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1 Centre for Biomedical Image Analysis, Faculty of Informatics
Masaryk University, Brno, Czech Republic

xdanek2@fi.muni.cz
2 Center for Applied Medical Research (CIMA)

University of Navarra, Pamplona, Spain

Abstract. Methods based on combinatorial graph cut algorithms re-
ceived a lot of attention in the recent years for their robustness as well
as reasonable computational demands. These methods are built upon an
underlying Maximum a Posteriori estimation of Markov Random Fields
and are suitable to solve accurately many different problems in image
analysis, including image segmentation. In this paper we present a two-
stage graph cut based model for segmentation of touching cell nuclei in
fluorescence microscopy images. In the first stage voxels with very high
probability of being foreground or background are found and separated
by a boundary with a minimal geodesic length. In the second stage the
obtained clusters are split into isolated cells by combining image gradi-
ent information and incorporated a priori knowledge about the shape of
the nuclei. Moreover, these two qualities can be easily balanced using
a single user parameter. Preliminary tests on real data show promising
results of the method.

1 Introduction

Image segmentation is one of the most crucial tasks in fluorescence microscopy
and image cytometry. Due to its importance many methods were proposed for
solving this problem in the past. For simple cases basic techniques like thresh-
olding [1], region growing [2] or watershed algorithm [2] are the most popular.
However, when the data is severely degraded or contains complex structures
requiring isolation of touching objects these simple methods are not powerful
enough. Unfortunately, these scenarios are quite frequent. For this type of im-
ages more sophisticated methods have been designed in the past [3,4,5]. Their
results although quite satisfactory, have some limitations: 1) in some cases suf-
fer from over/undersegmentation, 2) need for human input, 3) require specific
preparation of the biological samples.

The graph cut segmentation framework, first outlined by Boykovand Jolly [6,7],
received a lot of attention in the recent years due to its robustness, reasonable com-
putational demands and the ability to integrate visual cues, contextual informa-
tion and topological constraints while offering several favourable characteristics
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like global optima [8], unrestricted topological properties and applicability to N-
D problems. The core of their solution relies on modeling the segmentation process
as a labelling problem with an associated energy function. This function is then
optimized by finding a minimal cut in a specially designed graph. The method can
be also formulated in terms of Maximum a Posteriori estimate of a Markov Ran-
dom Field (MAP-MRF) [9,10].

In this paper we present a two-stage fully automated graph cut based model
for segmentation of touching cell nuclei addressing most of the problems associ-
ated with the segmentation of fluorescence microscopy images. In the first stage
background segmentation is performed. Voxels with very high probability of be-
ing foreground or background are located and separated by a boundary with
a minimal geodesic length. In the second stage the obtained clusters are split
into isolated cells by combining image gradient information and incorporated a
priori knowledge about the shape of the nuclei. Moreover, these two qualities
can be easily balanced using a single user parameter, allowing to control the
placement of the dividing line in a desired way. This is a great advantage over
the standard methods. Our algorithm can work on both 2-D and 3-D data sets.
We demonstrate its potential on segmentation of 2-D cancer cell line images.

The organization of the paper is as follows. Graph cut segmentation framework
is briefly reviewed in Section 2. A detailed description of our two-stage model
is presented in Section 3 with experimental results in Section 4. In Section 5
we discuss the benefits and limitations of our method. Finally, we conclude our
work in Section 6.

2 Graph Cut Segmentation Framework

In this section we briefly revisit the graph cut segmentation framework and
related terms [6,7,11,10]. Because our method exploits both two-terminal and
multi-terminal graph cuts we are going to describe the latter case which is a
generalization of the former.

Consider an N-D image I consisting of set of voxels P and some neighbour-
hood system, denoted N , containing all unordered pairs {p, q} of neighbouring
elements in P . Further, let us consider a set of labels L = {l1, l2, . . . , ln} that
should be assigned to each voxel in the image. Now, let A = (A1, . . . , A|P|) be a
vector, where Ai ∈ {1, . . . , n} specifies the assignment of labels L to voxels P .

The energy corresponding to a given labelling A is constructed as a linear
combination of regional (data dependent) and boundary (smoothness) term and
takes the form of:

E(A) = λ ·
∑

p∈P
Rp(Ap) +

∑

(p,q)∈N
B(p,q) · δAp �=Aq , (1)

where Rp(l) is the regional term evaluating the penalty for assigning voxel p to
label l, B(p,q) is the boundary term evaluating the penalty for assigning neigh-
bouring voxels p and q to different labels, δ is the Kronecker delta and λ is a
weighting factor. The choice of the two evaluating functions Rp and B(p,q) is
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crucial for the segmentation. Based on the underlying MAP-MRF, the values of
Rp are usually calculated as follows:

Rp(l) = − logPr(p|l), (2)

where Pr(p|l) is the probability that voxel p matches the label l. It is assumed
that these probabilities are known a priori. However, in practice it is often hard
to estimate them. The boundary term function can be naturaly expressed using
the image contrast information [6,7] and can also approximate any Euclidean
or Riemmannian metric [12]. The choice of B(p,q) for cell nuclei segmentation is
discussed in Sect. 3.1.

