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Abstract

In this paper, we describe the fundamental differences between three­

dimensional (range) images and two-dimensional (luminance) images. A number

of problems arise which are unique to range data, including in particular a strong

sensitivity to quantization effects.

Although range images and luminance images are both arrays of scalars, the

range image conceptually represents a surface in space and cannot be naively

manipulated using the conventional image processing functions such as 3 X 3 con­

volution kernels.

If the range data are regarded as a sampling of a surface parametrized by

the focal plane coordinates, it is possible to find a representation for the surface

normal and for the surface curvature in terms of familiar-looking convolution ker­

nels.

1. Introduction

Although not a new field,4 analysis of three-dimensional imagery has become

a popular field of research recently, as evidenced by the substantial numbers of

papers presented at conferenees'.

This increase in popularity can be attributed to many causes, including

the availability of range sensors8, 9, 10 , and a recent emphasis on industrial

machine vision7, 6 , for which such sensors are uniquely appropriate.

The purpose of this paper is twofold: first to provide an analytic descrip­

tion oC range imagery and show why the classical image processing operators are

not well suited for dealing with such imagery; and second, to propose and discuss

some strategies which are appropriate. In pursuit of the first objective, we will

initially propose some segmentation strategies which seem reasonable, and then

show why they do not work.
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(1) Determine the critical points in the input range image. Intuitively, these are

the points at which the surface curvature undergoes a rapid change. Typical such

points include the edges or polyhedra.

(2) Considering only those points determined NOT to be critical points, perform

a connected-component analysis to determine those regions in which the surface

curvature changes smoothly. In the case or polyhedra, there should be no change

in curvature.

(3) Assign critical points to smooth regions based on some distance metric.

(4) Extract an abstract description or the regions (faces) and derive a graph-based

representation.

(5) Match the observed graph to models.

3. Determining critical points using surface normals

In this section we postulate that rate of change of normal direction can be

used as an indication or the presence of critical points. Following this train of

thought, we will attempt to analytically develop a 3-D edge finder.

3.1 Determining rate or change of normal

Given a surface described by z(x,y) a normal to that surface is



1.1 Notation

We define the input range image in terms of a 3-vector

[ · · .J T - ('~
")"1 = r en;

where i and j represent the integer-valued sampling points on a hypothetical

focal plane (see Figure 1 Cor a model of the imaging system). For a given vector

1", we can define a transformation ~, which yields Cartesian coordinates, by

x = ~(1"); Of' (1)

(2)

where we have explicitly shown the dependence on the focal plane (sampling

grid) coordinates.

z(i,l) = ~Jr) = i.z( i,l)
!

y( i,11 = XJ r) = jt( i,11
f

The normal to a surface at a point x(i,j) is denoted by

(3)

(4)

(5)

(6)

(We will continue to explicitly show the dependence on the sampling grid coordi..

nates, since that dependence will turn out to be critical).

2. Philosophy

In this paper, we will make use of a bottom-up analysis philosophy.

Whether this is the best philosophy remains to be seen. However, for the

pedagogical purposes of this paper, it will suffice. This philosophy defines the

steps in the analysis process as follows:



N=

8z-8r
8z-8y
-1

(7)

Points at which the normal undergoes a rapid change are likely to be critical

points. To identify such points requires a scalar measure of change in a vector

quantity, the normal. One such measure is the divergence,

D = V'N,

where V is the gradient operator:

(8)

V=[!-8r

Then

8-8y
2.-] T.

8z
(Q)

(10)

and we have re-derived the Laplacian. That critical points should be determined

by the Laplacian is intuitively pleasing, and no real surprise.5 can be computed

(presumably) by linear operators, we have some genuine hope Cor a real-time

hardware implementation. However, when we apply this result to realistic range

data, we will encounter some problems, as the next section illustrates.

3.2 Applying linear operators to range images

For a linear, shift-invariant operator I', operating on a continuously

differentiable (unction C(x), we know that there exists a function h, such that

r(j{r)) = h(z) X I(z). (11)

Here, X represents convolution. This theorem has found application most oCten

in image analysis in estimating derivatives; Cor it allows us to use a convolution

operator to find the derivative or the image function,

Given that we have a library or image processing functions, including



(12)

convolution operators, we are tempted to use such library functions to estimate

the derivative described in section 3.1. Doing so, however, will yield meaningless

results, for the following reason:

Let S be a linear operator as defined in equation 11 which estimates a

derivative, say, the partial derivative with respect to x, (The Sobel operator is

typical). The application of S to z estimates

S(z(i,J1) ~ ]7
Thus, use of the convolution kernal estimates the derivative with respect to focal

plane coordinates, not (as we might have hoped) with respect to spatial coordi­

nates.

