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Abstract. Accurate automated segmentation of the right ventricle is
difficult due in part to the large shape variation found between patients.
We explore the ability of manifold learning based shape models to rep-
resent the complexity of shape variation found within an RV dataset as
compared to a typical PCA based model. This is empirically evaluated
with the manifold model displaying a greater ability to represent com-
plex shapes. Furthermore, we present a combined manifold shape model
and Markov Random Field Segmentation framework. The novelty of this
method is the iterative generation of targeted shape priors from the man-
ifold using image information and a current estimate of the segmentation;
a process that can be seen as a traversal across the manifold. We apply
our method to the independently evaluated MICCAI 2012 RV Segmen-
tation Challenge data set. Our method performs similarly or better than
the state-of-the-art methods.

1 Introduction

The role of magnetic resonance imaging (MRI) of the left ventricle (LV) in
the diagnosis of cardiovascular disease is well established. This has resulted in a
large body of research into automated LV segmentation [1], a necessary precursor
to the extraction of cardiac parameters. Although research in right ventricular
(RV) segmentation is comparatively sparse, recent work [2] has highlighted the
importance of RV function to cardiac health. This has resulted in a push within
the community to establish accurate and effective methods for RV segmentation
and a reflection of this is the 2012 MICCAI challenge on RV segmentation [3].

Accurate RV segmentation is difficult. Even in healthy patients, challenges in-
clude inter-patient morphological differences, lack of contrast at cavity borders,
obliquity of the tricuspid valve annulus, ventricular trabeculation, and shape
variation between apical and basal slices. Responding to these difficulties, re-
searchers have tended towards the inclusion of prior knowledge of the RV to
inform segmentation. Often this has taken the form of cardiac atlases or statis-
tical shape models.

Segmentation with cardiac atlases requires the non-rigid registration of a sin-
gle or multiple expert labellings to the target image; an increased number of
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which provide robustness to shape variation. An optimal segmentation is then
decided through a system of consensus voting or statistical measures [4]. Zaluga
et al. [5] implement a multi-atlas method with a course-to-fine strategy. The pre-
vention of mis-registration is also tackled in [6], where intermediate label results
are incorporated into atlas-target registrations to improve alignment. Although
proven effective, these methods are slow as a result of the multiple non-rigid
registrations required to align the atlases.

The statistical model approach encodes expected shape variation typically us-
ing some form of principal component analysis (PCA). Both Mitchell et al. [7],
and Ordas et al. [8] construct Point Distribution Models (PDM) of both ventri-
cles before applying them in an active appearance/shape model framework [9].
Forgoing the requirement for corresponding landmarks – a lengthy and error
prone process needed for PDMs – Grosgeorge et al. [10] construct their model
using PCA of signed distance functions. By generating highly deformed shapes,
a static prior map is created that encompasses the extent of the variation found
within the training data. Although not applied to RV segmentation, distance
functions are used in [11]. Through Expectation-Maximisation, shape priors that
are increasingly better fitted to the target image are generated.

Although PCA models have proven effective in many applications, recent re-
search has investigated the ability of shape-based Diffusion Maps [12] – a type
of manifold learning method – to represent the intrinsic non-linearity found in
many medical datasets [13]. Detailing a method for embedding new shapes into
a manifold, and providing a solution to the Diffusion Map pre-image problem,
this work has paved a way for the practical use of these models for segmentation.
This is evidenced in [14] where a Diffusion Map shape prior is combined with a
level-set segmentation with good results.

In this work, we explore the role of a Diffusion Map shape model in application
to RV segmentation. We propose that such a model will be better able to rep-
resent the complex variations displayed by the RV. The main contribution is in
the novel combination of a Diffusion Map shape model with a Markov Random
Field (MRF) 2D segmentation framework. Through an iterative method, image
data and segmentation results from the MRF are used to generate shapes from
the model that increasingly resembles the target image – a process that can be
seen as a traversal over a shape manifold. The generated shapes in turn influence
the MRF in the form of prior probability maps. In Sect. 2, we detail our method
including both MRF formulation and Diffusion Map shape generation. In Sect. 3,
we first evaluate the ability of the Diffusion Map model to represent the com-
plex shapes within an RV dataset in comparison to a typical PCA model. This
is followed by an assessment of our overall segmentation method when applied
to the independently evaluated MICCAI RV Segmentation Challenge dataset.

