution model formulated with level

B. Methods based on edge detection and linking |17

C. Methods based on deformable shape/contour
models
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Manual Initialization _.| Elliptical Model }_. Elliptical Contour

|
]
Level set Function Generation
Input ———— Area-weighted First-order Fic. 1. Flow chart of the methodology
Image _'| Gaussian Filtering l—’ Mean-difference » Optimized Prostate used to delineate the prostate bound-
Binary Flow Model Boundary ary in ultrasound imagery.
| Vectorization and Parametrization
SRAD Filtering and Fully-optimized

ICOV extraction [ Pelar Active Contour Model [[—», Boundary

set$® and reported good visual results for 2D and 3D pros-eft part of the prostate and the other near and outside the

tate contouring. lower right part of the prostate so that the prostate is en-
closed as tightly as possibly by a reference rectangle with
IIl. METHODS AND MATERIALS upper left and lower right vertices being the chosen points.

. . . This is the only user input required in the segmentation pro-
Figure 1 illustrates the processing modules and data flows 7 . . 2 .
used in our method for semiautomated prostate segmentg?ss' The objective gf thg primary delineation is to obtain a
tion. It consists of three primary modules that yield succes €Y general approximation of the_ prostate b°“”dafy Io_ca-

we chose an ellipse as an approximation

sively more accurate estimates of the prostate boundary. THLP”' For simplicity, = ¢
manual initialization results in an elliptical contour approxi- ©f the prostate contour. Within the reference rectangle, an
mation represented a level set function. This is used as inpufiscribed elliptic contourC,, is generated. Figureg& and

into the primary(first-orde) optimization that uses an area- 2(b) show two examples of the primary delineation by the
weighted mean-difference binary flogAMBF) model. The  elliptic model. The bead-like markers are the points specified
resulting approximate contour is then used to initialize a poby user.

lar active contour model wherein the fully optimized contour ~ Ultrasound signals are high in dense media and at tissue

is produced. interfaces in which the density and other acoustic properties
differ. Because the prostate is surrounded by fat, muscle, and
A. Initialization vascular tissues, acoustic reflections at these interfaces are

relatively strong and create an ultrasound image that has
good contrast between the differing tissues. A typical supra-
The algorithm is initialized by manually selecting two pybic US image is shown in Fig. 3. The bladder appears as
points in the input US image: One near and outside the uppehe large anechoigi.e., black region due to the lack of
acoustic reflection in the urine, and the smaller circular re-

1. Manual initialization and elliptical model

1D:
7/AUG/B1 12:35 3.S5MIC2/3.5SMHZ P 712 G 28% D 14CH

Fic. 2. The manual initialization and resulting elliptical model are shown
for two prostates infa) and(b). The manual initialization points are shown
by bead-like markers. liic) and (d) we display the result of applying the Fic. 3. A full size test suprapubic US image wherein the bladder and the
AMBF model to obtain a primary approximation to the prostate boundary. prostate can be seen.
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gion inferior to the bladder is the prostate. The instantaneous
coefficient of variation employed in our algorithm finds the Au:f f H:(o(x,y))dxdy, ()
physical interfaces of adjacent tissues. o

B. Primary optimization A, = f [1-H(&(xy))]dxdy, (4)
Q

The objective of the primary optimization is to move the
initial elliptical contour closer to the prostate boundary loca-
tion in a computationally efficient manner. Since the prostate = _ ~
boundary appears noisy and often discontinuous in ultra- U-(l/Au)fng(x,y)HE(¢(x,y))dxdy, (5)
sound image suffering from speckle, region-based active
contours are well suited for this purpose for their insensitiv-
ity to local edge information and initialization. However, _ i _
they typically require a weighted curvature term to prevent v=(LA) f L g Y)IL = H(glxy) Jdxdy, ©
the contour from evolving into nonanatomical shapes due to
the presence of noise. Use of this term is undesirable becaugg(z):%[1+(2/7T)arctamz/8)] (i.e., the regularized Heavi-
an application-specific weight parameter has to be incorposide functiort®), 5,(z)=dH,(z)/dz (i.e., the regularized Dirac
rated into the model and it requires a complex implicit dis-function'®), ¢ is a small paramete) and JQ) are, respec-
cretization scheme. The use of the curvature term may bﬁve|y, the image domain and its boundafi/’denotes the
avoided by smoothing the input image, although this carexterior normal tad€), ¢/ di denotes the normal derivative
produce a position bias. We therefore derived a new modedf ¢ on 40.
that overcomes these problems. The partial differential equatio(?) is solved numerically

using a Jacobi iterative method. Choosing a sufficiently
. ) . small time stepAt and a grid sizéh in both x andy direc-