We can correct this problem in two possible ways: use of the chain rule,

and explicit calculation of derivatives. Let us examine these approaches briefly:

USE OF THE CHAIN RULE:

We know that

8z 8z 8i
ih: = 8i 0-;;; (13)

~; can be simply estimated by a convolution. However, ;: must be evaluated

along the surface; and at this point, the first major problem occurs. Consider a

surface with equation x(i) = %" (figure 2). Along this surface, a~;) = 0, and

;: is thereCore infinite. That this should be the case is clear from the geometry,

since an infinitesimal change in x will result in a finite change in i or z.

Here, we have the first fundamental difference between range and lumi­

nance imagery. In luminance imagery, derivatives can never be infinite. In range

imagery, accidental alignment with the coordinate axes, and the resulting infinite

derivatives, occurs routinely.

Even in the case of a surface which is not aligned with a coordinate axis, a

simple linear operator applied to the focal plane image is not adequate Cor



estimating derivatives, Cor

(14)

In luminance imagery, Az is always taken to be one. When dealing with range

imagery, however, we must note that

Az = z(i+A,)-z(,) (15)

In section 3.1.2 and again in section 5.1, we will address the issue of computing

both normals and derivatives.

3.2 Determining normals by cross products

Given a surface z(x,y), let T(zo'yo) represent the plane tangent to z at the

point [zo,Yo)' Then, given any two distinct vectors lying in T, say V t and V 2,

the normal to z at [zo,Yo) can be found by

(16)

This formulation gives us an algorithm Cor estimating the normal which is

independent of the coordinate axes and therefore does not suffer from the probe

lem of infinite derivatives.

The algorithm is as follows: Let X(j,)l=[~!~~ as in equation 2.

(1) Compute Vt(i,J) = X(i+I,J) - X(t-I,J)

(2) V2( i,J) = X( i,j+l) - X( i,~I)

(3) Apply eq 16 to find N

At this point, we seem to have developed a robust technique for determin­

ing the surface normal vectors, and indeed we have. Whether such analysis will

prove to be useful in the presence or noise is an issue which will be addressed in

section 5. At this point, we will assume that the normals which we have deter­

mined are good local representations of the surface, and use them in a. scene seg-

mentation system.



4. Surface segmentation strategies

In this section, we will list three strategies for segmenting a range image

into planar surfaces. The first two will make use of continuity in the surface nor­

mal as a criterion for region growing. The third will use perpendicular distance to

a plane.

4.1 Use of variations in normal direction

A region in an image is defined as a set of connected pixels. The definition

may be made recursive by saying that for a pixel, [i,11, and a region R,

(11)

The predicate CONNECTED thus defines the essential criterion Cor region

growing. Evaluation of the recursive definition given in eq, 17 may be performed

by use or a push down stack [ ], or an equivalence table [Snyder and Savage).

The details need not concern us here. What is important, however, is the choice

or the best CONNECTED predicate. One potentially attractive predicate would

be

CONNECTED([i,Jl,[k,~) <=>

HI':-k1 = 1) U (Ij-~ = l)}n{N(i,J}N(k,~<1 Thri)} (18)

for some threshold Thr. That is, two pixels are connected if they are adjacent on

the focal plane and their normals point in roughly the same direction.

Figure 3 shows a range image of three polyhedra used to test these alp

rithms. As this is a range view, darker intensities indicate pixels which are closer

to the sensor. In figure 4, we illustrate the results of applying the region growing

algorithm. Each pixel is identified by a character indicating to which region (face)

the pixel belongs. Pixels marked with an exclamation point represent points at

which the normal direction changes rapidly.

In the center of faces 3 and 7, anomalous edge pixels occur, indicating one

of the problems with this approach. Both faces are flat, and aligned with the

focal (x 0 y) plane. However, due to noise, some pixels differ in depth by as much



as ~ne unit. In Figure 5, the effect of such variations is illustrated in detail. A

cross section through the surface is shown, in which noise at pixel 4 hasresulted

in a one-unit change in depth. Since the normal at a given point (e.g. pixel 3) is

computed by considering pixels on either side of that point (pixels 2 and 4), the

algorithm detects a significant direction change in the vicinity of pixel 4, as illus­

trated by the arrows.

This example would seem to indicate an extreme sensitivity to noise,

although it might be argued that, since the surface really does drop at that point,

an algorithm based solely on SURFACE properties 3AOuld detect the drop. We

will return to the discussion of noise sensitivity in section 5.