Equation 1 can be minimized by finding a minimal cut in a specially designed
graph (network). Construction of such graph is depicted in Fig. 1. In the first
step a node is added for each voxel and these nodes are connected according
to the neighbourhood N . The edges connecting these nodes are denoted n-links
and their weights (capacities) are determined by the function B(p,q). In the next
step terminal nodes {t1, t2, . . . , tn} corresponding to labels in L are added and
each of them is connected with all nodes created in the first step. The resulting
edges are called t-links and their capacities are given by the function Rp [10].

Fig. 1. Graph construction for given 2-D image, N4 neighbourhood system and set of
terminals {t1, . . . , tn} (not all t-links are included for the sake of lucidity)

The minimal cut splits the graph into disjoint components C1, . . . , Cn, such
that ti lies in Ci for all i ∈ {1, . . . , n} and the sum of capacities of the removed
edges is minimal. Consequently, every voxel receives the label of the terminal
node in its component. In case of only two labels (terminals) the minimal cut
can be found effectively in polynomial time using one of the well-known max-
flow algorithms [11]. Unfortunately, for more than two terminals the problem is
NP-complete [13] and an approximation of the minimal cut is calculated [10]. In
this framework it is also possible to set up hard constraints in an elegant way.
A binding of voxel p to a chosen label l̂ is done by setting Rp(l �= l̂) = ∞ (refer
to [7] for implementation details).



Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model 413

3 Cell Nuclei Segmentation

In this section we are going to give a detailed description of our fully automated
two-stage graph cut model for segmentation of touching cell nuclei. The images
that we cope with are acquired using fluorescence microscopy, meaning they are
blurred, noisy and low contrast. They contain bright objects of mostly spheri-
cal shape on a dark background. Also the nuclei are often tightly packed and
form clusters with indistinctive frontiers. Moreover, the interior of the nuclei
can be greatly non-homogeneous and can contain dark holes incised into the
nucleus boundary (caused by nucleoli, non-uniformity of chromatin organization
or imperfect staining). See Sect. 4 for examples of such data.

In the first stage of our method foreground/background segmentation is per-
formed, while in the second stage individual cells are identified in the obtained
cell clusters and separated. The algorithm can work on both 2-D and 3-D data
sets.

3.1 Background Segmentation

In this stage we are interested in binary labelling of the voxels with either a
foreground or background label. The voxels that receive the foreground label
are then treated as cluster masks and are separated into individual nuclei in
the second stage. Because we deal with binary labelling only, the standard two-
terminal graph cut algorithm [7] together with fast optimization methods [11]
can be used. To obtain correct segmentation of the background, functions B(p,q)

and Rp in (1) have to be set properly.
As the choice for B(p,q) we suggest the Riemmanian metric based edge capac-

ities proposed in [12]. The equations in [12] can be simplified to the following
form (assumming p and q are voxel coordinates):

B(p,q) =
‖q − p‖2 · ΔΦ · g(p)

2 ·
[
g(p) · ‖q − p‖2 + (1 − g(p)) ·

〈
q − p,

∇Ip

|∇Ip|
〉2

] 3
2
, (3)

where ΔΦ is π
4 for 8-neighbourhood and π

2 for 4-neighbourhood system respec-
tively, 〈·〉 denotes the dot product, ∇Ip is image gradient in voxel p and

g(p) = exp
(
−|∇Ip|2

2σ2

)
, (4)

with σ being estimated as the average gradient magnitude in the image. Note
that this equation applies to the 2-D case and that it is slightly different for
3-D [12]. It is also advisable to smooth the input image (e.g. using a Gaussian
filter) before calculating the capacities.

Setting the capacities of t-links is the tricky part of this stage. In most ap-
proaches [5] homogeneous interior of the nuclei is assumed, allowing some sim-
plifications of the algorithms. While this may be true in some situations, often it
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is not, as mentioned before. Hence, it is really hard to estimate the probability
of the voxel being foreground or background based solely on its intensity. For ex-
ample, the bright voxels among the cell nuclei in the top cluster in Fig. 2 are part
of the background. To avoid introduction of false information into the model we
suggest to stick to hard constraints only. We place them into voxels with very
high probability of being background or foreground and ignore the intensity
information elsewhere.1 To find such voxels in the image we perform bilevel his-
togram analysis, find the two peaks corresponding to background and foreground
and take the centres of these two peaks as our background/foreground thresh-
olds. For voxels with intensity below the background threshold (black pixels in
Fig. 2b) the corresponding capacity of the t-link going to background termi-
nal is set to ∞ and analogously for voxels with intensity above the foreground
threshold (white pixels in Fig. 2b). Remaining voxels (grey pixels in Fig. 2b) are
left without any affiliation and both their t-link capacities are set to zero. As a
consequence, λ value in (1) is irrelevant in this situation.