1. Area-weighted mean-difference binary flow tions, we discretize the time and space coordinates as:
model (AMBF) t=nAt, (n=0,1,..), x=ih, y=jh, (i=0,1,...,M-1, |

The AMBF model is a region-based active contour that=0,1,2....,N-1), whereMhx Nh is the area of the image
does not depend on image edge features. It is derived byomain. Leﬁg,i,,— :Tg(ih,jh) and ¢',=¢(ih, jh;nAt). The al-

minimizing the following cost functional gorithm is as follows: Knowing¢", we first compute
. 1AA, . A9, A(9"), u(¢") andu(4") using(3)~6), respectively.
E(C) =- ET(U -v)%, (1) Then, we computg™? using the following update equation
system

of a closed curvec, whereA, and A, are, respectively, the .
- n+l _

areas of the regions inside and outside the clBvA=A, i.j ¢’|n - n 1 n _ n miT n

+A,, the area of the imagey andv are the means of the At 5h(¢"’)A[u(¢) D($IHAE g~ u(47)]

Gaussian-filiered imag~l-@g inside and outside the cur\é, A (q&”)[T (] - (112)

respectivelyl =1 ®g, is the convolution of the input image ! oul

| and a 2D Gaussian kerngl having a standard deviatian X[AL(P") = A (&M ][u(") = v(PM]}. (7)

Filtering at an empirically derived standard deviation of 4 1.4 initial level set function is set to

allows us to preserve the prostate edges while minimizing

noise and producing an anatomically appropriate contour. 0 _ i 2. 22 2_
Using a level set representation and the regularization ¢ = (i — roundx/h))”+ a“fb(j — roundy./h)” -,

method of Chan and VeSewe find that the segmenting (8)

curveC is the zero-level set of a functiofi(x,y;t— ) that

is a steady state solution to the following partial differential

wherea, b, x;, andy, are the two halfimajor/mino)y axes
and the center coordinates of the initial elliptical contour,

equra tion: respectively, and rourtg) indicates rounding to the nearest
dp 1 ~ ~ integer. We used the model parametdrs:1, At=0.1, and
ot 58(4’);(“ - U){Av(lg ~W+A(g—o) o=4. As the first-order optimizer, the update equati@
1 does not proceed until convergence is reached but stops
-=(A,-A)u- U)], when the area of the region inside the contour differs from
< 2 ) that of the initial ellipse by 20%. This stopping criterion was
d(x,Y;0) = pg(x,y) inQ, determined empirically and allows the contour to move to
ad sufficiently close to the prostate boundary while preventing
52(¢)E =0 on dQ, erroneous small contours from emerging.
\ From the resulting level set functiog(x,y), the primary
where optimal contour is obtained by

Medical Physics, Vol. 31, No. 12, December 2004



3478 Yu, Molloy, and Acton: Segmentation of the prostate from suprapubic ultrasound images 3478

C={(xy) € Qla(xy) =0}. ) 2 ,

Figures 2c) and 2d) show the two examples of the primary
contour optimization, initialized by the ellipses shown in
Figs. 4a) and 2b), respectively. For the primary optimiza-
tion, the AMBF fully employs the observation that the ma- o'
jority of the prostate appears hypoechoic relative to the echo
pattern of the neighboring normal tissues.

=y
oy
®

Y

&

Contour
2. Vectorization of binary contour

Since the AMBF modé&lproduces only a binary contour
mask, we must produce the required vectorized cip¥e o
=[po(0o)po(61) - - - po(Bn-1)]T for input into the full optimiza-
tion module. Initially, an edge-tracing algorithm is applied to
the binary contour mask to obtain an ordered sequence of the
Cartesian coordinate[$xj,y]-)|j:1,2,... ,M} for all contour

pixels. The Cartesian coordinates of these pixels are thefhe origin of the polar coordinate system, in the Cartesian

transforrped into_polar_coordinatesr;,¢)[j=1,2, -, M} system R andp represents, respectively, the position vectors
by 1=V =x)*+(y;=yo)* and gj=arctan(y;=Ye/X=X)  of a pointP on the contour in the Cartesian system and the
with 0= ¢;=360°, \h//lvhere the polar coohr/ldmate System IS CeNpolar system. In the polar coordinate system, we define a
tered ate.=(1/M)Zi2)x; andyc=(1/M)Zj.,y;. The sequence  adial segmenting curve=p(6), 6 e [0, 2x], that minimizes

is then sorted such that it is properly aligned with the firsty,qo following energy functional:

element possessing the least polar angle and the last one
possessing the largest polar angle. Finally, the sequence is
evenly sampled in the angular direction through linear inter-
polation to obtain thg®=[py(6o)po(61)- - po(On-1)]"-