4.2 Subtraction of normals

Dean! has implemented an algorithm for detecting changes in the surface

normal similar to that described in section 4.1, although in his algorithm,

differences are detected by subtracting adjacent normal vectors, rather than tak­

ing dot products. The results in sensitivity were found to be similar to those

described in section 4.1.

4.3 The three point seed method

Bhanu 3 describes a different strategy for finding planar faces which elim­

inates some of the previously described sensitivity problems. His algorithm may

be described succinctly as follows: (See Figure 6)

AlgoritJam lor tlaree point .ee~ metlao4

1. From the list of surface points, select three points which are noncolinear and

near relative to sampling distances.

2. Obtain the equation of the plane passing through the three points chosen in

step 1.

3. Find the set of points P which are very close to this plane.

4. Apply a convexity condition to the set P to obtain a reduced convex set P' .



This separates faces lying in the same plane.

5. Check the set P' obtained in step 4 for narrowness. The narrowness condition

eliminates faces whose points all lie very near the same line.

Bhanu's method eliminates many of the problems inherent with the surface

normal method, since it considers distance rather than direction. In a. subsequent

processing step (program ANALYZE) the authors have used a similar method for

eliminating errors. This is in conformity with step 2 of the philosophy given ear­

lier. That process is the subject of a separate paper.

5. Sensitivity to noise and quantization

Figure 1 illustrates the variations in surface normal due to the effects oC

quantization. That figure shows depth (z) on a. single horizontal scan line of the

image shown in Figure 3. The ripples appearing on the otherwise flat surfaces are

due to quantization effects. Since the original data r(i,j) is quantized, (r takes on

only integer values between 0 and 255) and sampled, (i and j take on integer

values between 0 and 121), the application of equations 3-5 fails to reconstruct a

flat surface exactly. Instead, we see rapid local fluctuations in surface tangent

direction. Note that the frequency of the fluctuation is dependent on the angle

between the point in question and the focal axis. Although small in absolute

magnitude, these quantization effects have a radical impact on surface direction.

One's immediate reaction to this type of noise is to apply some sort of

filter. However, such filters need to be applied very carefully. Consider the face

maked "4" in Figure 1. That face subtends only six pixels in the image (See Fig­

ure 10, which illustrates the final segmentation results). Furthermore, face 8 is

only one pixel wide! No linear noise filter will be able to smooth the quantization

noise while at the same time preserving such obliquely-viewed faces.

At least two approaches are possible for dealing with quantization noise

while preserving oblique edges. The first is to perform the segmentation in a coor­

dinate system in which such artifacts do not occur, and the second is to develop

an adaptive non-linear filter to remove the noise. The first option is explored in

the next section.



5.1 .An alternative coordinate system

Two major problems have been identified so far in this paper which are

unique to 3-D imagery. The first is that derivatives go to infinity along the coor­

dinate axes, and the second is that the transformation X which takes [i,j, ~ T into

[x,y,zj T introduces quantization artifacts. Both of these problems may be elim­

inated, or their impact lessened, by a proper choice of a coordinate system.

One such coordinate system, referred to as 0, is shown in Figure 8. This

system uses modified spherical coordinates. Its use in this application is very

attractive since it is "natural" to the range sensor. The three coordinates are:

r: range from sensor to surface

f}: angle between the x axis and the projection of r into the ez plane

¢J: angle between the 1/ axis and the projection of r into the 1/% plane

. Singularities can never occur, for any face that aligns with a coordinate axis is

also invisible to the sensor

. Because no conversion to z is performed, the effects of quantization are lessened.

In 0, the normal vector at a point is found by

or or
oi oj

N=
of} of}- X -oi oj
o¢J o¢J-oi oj

Now, since

_ of} o¢J 2!. o¢J (J 2!.2! A.- ar oj r + oi oj + oj oi ."

(J = tan-14and
•

(20)

(21)



(II)4J = tan-14,
J

ao and a4J are straightforward to compute. Furthermore, since only a small
ai aj

number of values are possible for i and j (between 128 and 512 typically), these

two terms may be found by lookup table.

Finally ar and ar can be determined by application of a convolution
'ai aj

kemal.

By performing the same segmentation algorithm defined in section 4, but in

0, we therefore reduce sensitivity to quantization and axis alignment. It should

be noted that n is not an orthogonal coordinate system. In using n rather that

Cartesian or Spherical coordinates, we have avoided singularities at the price of

orthogonality.