Fig. 2. Background segmentation. (a) Original image. (b) Foreground (white) and
background (black) markers (preprocessing mentioned in Sect. 4 was used). (c) Back-
ground segmentation.

Finally, finding the minimal cut in the corresponding network while using the
capacities described in this subsection gives us the background segmentation,
that is shown in Fig. 2c. The result is a segmentation separating the background
and foreground hard constraints with a minimal geodesic boundary length with
respect to chosen metric. It is worth mentioning, that due to the nature of graph
cuts, effective interactive correction of the segmentation could be involved at
this stage of the method whenever required.

3.2 Cluster Separation

Whereas in the first stage of our method the segmentation is driven largely by
the image gradient (n-links), trying to satisfy the hard constraints at the same
1 Note that the intensity gradient information is included in n-link weights.
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time, in the second stage we employ a different approach and stick to the cluster
morphology. That is motivated by the fact, that the image gradient inside of the
nuclei does not provide us with reliable information. The interior of the nuclei
can be greatly non-homogeneous and the dividing line between the touching
nuclei not distinct enough, while some other parts of the nuclei can contain
very sharp gradients. However, our solution allows us to tune the algorithm to
different scenarios by simply changing the value of the parameter λ in (1). The
clusters obtained in the first stage are treated separately in the second stage, so
the following procedures refer to the process of division of one particular cluster.

First of all, the number of cell nuclei in the cluster is estabilished. To do this
we calculate a distance transform of the cluster interior and find peaks in the
resulting image using a morphological extended maxima transformation [2] with
the maxima height chosen as 5% of the maximum value. The number of peaks in
the distance transform is then taken as the number of cell nuclei in the cluster.
If the cluster contains only one cell nucleus the second stage is over, otherwise
we proceed to the separation of the touching nuclei. In the following text we will
denote Ml the connected set of voxels corresponding to one peak in the distance
transform, where l ∈ {1, . . . , n} and n is the number of nuclei in the cluster.
An estimation of the nucleus radius σl is calculated as the mean value of the
distance transform across voxels in Ml for each nucleus.

To find the dividing line among the cell nuclei a graph cut in a network with
n terminals is used. The n-link capacities are set up in exactly the same way as
in the first stage. The t-link weights are assigned as follows. For each label l and
each voxel p in the cluster mask we define dl(p) to be the Euclidean distance of
the voxel p to the nearest voxel in Ml. The values of dl for all voxels and labels
can be effectively calculated using n distance transforms. Further, we estimate
the probability of voxel p matching label l as:

Pr(p|l) = exp
(
−dl(p)2

2σl

)
, (5)

which corresponds to a normal distribution with the probability inversely pro-
portional to the distance of the voxel p from the set Ml and standard deviation√

σl. The normalizing factor is omitted to ensure uniform amplitude of the prob-
abilities. As a consequence of (2) the regional penalties are calculated as:

Rp(l) = − log Pr(p|l) =
dl(p)2

2σl
. (6)

Indeed, hard constraints are set up for voxels in Ml. Such regional penalties
(proportional to the distance from the Ml sets) incorporate an a priori shape
information into the model and help us to push the dividing line of the neigh-
bouring nuclei to its expected position and ignore the possibly strong gradients
near the nucleus center. How much it will be pushed depends on the parameter
λ in (1). The influence of this parameter is illustrated in Fig. 3. Generally, the
smaller λ is, the higher importance will be given to the image gradient.

If the given cluster contains more than two cell nuclei (and more than two
terminals in consequence) standard max-flow algorithms can not be used to find
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Fig. 3. Influence of the λ parameter on data with distinct frontier between the nuclei.
(a) λ = 1000 (b) λ = 0.15 (c) λ = 0.

the minimal cut. Due to the NP-completeness of the problem [13], it is necessary
to use approximations. We use the α-β-swap iterative algorithm proposed in [10],
that is based on repeated calculations of standard minimal cut for all pairs of
labels.2 According to our tests this approximation converges very fast and three
or four iterations are usually enough to reach the minimum. To obtain an initial
labelling we assign a label l′ to voxel p such as l′ = argminl∈L Rp(l).