»
>
x

Fic. 4. Geometry of the polar coordinate system.

27

E( = {(a(0)/2[p'(OF+(BOI2[p" ()
0

+ Eou(Re + p(0)8,)}d0, (10

wherea and B are parameters that impose the elasticity and
Once an approximation of the prostate boundary has begfigidity of the snake, respectively, apd(6) andp”(6) denote

made through manual initialization and primary optimiza-the first and second derivatives of the cup(é) with respect

tion, the algorithm proceeds to further optimize the contourt© angleé. The external energy functide,; is derived from

by matching it to the prostate boundary location and smooththe input image as the negative value of a particular edge

ing it. To this end, use of local edge information and bound-strength measure called ICOV so that it takes on smaller

ary smoothness constraint becomes essential in order to se¢plues near structure boundariés=&, cos6+8, sin 6 where

ment an anatomically realistic boundary. The optimizationé and &, are unit vectors in thex andy direction, respec-

method we derived is a parametric, p0|ar active Contoufivew. Using the calculus of variations, we find that an active

model dedicated to convex, closed shapes that are assume@ntour that minimizeg10) should satisfy the Euler equa-

by most prostates. To effectively distinguish prostate edgeton:

from the speckle-induced phantom edges, the image features d2 JE

used to attract the contour are measured by the I@@dge —[a()p'(0)] - —=[B(0)p"(0)] - —=-0, (11

strength computed from an SRABprocessed input image do de” ap

(see Appendices A and B for a brief description of ICOV andThe first two terms if11) comprise the contour internéle.,

SRAD). In the following, we describe the polar active con- smoothing forces, while the last term represents the external

C. Final optimization

tour model and its numerical implementation. image-based force that moves the contour toward the image
edges.
1. Polar active contour model The solution ta11) is determined by treating as a func-

. . 24 . . tion of timet as well asé. Then the partial derivative gf
Traditional active contouté?*are typically formulated in with respect tot is set equal to the left-hand side @F1),

rectangular coordinate systems. Since the prostate is Convex. | i
in the axial trans-abdominal US images, we developed an 9

active contour model in a polar coordinate systémo6) . 4 , & " 0 Egyt
whose originO’ is near the center of the prostate. This polar (61 = ﬁ_g[“(a)p (6.9]- ﬁz[ﬂ(a)p (6.9]- ip
model renders approximately 50% reduction in the algorithm 12
complexity compared with rectangular snaksee Sec. Y. (12)

The relationship between the Cartesian coordinate systefherep=dp/dt, andp(6,t=0)=p,(6). To compute the partial
(x-0-y) and the polar coordinate systefp-6-O') is illus-  derivative ofE,, which is given in the Cartesian coordinate
trated in Fig. 4.R; denotes the position vector of poi@Y, system we use the chain rule to obtain
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9 Eayt OBy . Eey pi-pt o B
o, ;X = cog0)— = + sin( 9)_(9;,” : (13 T ar - pelPle 20+ ploa] = el (el ~ 2061 + )
~ Inatraditional parametric active .contolﬁtz,‘.‘the external = 2(pi1 = 20+ pio) + (P = 2pjo1 + Ploo)]
image-based energy for grayscale imagery is designed as n
+F, (17
Eex(%Y) == V[Tg(x,y)]llz, (14  where® and® are moduloN addition and subtraction, re-

spectively. The difference equatios7) can be written in

whereTg(x,y) is the Gaussian filtered gray-scale value of thethe following matrix form:
input imagel. For ultrasound imagery, however, Gaussian p™1=p"— Ap At + FAt, (18)
filtering and gradient edge detection are not suitable due to