2 Proposed Method

The proposed segmentation method consists of two steps, iteratively applied
until convergence. The first is Segmentation (Sect. 2.1) in which we generate an
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estimation of the segmentation using an MRF framework combined with a prior
probability map generated from a manifold shape model. For the initial iteration,
the prior is generated from a mean shape and is aligned to the target using
manually placed landmarks. The second step is Prior Update (Sect. 2.2) where
we combine the current estimate of the segmentation with image information to
update the prior through a process of manifold traversal. The method terminates
when the difference in segmentation estimation between two iterations falls below
a threshold.

Integral to the overall process is the manifold shape model. We define a shape
as a signed distance function s. The Diffusion Map is constructed over the set
of training shapes Γ = {si} where i ∈ 1, . . . , p following the method outlined
in [13]. To measure shape similarity, we use the distance proposed in [15],

d2 (si, sj) =
∑

x∈Ωs

(H(si(x)) −H(sj(x)))
2 , (1)

where H(.) is the Heaviside function. This benefits from being fast, as well as
being positive, symmetric, and obeying the triangle inequality. The result of this
process is our shape model - an embedding Φ(s) = y, y ∈ Rm where m is the
dimensionality of the reduced space.

2.1 Segmentation Using MRFs and Manifold Shape Priors

We model the segmentation as an MRF. The field is a graph G = 〈V , E〉 where
V is the set of n image pixels I = (x1, . . . , xn) and E the edges that connect
them with their neighbours. A set of labels α ∈ {O,B} represent the object
and background classes. The labelling α = (α1, . . . , αn) applied over the graph
constitutes a segmentation. Each label assignment incurs a cost specified by the
energy function

Eω(I,α) = Ed
ω(I,α) + Eb

ω(I,α) + Ep
ω(I,α,Mω) . (2)

The optimal labelling is when Eω is at its minimum. The first term Ed
ω is a data

term which measures the sum of the individual labelling costs at each node in
V . This is computed using the local image information and a foreground and
background Gaussian Mixture Model (GMM), with 1 and 2 modes respectively

Ed
ω(I,α) =

∑

i∈V
− log p(xi|αi,μ,σ) , (3)

where P (xp|αi,μ,σ) is the probability of the pixel belonging to either the fore-
ground or background given the GMM parameters μ and σ.

The second term of the energy function, Eb
ω, encourages a smooth labelling

over the graph by penalising pairs of nodes (i, j) that have differing label assign-
ments, such that

Eb
ω(I,α) =

∑

αi �=αj ,i,j∈E
exp

(
− (xi − xj)

2

2σ2
b

)
.

1

dist(i, j)
. (4)
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σb is varied to compensate for an expected amount of signal noise in the image
and dist(i, j) represents the Euclidean distance between the two nodes.

The final term Ep
ω incorporates prior shape information into the MRF. A

shape generated from the Diffusion Map ŝ is transformed into a probabilistic
atlas image Mω

Mω(i) =

{
1 if ŝ(i) ≤ 0
exp (−ŝ(i)/γ) if ŝ(i) > 0

(5)

where the value γ controls the ‘spread’ of the influence of the prior outside the
boundaries of the zero-level set of ŝ. The prior term is then defined as

Ep
ω(I,α,Mω) =

∑

i∈V
−
{
logMω(T (i)) if αi = O
log(1 −Mω(T (i))) if αi = B

(6)

where T is a rigid transform that aligns the model with the target image. The
MRF is optimised using the graph cut method of Boykov et al. [16].