6. Determining curvature

The strategies described so far have implicitly assumed a scene composed of

polyhedral objects. To analyze more realistic environments, we need to develop a

technique for segmenting curved surfaces. One option would be to represent arbi...

trary surfaces as a set of convex planar surfaces [Bhanu], however, this represen­

tation makes higher-level model matching much more complex, since the segmen­

tation becomes ambiguous and dependent on viewing angle. We desire, if possi...

ble, to follow the philosophy given in section 2, with appropriate extensions to

cover the case of curved surfaces.

This problem is yet to be satisfactorily solved. In this section, we will

define the problem carefully, and provide some suggested approaches.

Curvature is defined in terms of a curve in space, where a curve may be

thought of as a warping of a line, just as a general surface may be considered to

be a warping of a plane. To extend the definition of curvature from a property

of lines to a property of a surface, we need to first observe that a surface in ~

space may be viewed as a set of vectors, and we must then examine the proper...

ties or such a set.



6.1 Parametrized Surfaces and Arrays of Vectors

In range imagery, the raw data may be converted into an array of vectors,

representing points on surfaces in three space. This underlying surface may be

discussed in terms of continuous versions of the focal plane indices. Arrays of

vectors can be fit with arbitrarily complex models using a linear least squares pro­

cedure, if the focal plane array indices are regarded as a parametrization of the

surfaces. Derivatives and other properties of the surface may be extracted from

these fits or by other convenient means. Such a parametrization of a surface

(two dimensions) embedded in three dimensions is a vector function of two argu­

ments,

X(Q,,8) = [1{Q,,8), y(Q,,8), z(Q,,8)] T,

where Q and ,8 are real and continuous. It is usual (and sometimes useful) to

think that Q and ,8 have some physical significance and that they are somehow

attached to the surface, but neither interpretation is necessary. It is sufficient

that the parameters are monotonically related to distance in the surface. Analo­

gously, curves (one dimension) embedded in the plane (two dimensions) are often

parametrized either by time for trajectories or by path length for boundaries. So

that the curve is described in time by the 2-vector function, x( t) = [1{ t), y( t)) T.

The same trace IS desribed by the related 2-vector function

x ' (8)= [x' (8), v' (s)I T, parametrized by path length. It is important to

observe that such a curve can be equivalently parametrized by any monotonic

function of any other parametrization (with a corresponding accomodation in the

behavior of the functions x and y) and with no consequence to the actual shape

of the curve. The penalty of course is that local measures of the curve like path

length have less convenient (and less familiar) expressions. For example the

differential of path length for the curve defined by z ' can be extracted from the

time-parametrization

(23)

where the coefficient of dt is the magnitude of the instantaneous velocity vector.



On the other hand, Cor the parametrization by path length,

fI d 2 d' 1/2

do = IIil +Iil J dB,
(24)

where the corresponding coefficient is the magnitude of the tangent vector which

is unity. This is what makes the parametrization "by path length".

It is easily shown that distance in the Cocal plane is monotonically related to

distance in the observed surface represented by the focal plane array (see figure

1). The array indices, i and j, are similarly related to distance in the Iocal plane.

ThereCore the array indices comprise a sampling of a perfectly acceptable [how­

ever peculiar) candidate for parametrizing the observed surface. Noise does not

invalidate this result. We can think of the data xi,j = [%i,j, Yi,j, ZiJj T as a noisy

sampling at descrete values or some function x( Q,I3) where Q and {J are continu­

ous versions of the discrete variables i and j. We will write this function x( i,11

with the convention that independent variables will be written as subscripts when

they are discrete indices, and as parenthisized arguments when they are the

corresponding continuous and real analogs. The problem is then to remove the

noise Crom xi,j and estimate x( i,l).

If the partials can be calculated, then : is a. veetor tangent to the surface,

and ~ is a linearly independent tangent. The unit normal vector to the fitted

surface at a point is

ax ax
_ ai X aj

N- ax ax'
I ai X aTl

(24)

which is a restatement of equation 16. The change of this unit normal in a small

neighborhood of the point is determined by the curvature of the surface. This

change is linear map which can be represented in a given coordinate system by a

tensor, which is a special kind of matrix. The two Eigenvalues of this tensor are

the principal curvatures or the surface at this point.



In the study of surfaces, the Eigenvalues themselves are not used as much as

are two particular quantities derived from the Eigenvalues. The first is the mean

curvature, which is half the sum of the principal curvatures, or half the trace of

the curvature map. The second is the gauss curvature, which is the product of

the two principal curvatures, or the determinant of the curvature map. The

mean and gauss curvatures are invariants: they depend only on the surface itself,

not the coordinate system or the parametrization.