4 Experimental Results

Results obtained using an implementation of our model for 2-D images are pre-
sented in this section. We have tested our method on two different data sets.
The first one consisted of 40 images (16-bit grayscale, 1300 × 1030 pixels) of
DAPI stained HL60 (human promyelocytic leukemia cells) cell nuclei. The sec-
ond one consisted of 10 images (16-bit grayscale, 1392 × 1040 pixels) of DAPI
stained A549 (lung epithelial cells) cell nuclei deconvolved using the Maximum
Likelihood Estimation algorithm, provided by the Huygens software (Scientific
Volume Imaging BV, Hilversum, The Netherlands). In both cases the 2-D images
were obtained as maximum intensity projections of 3-D images to the xy plane.
Samples of the final segmentation are depicted in Fig. 4.

Each of the images in the data sets consisted of 10 to 20 clustered cell nuclei.
Even though the clusters are quite complicated (particularly in the HL60 case)
and the image quality is low, all of the nuclei are reliably identified, as can be
seen in the figure. To quantitatively measure the accuracy of the segmentation,
we have used the following sensitivity and specificity measures with respect to
an expert provided ground truth:

Sensi(f) =
TPi

TPi + FNi
Speci(f) =

TNi

TNi + FPi
, (7)

2 It is also possible to use the stronger α-expansion algorithm described in the same
paper, because our B(p,q) is a metric.
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Fig. 4. Samples of the final segmentation. Top row: A549 cell nuclei. Bottom row: HL60
cell nuclei.

where i is a particular cell nucleus, f is the final segmentation and TPi (true
positive), TNi (true negative), FPi (false positive) and FNi (false negative)
denote the number of voxels correctly (true) and incorrectly (false) segmented as
nucleus i (positive) and background or another nucleus (negative), respectively.
Average and worst case values of both measures are listed in Table 1.

Table 1. Quantitative evaluation of the segmentation. Average and worst case values
of sensitivity and specificity measures calculated against expert provided ground truth.

Cell line Sensworst(f) Specworst(f) Sensavg(f) Specavg(f)

A549 91.42% 92.98% 98.38% 97.00%
HL60 88.60% 95.68% 97.43% 98.12%

The computational time demands and memory consumption of our algorithm
are listed in Table 2, they were approximately the same for both data sets (mea-
sured on a PC equipped with an Intel Q6600 processor and 2 GB RAM). The
standard max-flow algorithm [7] was used to find the minimal cut in two-terminal
networks. The memory footprint is smaller in the second stage, that is due to
the fact that only parts of the image are processed. Also the computational
time of the second stage depends on the number of nuclei clusters and on their
complexity.
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Table 2. Computational demands on tested images (≈ 1300 × 1000 pixels)

Stage Total time Peak memory consumption

1 2 sec 150 MB
2 5 sec 30 MB

For the segmentation of HL60 cell nuclei λ = 0.001 was used, because the
interior of the nuclei is quite homegeneous and the dividing lines are percepti-
ble. In the second case, λ = 0.15 was used, giving lower weight to the gradient
information. Image preprocessing consisted of smoothing and background illu-
mination correction in the first case and white top hat transformation followed
by a morphological hole filling algorithm [2] in the second.

5 Discussion

The method described in this paper is fully automatic with the only tunable
parameter being the λ weighting factor. For higher values of λ the segmentation
is driven mostly by the regional term incorporating the a priori shape knowl-
edge, for lower by the image gradient. In some cases (data with distinct frontier
between the nuclei, such as the one in Fig. 3) it is even possible to use λ = 0.
Such simple tuning of the algorithm is not possible with standard methods.

An important aspect of the second stage of our method is the incorporation of
a priori shape information into the model. The proposed approach is well suited
to a wide range of shapes, not only circular, provided that the Ml sets mentioned
in Sect. 3.2 approximate the skeletons of the objects being sought. It is obvious
that in case of mostly circular nuclei the skeletons correspond to centres and our
method looking for peaks in the distance transform of the cluster is applicable.
However, in case of more complex shapes it might be harder to find the initial
Ml sets and the number of objects.

The implementation of our method in 3-D is straightforward. However, some
complications may arise, which include a slower computation due to the huge
size of the graphs and those related to low resolution and significant blur of the
fluorescence microscope images in the axial direction.

6 Conclusion

A fully automated two-stage segmentation method based on the graph cut frame-
work for the segmentation of touching cell nuclei in fluorescence microscopy has
been presented in this paper. Our main contribution was to show how to cope
with low image quality that is unfortunately common in optical microscopy. This
is achieved particularly by combining image gradient information and incorpo-
rated a priori knowledge about the shape of the nuclei. Moreover, these two
qualities can be easily balanced using a single user parameter.

We plan to compare the proposed approach with other segmentation methods,
in particular, level-sets and the watershed transform. The quantitative evaluation
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in terms of computational time and accuracy will be done on both synthetic data
with a ground truth and real images. Our goal is also to implement the method in
3-D and improve its robustness for more complex types of clusters, that appear
in thick tissue sections.
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