2.2 Prior Update through Manifold Traversal

Using the learned manifold and the image data from the segmentation target we
present a method of generating patient specific shape priors. This technique of
iterative prior generation can be seen as a traversal over the manifold where each
iteration produces a shape that increasingly resembles the target. An example
of the manifold traversal can be seen in Fig. 1. To drive the traversal, we take
the signed distance function of our current estimate of the segmentation s∗ and
transform it into the space of the model using T−1. This is used to query into
the manifold. As Diffusion Maps do not provide a simple way of embedding new
data into a learned manifold, we use the Nyström extension [13]. This provides
an operator Φ̂(T−1(s∗)) = y∗ where y∗ represents the coordinates in the space
of the manifold. We take y∗ as an estimate of the coordinates that would be
produced by embedding the true segmentation and find the nearest neighbours
N . The shapes that constitute these neighbours are the templates from which a
new shape ŝ can be generated. This is done by taking their linear combinations
ŝ =

∑
i∈N θisi, where θi ≥ 0 and

∑
i∈N θi = 1. By varying the values in θ we

influence the generated shape ŝ.
To ensure that the generated shape ŝ resembles the segmentation target we

aim to satisfy two conditions: (a) that it resembles our current ‘best guess’ at
the segmentation s∗ and, (b) that it fits to the target image, compensating for
inaccuracies in s∗. We encode these two conditions in the energy function

Eη(ŝ, s
∗, I, T, λη) = Ed

η (ŝ, T
−1(s∗)) + ληE

h
η (I) . (7)

The first term is d2 from (1) and will penalise ŝ from deviating from s∗. Similar
to [11], the second term is a measure of the entropy inside and outside of the
image region enclosed by T (ŝ), such that

Eh
η (I) =

∑

xi∈I

− ((pO(xi) log pO(xi)) + (pB(xi) log pB(xi))) , (8)
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Fig. 1. Visualisation of Manifold Traversal. (Left) Image displaying a learned manifold
with traversals overlaid. Black shapes are taken from the training data. Coloured paths
map the traversal across the manifold during segmentation. Images below the manifold
show the changing shape of the generated prior at each iteration of the segmentation
with colours corresponding to their paths. (Right) Example of initial prior (top) and
prior at the end of manifold traversal (bottom)

where pO and pB are the probability of image value xi being found in the
foreground or background respectively. These are computed by generating his-
tograms of the image intensity values in the corresponding regions of T (ŝ). The
value λη is a weighting term which varies the influence of the entropy calcu-
lation. To find the optimal prior, we define the functional SN ,θ =

∑
si∈N θisi

and compute the optimal transform T̂ and shape parameters θ̂ using Powell’s
method [17],

argmin
θ,T

Ep(SN ,θ, s
∗, I, T, λη) . (9)

3 Evaluation

To evaluate the performance of the proposed method we applied it to the MIC-
CAI 2012 RV Segmentation Challenge dataset [3]. This data was acquired from
32 patients with diagnosed cardiac pathologies, where for each examination,
two volumes representing end-diastole (ED) and end-systole (ES) were manu-
ally labelled by a cardiac radiologist. The data was split into two sets of 16
examinations, one for training and one for testing. Due to the shape variation
between both apical and basal slices and between ED and ES, we split the train-
ing data into 11 sets - 6 models at ED and 5 at ES. For all our experiments, the
dimensionality of the manifold model was 3.
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Fig. 2. Plot of manifold (blue) and PCA
with 30 modes (red) performance against
the divergence of the target from the mean

Table 1. Table showing the DMmean (μ)
and standard deviation (σ) from the first
experiment

DM (μ ± σ)