the presence of signal-dependent speckle noise. We, ther&here

fore, chose to use SRAD as our filter and the ICOV edge oo Fo
detector. Further, we propose that the external energy be de- n En
fined as the negative value of the ICOV edge strength p"= p.1 . F=| Y,
12| VTP - (1/16)(V 2 PR-1 N-1
€y = (L2LT = WIS s |
[Is+ (1/4)V?1J? and )
- c a ab
where |5 is the SRAD-filtered, echo intensity imagde. b a
SRAD requires the echo signal intensity as its input. How- b b
o a

ever, the available B-scan image is the log-compressed ver-
sion of the echo intensity image. Therefore, B-scan data must A=
be decompressed to recover an estimate of the echo intensity a b cb a
in order to be processed via SRAD. To do this, we simply
took Iy=exp1/D), the exponential of the B-scan data di-
vided by a constarD. Then we chose a value &f such that
the SpeCkle statistics of the decompressed image mimics th%”']g aNXxXN Symmetric pentadiagona| matrix witla
theoretical statistics of intensity of fully developed speckle=g/h* b=-(48/h*+a/h?), andc=68/h*+2a/h2 Equation
(see Appendix ¢ Empirically, we found thaD=25 (unit:  (18) is an explicit update equation that requires a sufficiently
the reciprocal of the logarithm df sincel is dimensionless  small time step for obtaining a stable numerical solution and
for the US imagery used. is usually very slow to converge. For the sake of numerical
stability when the time stefit=1 is used, an implicit update
equation can be formulated as

a a bcb
_ba abc

2. Numerical implementation p=p"=Ap™+F or p™=(1+A)p"+F),

Equation(12) is a general formulation of the parametric (19
polar active contour model in which two model parameters . : . . . -
are allowed to vary with angle. In practice, howeverjs wherel is the identity mTatnx. leen. an initial contp W
usually set to a positive constant a@ds usually zero. Using _[po.(a‘))pow%)&']'pO(gN‘ll)]t ’ Ec}. (19) f'?h'te(;.aged until t?etw
these assumptions, E(L.2) is implemented as follows. First maximum ot the absolute values ot the dillerences of two
select a time step sizat and an angle increment df to cqn;ecutlve solu_tlons is smaller than a predefined value. In
quantize the time variable and the angle variabletagAt, this mplement_aﬂon, we sett=1, N:72’. .andﬁ=0. As fqr
(n=0,1,2,.) and 6=ih, (i=0,1,2,...N-1), where h the determination ofr parameter, we utilized the following
=2m/N. Let 6,=ih andp=p(ih,nAt) be an approximation of approach. Assuming that the segmenting contel#) has

p(6,1). The external force can then be made discrete in thgeent_found, we know that(f) satisfies the following Euler
radial direction 9E./dp as follows: equaton

d ) JE(p(6),6)
9 Eext 9 Eext gatOp'(0]=— "= (20)
Fi'=- cos@ia—;x+sin0ia—ex , p
Xg+o €08 6, yerpi! sin 6, under the condition that 3()=0. Denoting f(6)

(16)  =dE(p(6),0)/dp, p(6)=p"(6)/p'(6) and q(6)=F(6)/p’'(6),

we can rewritg20) as
wherex. andy, are the Cartesian coordinates of the origin of , _
the polar coordinate system. If the origin of the Cartesian a'(6) + a(O)p(6) = a(0), (21)
coordinate system is at the upper left corner of the image, wavhich is a first-order ordinary differential equation with a
approximate(12) using solution
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fg{exp[ f{jp(u)dv]}q(u)du and computer-derived areas, including fractional area differ-
a(f) = oxd lexdpld] (22)  ence(FAD), fractional false positivéFFP), fractional false
o®XHP negative(FFN), and fractional true positive=TP) areas, Let
We have dropped the arbitrary integl‘ation constant in th@m andRc be the regions enclosed by the mean manual out-
numerator of(22). In practice, the segmenting curve cannotjine and computer-derived outline, respectively; and denote
be solved until parametet(6) is known. We therefore used the area of regiorR by A(R). By definition, we have that
the first-order optimized contour for this purpose, assuming=pAp =|A(R,) -A(R,)|/ARy), FFPIARUR,)-A(Ry)|/
that the final contour is near to this. The constant eIasticityA(Rm), FFN=|A(R.URy) ~A(Ry)|/A(Ry) and FTP
parameter used in our numerical update ELP) is then =|A(R.NRy)|/A(Ry). (3) The lo-band snaxel ratio, defined
taken as the average (#2) over all possible angles. as the ratio of the number of computer-derived boundary
points that are located in thedlband to the total number of
boundary pixelsN. This metric is intended to indicate the
accuracy of the computer-derived boundary relative to the
manual segmentation.