Much of the local behavior, including the mean and gauss curvatures of the

surface, is determined by six well known scalars.I! The three coefficients of the

First Fundamental Form at some point on the surface describe the distance in

the surface relative to distance in the plane tangent to the surface at that point,

(26a)

(26b)

(26c)

and

Ox Ox
G = Bj . Bj'

The three coefficients of the Second Fundamental Form describe the change of

the surface normal near a point,

and

ih
7a)e = N· ­

B~ ,

a2x
!=N' BiOi'

(2.uh

(27b)

(27c)

where N is the unit normal vector defined above in terms of the first derivatives.

Now, the mean curvature is given by



k _ _e_G_-_2.:-IF~-~E..:;.g

'" - EG - F2 '

and the gauss curvature is given by

(28)

(29)

(30)

These quantities address the shape of the surface, not its orientation or its abso­

lute location in some coordinate system. Together, the mean curvature and the

gauss curvature at a point on a surface completely characterize that portion of

the second order behavior of the surface normal which does not depend on the

coordinate system. A sphere of radius p, for example, has kg = p-2 and k", = p-l

everywhere. A cylinder of radius p has kg = 0 and km = 1/2p. A cone has

kg = 0 everywhere since, like the cylinder, one of the principal curvatures is zero

but k", approaches infinity at the apex. A saddle point may have large negative

kg and have k",=O.

It is possible to estimate these various mixed partial derivatives by convolu­

tions:

iJP iJ" I,J - H
- - x( i j' = ~ x· u ..vIlI'J"~.:u ~:II ' '} LJ 1+ .J+II.~, '
ov: U) I,J _ -H

where the kernels look like Sobel operators, and are described in [ Haralick 1and

are used in the same way that a Sobel operator is used. The only practical

difference is that the data here is an array of vectors rather than an arra.y of

scalars. The various mixed partials must be computed separately for each come

ponent of the array. The resulting components can then be used to compute the

cross product of Equation 24 and the dot products of Equations 26 and 27.

The kernals2 through second order COf the smallest neighborhood tha.t gives

non trivial results are reproduced here Cor convenience,

[
111]

/(l,o =.!. 1 1 1 ,
gIl 1

(31a)



and

[
-1 0 1]

Kl,O = ~ -1 0 1 ,

-1 0 1

[
-1-1 -1]

](0,1 =~ 0 0 0,

III

[
10-1]

Kl,l = ~ 0 0 0 ,

-1 0 1

[
1-2 1]

](l,o =~ 1 -2 1 ,
1 -2 1

[
1 1 l~

](0,2 = t -2 -2 -2 .
111

(3tb)

(3Ic)

(3Id)

(3Ie)

(311)

There exist two third order and one Corth order kernal Cor a 3by3 neighborhood,

but they do not contribute to the second order partials at the center of the neigh­

borhood. The zeroth order kernal is not used in this application, but it is

instructive to notice that it is the neighborhood average. The first order kernels

appear only in the computation of the local normal.

Conceptually, the range array is used to generate an z array (or the surface,

as well as arrays for y and z. The i and j derivatives of first and second order are

obtained from each of these arrays by convolving each of the component arrays

ax
with the K arrays. Then the components of 8i as well as the other vector par-

tials are known Cor each pixel in the focal plane. These vector partials can be

used to compute curvatures or normals or projected areas for any pixel.

7. Conclusion



In this paper, we have described the fundamental differences between three­

dimensional (range) images and two-dimensional (luminance) images. A number

of problems have been described which are unique to range data, including in

particular a strong sensitivity to quantization effects.

We have shown that although range images and luminance images are both

arrays of scalars, the range image conceptually represents a surface in space and

cannot be naively manipulated using the conventional image processing functions

such as 3 X 3 convolution kernels.

We then show that by regarding the range data as parametrized by the focal

plane coordinates, it is possible to find a representation for the surface normal

and curvature in terms of Iamiliar-looking convolution kernels.
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FIG. 6 CONVEXITY AND NARROWNESS CONDITIONS
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(a) A three point seed (the circled XIS) which straddles
an edge produces a plane which cross-sections the
object. The convexity condition reduces the set of
points (XIS)

I·· -I -·---·- · .-.-- ·I s>:
I ......

..1_- -­.---

(b) The narrowness condition excludes faces like this
whose points all lie very near the same line
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DEPTH AS A FUNCTION OF COLUMN NUMSER
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