Propsed ED 0.94 ± 0.03
Method ES 0.92 ± 0.05

Total 0.93 ± 0.04

PCA ED 0.93 ± 0.04
10 modes ES 0.88 ± 0.08

Total 0.91 ± 0.06

PCA ED 0.93 ± 0.04
30 modes ES 0.89 ± 0.08

Total 0.91 ± 0.06

Model Shape Generation Comparison – The first experiment compared
the ability of our model against a typical PCA model to represent the complex
shapes exhibited by the RV. For both methods, we generated a series of shape
models using leave-one-out cross validation across all 11 groupings of training
data. The manifold model was built as in Sect. 2, and the PCA models were
built by applying PCA to the set of aligned training shapes. The top 10 and 30
modes we retained, which accounted for 97.7% and 99.9% of the variation found
within the data. To test our model, we generated a new shape ŝ from the test
shape st by optimising (9) with λη = 0 and fixing T as the identity matrix. For
the PCA method, we extracted the shape parameters by transforming st into
the PCA space, regularised them to be within ±3σ of the learned variation and
reconstructed the shape ŝ in the typical manner.

Table 1 displays the Dice Metric (DM) over the target st and generated shape
ŝ. It shows that all models are able to represent new shapes well, with the
manifold model performing slightly better. Also of interest are the results in
Fig. 2, where the performance of both our model and the 30 mode PCA model
is plotted against the dissimilarity of st from the mean shape. This shows that
our method is better able to adapt to the extremities of the data variation.

Evaluation on MICCAI 2012 RV Segmentation Dataset – We applied
the proposed method to segmentation using the MICCAI RV challenge dataset.
We learned the manifold models as described previously. In addition, GMMs
were generated for each model to capture the intensity variations between the
basal and apical slices. Together, these were applied to the 16 test-set exami-
nations. The results generated by our method were independently evaluated by
the organisers of the challenge. As in [10], minimal manual input provided an
initial alignment for the model. This consisted of two landmarks at the junction
of the RV and LV. Since we optimise the transform T during segmentation, the
method is somewhat robust to initial landmark placement.
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Fig. 3. Example output of our segmentation method. All images are from the same
examination at ED. The manual segmentation is outlined in blue and the segmentation
produced by the proposed method is outlined in green.

Table 2. Results from RV segmentation and comparison with the state-of-the-art

Phase Dice Metric Haussdorf Distance

Proposed Method ED 0.86± 0.10 8.40 ± 4.21
ES 0.75± 0.18 10.02± 5.78

Grosgeorge et al. [10] ED 0.83 ± 0.15 9.48 ± 5.41
ES 0.70 ± 0.22 10.56 ± 5.54

Bai’s et al. [6] ED 0.86 ± 0.11 7.70± 3.75
ES 0.69 ± 0.25 11.16 ± 5.53

For each slice segmented, both the DM and Haussdorf Distance (HD) were
computed. The results can be seen in Table 2 where they are compared against
Grosgeorge et al. [10] and Bai et al. [6]. Example output can be seen in Fig. 3.
The results show that our method performed similarly or slightly better than
the state-of-the-art in most metrics, with greatest improvement during ES. This,
coupled with the results in Table 1 lends support to our argument that a manifold
model is well suited for dealing with the complex RV shapes. The code was
written in C++ with little optimisation. Segmentation of a single volume takes
between 7-10 minutes depending on the speed of convergence. The tests were
run on an Intel Core i7 CPU @ 2.80GHz with 16Gb of memory.

4 Conclusions and Future Work

We proposed a novel method of combining shape priors generated from a learned
manifold into a Markov Random Field segmentation framework. By alternating
between segmentation and improving the prior, we have shown that the man-
ifold is able to generate priors that fit to the shape of target even when the
morphology is complex. We have tested the performance of our method with
an independently evaluated dataset with results that are comparable with the
state-of-the-art methods.

For future work we intend to implement the method in 3D to be able to use
the improved accuracy of the basal segmentations to influence the more difficult
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apical slices. In addition, we aim to improve our manifold traversal method
by better utilising the underlying geometry of the data. This will allow us to
extrapolate, increasing the amount of shape variation that the model can fit to.
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