We validated our methodology by comparing semiauto- The US unit used for collecting test images was a Diason-
matically segmented prostate contours to those determinggs model 100-02816-00 with a 4.0/50 curved linear array
manually by three trained sonographers. Manual outliningorobe operated at 3.5 MHz. The ultrasound was performed
was accomplished using a commercial graphics softwargith a patient lying on a couch. The ultrasound probe was
package(Paintshop™, JASC, Ing.The segmented regions scanned on the patient’s abdomen in two dimensions to allow
were interpreted as the prostate by radiologists and sonogra- sonographer to see the prostate in two different planes.
phers at our institution. The images were acquired as part ¢fither a transversghorizonta) or sagital (vertica) ultra-
the patients’ clinical management of prostate cancer, whicBound image was captured and displayed on a computer
included acquisition of CT scans of the region, followed byscreen. The frame acquired from the ultrasound equipment
spatial registration of the US images with CT-derived con-was then digitized and transformed into a 64880 bitmap
tours of the prostate boundary. This registration was perarray quantified on 256 gray levels. Our trial data set consists
formed using our Department's BAT(Nomos Corp., of 27 axial, trans-abdominal US images from six patients.
Sewickly, PA US system. As such, confidence that the seg\when selecting test images, we followed a subjective crite-
mented hypoechoic region indicated the prostate gland ifion regarding the quality of image: Test image should be

very high. manually segmented with reasonable interobserver variabil-
The resulting manual segmentations were binary images,

with each pixel representing either the contour or not. Since
the computer-derived contours were described in a polar co-
ordinate system, it was necessary that we transform the
manual contours into the same polar coordinate system. We
choose a common polar coordinate system whose origin was
located at the average of the centers of mass of all of the
manual contours. We then converted the binary manual con-
tours into a vectorized form in the same manner as described
in Sec. lll B 2. The average manual contour for a given pros-
tate image is given by p=(1/K)=K,p; where p;
=[pio,pi1,---,pin-1]' IS the vectorized prostate boundary
segmented by théh observer anK is the number of ob-
servers (i.e., K=3). The interobserver variability of the
manual contours is given by the standard deviation,
=[0g,01,**,0n-1]T Where 0'j=[(1/K)EiK:l(pij —Fj)z]l/z. Sta-
tistically, p and o characterize the center and the spread of
the partially overlaid boundaries outlined by multiple observ-
ers, respectively. The region between contgutso and p’

+o forms a band of varying width that centers the mean
manually derived contour, which we will refer to as the 1
manual outline variance band or therlband for short.

We used three types of metrics to evaluate the perfor-
mance of the proposed segmentation algorittinThe root
mean square erroRMSE) in distance between the Fc. 5. Prostate segmentation by the polar ICOV snake. The white contours
Computer-derived contour and the average manual contoun (a) and(b) are the computer-derived segmentation. The region between

; — N-1~n\_77\2 ~CnN| the square and triangle marked curves corresponds todtmadnual outline
gwen by RMSE_\/(]'/N)EFO (p(ﬂj) _pl) where {p(9])|1' variance around the mean of manual outlifesand(d) show the computer
=0,1,2,..,N-1} denotes a vectorized, COmpUter'de”Vedsegmentation overlaid on the SRAD processed images, correspondiyg to

boundary.(2) The errors in estimates between the manuaknd (b), respectively.

D. Experimental evaluation of the segmentation
algorithm

©) @
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TaBLE |. Quantitative performance of the proposed method. Snaxel ratio refers to the fraction of contour points
inside the 1-standard deviation and 2-standard deviation error margins, based on the manual segmentation

results.
Interobserver

Image (AIOV) RMSE FAD FFP FFN FTP Snaxel
No. (mm) (mm) (%) (%) (%) (%) ratio (1o)
1 0.64 0.89 3.6 3.6 11.1 89.1 0.59
2 0.86 0.9 14.6 1.9 16.7 83.6 0.68
3 0.92 0.93 9 6.7 3.1 97.1 0.76

4 0.98 0.75 5.2 7.6 2.2 97.9 0.7
5 0.99 0.89 1.2 4.4 5.6 94.6 0.68
6 1 1.29 17.3 18.9 1.3 98.7 0.68

7 1.03 0.95 0.3 7.9 8.2 92 0.7
8 1.05 1.94 4.4 4.9 9.4 90.8 0.43
9 1.08 0.89 9.9 0.5 10.7 89.7 0.76
10 1.09 1.44 6 2.6 8.7 91.5 0.37
11 1.13 1.36 3.7 12.7 3.5 96.6 0.46
12 1.17 2.09 12.7 15 14.3 85.9 0.32
13 1.19 1.15 5.3 2.8 8.3 91.9 0.81
14 1.2 0.87 0.1 5.4 55 94.6 0.65
15 1.22 0.77 2.4 6.9 4.3 95.8 0.95
16 1.23 1.3 3.8 35 7.4 92.7 0.57
17 1.26 0.92 3.7 4.1 7.8 92.3 0.76
18 1.27 0.84 7.7 1.2 9.2 91.1 0.86
19 1.29 0.58 2.7 8.3 5.5 94.6 0.86
20 1.55 0.89 4.2 10.3 6.1 94 0.81
21 1.59 1.9 8.4 11.6 3.2 96.9 0.51

22 1.72 0.98 4.9 8.5 3.6 96.6 0.7
23 1.87 1.37 5 6 10.9 89.2 0.84
24 2.15 0.8 4.4 5.4 9.8 90.4 0.97
25 2.19 1.71 0.8 6.8 6 94.1 0.86
26 2.23 1.25 6.3 8.2 14.6 85.6 0.84
27 3.34 1.65 10.3 3.7 14.1 86.1 0.95
Ave. 1.38 1.16 5.8 6.1 7.8 92.3 0.71
Std. 0.57 0.41 4.3 4.0 4.1 4.0 0.18

ity, because it is impossible to make a reliable evaluation opoorer the image quality, the more discrepancy in manual
the computer-derived contouring unless reliable ground trutlsegmentation of the prostate will occur, resulting in a larger

data can be made available. AIOV value. As can be seen, the images sorted in ascending
order of their AIOV values, meaning that image numbered
IV. RESULTS small are of higher quality than those numbered big. The

Figure 5 shows the segmentation results from two exthird column indicates the RMSE of the computer-extracted

ample imagesgthe same ones previously used to illustrate theProstate contour with the ground truth being the mean of the
manual initialization and primary contour optimizatjositn ~ Manual segmentations. Note that the root mean square dis-
the proposed method. In Figs(ab and §b) the contours crepancy between the computed contour and the mean of the
p+ o, which correspond to thedl manual outline variance manual contours is less than the interobserver variability, or
around the averag@®r mean of manually outlined contour AIOV, on average. To better appreciate the table, we plotted
p, and are also shown for the comparison of the result of théhe AIOV and RMSE for all test images, as shown in Fig. 6.
proposed method with manual outlining. Figureg)5and  From this plot we see that the distance metric is relatively
5(d) illustrate the computer-delineated contours superiminsensitive to the image quality measured by the AIOV. The
posed on the SRAD processed images. fourth to seventh column of Table I give the fraction area
Table | summarizes the quantitative comparison of thelifference, false positive, false negative and true positive ar-
computer based method and the manual segmentation. Tie@s. By plotting a bar chart, Fig. 7, with these data, it is easy
first column of the table numbers images and the secontb see that the FTP are greater than 80% for all images, and
column lists the average inter-observer variabil®yOV) of ~ both FFP and FFN are less than 20%. Statistically, we have
the segmentations of multiple observers, which is defined bpbtained an average value of 92.3% with a standard devia-
AIOV={(1/KN)Z{, = [ pj; = p;]3*2. The AIOV serves as a tion of 4.0% for FTP, compared with a mean sensitivi@,
natural, subjective measure of the quality of image: Thesqual to FTF of 94.5% with a 2.7% standard deviation re-
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Fic. 8. Comparison of the manual mean and the computer-derived prostate
0+ segmentation on the best ima@g® (image no. 1 in Table)land the worst
1 3 5 7 9 11 13 15 17 19 21 23 25 27 image(b) (image no. 27 in Table 37n terms of AIOV value. The manual
|mage No. contours are solid; the dashed contours are computer-derived.
W RMSV ORMSE |

For an overall, visual assessment of the performance of
Fic. 6. Bar plot of AIOV and RMSE, showing the performance of the al- the algorithm, we plotted the manua"y-ouﬂined mean pros-

gorithm segmentation in images of different quality. The images are numygie boundary and the computer-derived boundaries from the
bered in order of ascending AIOV or of descending image quality. From th . . .

plot we see that the performance of the algorithm in terms of distance metrﬁ?est image(#1 in Table ) and the wors{(#27 in Table ),

is insensitive to the image quality within a range. shown in Fig. 8. The prostate boundary delineated on images
of intermediate quality can be seen in Fig. 5 where the left

and right column images are numbered 9 and 15 in Table I,

ported by Ladalet al® In the work, Ladaket al. reported a  'espectively. We believe that Figs. 5 and 8 would allow a
mean accuracyC,) of 90.1% with a 3.2% standard devia- 'eader to make an independent, overall assessment of the
tion. SinceC,=1-(FFP+FFN, our results have an equiva- perfor_mance of the a_\l_gori_thm_ and to better appreciate the
lent average value oF, of 86.1% and a standard deviation Meaning of the quantification in Table I. _

5.6%. In terms of area error metrics, our results are very The segmentation algorithm was implementediaTLAB

close to those of Ladakt al, considering the fact that they (Mathworks, Natick, MA and achieved a processing rate of
have an extra editing process in their method. The eight#fSS than 7.5 s for a 128128-pixels image on a PC with a
columns in Table | list the snaxel ratio of the number of Pentium 4(2.6 GH2 processor, specifically it takes approxi-
snake pointgor “snaxels) inside the 1o band. On average Mately 2.5 s to compute the first-order optimized contour,
76% of the computer generated contour is less than 1 Slightly less than 2 s to execute the polar snake refinement

manual outline variance away from average manually de@nd 3 s toextract an ICOV edge image. The amount of time
rived boundary. spent on manual initialization was not included because it

varies from user to user.

100 V. DISCUSSION
90 x“rrrifrrr i It v e A. Advantages of polar active contour model
O T E TR T One advantage of the polar active snake model for pros-
tieitiertterrter ettt tate segmentation is its efficiency. Consider that a conven-
0 Irtrrrrerrtertrer it tional parametric snake requires two update equations in the
é 50 - form of (19) that govern thex andy coordinates of the evolv-
40 +- ing contour. Throughout the iteration process, the mafrix
changes frequently because the number of snake points is
O e e e e et allowed to vary in order to prevent the maximum distance
204 0ttt et between two adjacent points from exceeding a pre-specified
1071 B it 1 & itat- limit. The conventional parametric snake is inherently slow
0 due to the frequent matrix inversiofis+A)™1. These inver-

sions can be computationally expensive if the object bound-

1337 9NBVBITONBET ary is large. The number of computations is increased further

Image No. by the fact that updates of andy require multiplications
sFIP BFFP BFFN with all elements of the matrid +A)‘.l and that the evolving
contour needs to be re-parameterized often. In contrast, the

Fic. 7. Bar chart of area error metrics showing that the fractional true posipoIar snake model does not re_qUI_re _re-parameterlzatlon be-
tive area are greater than 80% for all images, and both fractional fals€ause the number of snake poiNss fixed. The computa-
positive area and false negative area fractions are less than 20%. tion of the matrix inversdl +A)™1 is performed only once
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and there exists only one update equation. These propertieemputed segmentations agreed with the manual segmenta-
of the polar snake model decrease the computational cosibns to within 2 mm in distance error and to 10.3% in area

approximately by half. estimate error on average, and 76% of the computed outlines
fell to within one standard deviation of the manual outlines.

B. Constant elasticity ~a versus angle-dependent We conclude that the method is sufficiently accurate and ef-

elasticity a(6) ficient to make it a potentially valuable tool when used for

) . radiation therapy treatment planning and delivery verifica-
In this paper, we assumed a constant elasticity for the(*i

polar active contours. In some applications, we deal with the
segmentation of the prostate in the presence of wide, blurred
edge gaps along its boundary. Thanks to its region-baseﬁCKl\lOWLEDGMENTS

AMBF model, the primarily optimized contour establishes This work was supported by gifts from the Dean of the
the segment of boundary corresponding to the blurred edgeschool of Medicine, University of Virginia, the American
to acceptable satisfaction. In the final optimization, howeverCancer SocietyGrant No. IRG81-001-1)7 the Mellon Pros-
while the active contour evolves to converge to definabldate Cancer Research Institute, and the U.S. Army Medical
edges, the portion of the contour bridging those wide edg&esearch and Materiel Command. The authors would also
gaps might be dragged away from correct positions due ttike to thank Laurence Watson, Mario Oikonomides and
the elasticity force of the contour. This problem could beCindy Berdon for assistance with the manual segmentations.
solved by the use of an angle-dependent elasticity function

a(6) such that the values @i( ) are equal to zero in sectors APPENDIX A: INSTANTANEOUS COEFFICIENT OF
spanning wide edge gaps. It could be worth while to develop/ARIATION (ICOV)

more advanced algorithm that exploits nonunifoart¥) in

The instantaneous coefficient of variatigiCOV) is es-
the follow-on work.

sentially a localized measurement of the coefficient of varia-
S tion that can be incorporated into an anisotropic diffusion
C. Application limitation partial differential equatiogfPDE). Let I(x) represent the ob-

Our algorithm was designed on the premise that the prosserved echo intensity at locatior¥ (X,y) in a 2D coordinate
tate appears differentlyeither hypoechoic or hyperechic System. The ICOV is defined by
relative to the echo pattern of the neighboring normal tissues, [(1/2)| V 1(x)|)2 = (1/16)[ VA (x) 142
which are basically true in most caszésAnatomically, the qx) = [+ (1/4)V2I(x)] ;
prostate is composed of three zones called the peripheral
zone (P2), the central zongCZ), and the transition zone whereV is the gradient operato¥, the Laplacian operator,
(TZ). The normal CZ and PZ exhibit homogeneous light- to|-|| the magnitude of gradient, arjd the absolute value. It
medium-gray scale and the TZ appears moderately heteroghas been shown that ICOV allows for balanced and well
neously hypoechoic. Because of reflection and reverberatiomgcalized edge strength measurements in bright regions as
the thick muscular bladder wall is generally ratherwell as in dark regions of speckled imagery.
echogenic, appearing bright on ultrasound images. Due to
their predominantly adipose composition, the periprostatiappeNDIX B: SPECKLE REDUCING ANISOTROPIC
tissues are generally quite echogenic. These image featuregrFUSION (SRAD)
aid in delineating the boundary of the prostate. When select-
ing test images, we used a subjective criterion regarding thQD

The SRAD algorithm is a partial differential equation
DE) approach to speckle removal for ultrasonic image en-
ancement. It smoothes the imagery and enhances edges by
hibiting diffusion across edges and allowing isotropic dif-
sion on an intra-region basis. For images containing signal-

quality of image such that each test image could be manuall
segmented with reasonable interobserver variability. Our al-
gorithm is able to detect and enhance differences in imag

contrast while preserving and enhancing edge features. Thu . R .
while our edge enhancement facilitates segmentation i épendent, spatially correlated multiplicative noise, SRAD

ot mages, we il requre some reasonabie degree Y0¥ 11 S0ePve sheckie fers e conenone o
contrast between adjacent tissues. P q 9

models in mind.

Given an intensity imagéy(x,y) having no zero points
VI. CONCLUSIONS over the image domain), the output imagel(x,y;t) is

We have presented a method for semiautomatic segmervolved according to the following PDE:
tation of the prostate from transabdominal ultrasound images ) A .

. e al(xy;t)at=divic(q) VI(xy;t)],
that incorporates SRAD filtration and the ICOV edge detec- Oey3t) Le(@) VIay:v]
tor. A unique polar active contour model was developed in CAY ) _
: . [(X,y;0) =1p(Xy), (@1(Xy;1)/dn)|n=0,

order to reduce the computational complexity and render the (xY:0)=lo(xy),  (@1xY;0/0M)]s0
algorithm significantly more efficient than that using a con-whereV is the gradient operator, div the divergence operator,
ventional active contour model. Verification of the methoddQ denotes the border @, n is the outer normal to theQ,
was achieved by comparison to manual segmentations. Thend the diffusion coefficient is given by
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, [P0yt —ggn] [~
(DL +(1))

whereq(x,y;t) is the instantaneous coefficient of variation

as determined byl), andqq(t) is the coefficient of variation
measured in homogeneous speckle at indtant

c(q) =

APPENDIX C: DECOMPRESSION OF
LOG-COMPRESSED DATA

Specifically, the value oD can be determined iteratively
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