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Abstraet--A new discrimination function is presented for segmenting touching characters based on both 
pixel and profile projections. A dynamic recursive segmentation algorithm is developed for effectively seg- 
menting touching characters. Contextual information and spell checking are used to correct errors caused 
by incorrect recognition and segmentation. Based on 12 real documents, a maximum 99.85~o and a minimum 
99.4~o recognition accuracy is achieved. 
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l. I N T R O D U C T I O N  

Document image processing has been the subject of 

extensive research since the early 1980s. t~'2) Today, 

character recognition systems dramatically facilitate 

the transfer of information into computer systems 

without intensive manual keying. Kahan et al. sugges- 

ted that in practical applications, a document recog- 

nition system is required to read texts accurately with 

at least a 99.9~ recognition rate. 13) It is not difficult to 

design a character recognition system that recognizes 

well-formed and well-spaced printed characters. How- 

ever, it is a challenge to develop a system which can 

maintain such a high recognition rate, regardless of 

the quality of the input documents and the character 

fonts. ~2-6~ Presently, most recognition errors are due 

to character segmentation errors. (4-6) Very often, even 

in printed text, adjacent characters are touching, and 

may exist in an overlapped field. Therefore, it is essen- 

tial to segment a given word correctly into its charac- 

ter components. Any failure or error in this segmen- 

tation step can lead to a critical loss of information 

from the document. 
Several investigators have attempted to develop 

techniques for properly segmenting words into their 

character components. Kahan et al. 13) discussed the 

segmentation of touching characters. Tsujimoto and 

Asada (4~ constructed a decision tree for resolving ambi- 

guities in segmenting touching characters. Casey and 

Nagy ~5) proposed a recursive segmentation algorithm 

for touching characters. Bose and Kuo (6) applied the 

Hidden Markov Model to the touched and degraded 

text recognition. 
In this paper, we propose a dynamic recursive seg- 

mentation algorithm for segmentation of touching 

characters based on the method proposed by Casey 

and Nagy. 15~ In this process, several candidate cutting 

points are determined from the proposed discrimin- 

ation functions; the algorithm then iteratively implements 

a forward segmentation or a backward merge pro- 

cedure based on the outputs of a character classifier 

which operates on the components generated by seg- 

mentation algorithms. Using contextual information 

including a spell checker, further improvements in 

word recognition are achieved. Extensive studies with 

different text documents have attested to the feasibility 

of the proposed algorithm. The algorithm and test 

results are discussed in the following sections. 

2. SEPARATION OF TOUCHING CHARACTERS 

A typical text recognition system is shown in the 

flow chart in Fig. 1. Since the work described here 

deals with segmentation of touching characters, it is 

assumed that a line of text with the appropriately 

labelled connected components in the line have already 

been extracted using appropriate techniques. 17-91 Fig- 

ure 2 shows the connected components and their labels 

for the word "with". It is interesting to observe (Fig. 2(c)) 

that the letters "t" and "h" are touching. 

2.1. The modified discrimination function for touching 

characters 

Among the many articles that have been pub- 

lished concerning the segmentation of touching charac- 
ters, 13-6~ we were especially interested in the algorithm 

proposed by Kahan et al. ~3~ They detected touching 

characters by using the ratio of the second-order differ- 

ence of the vertical pixel projection to the value of the 

vertical projection as an objective function. The cutting 

points for touching characters were obtained in the 
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Fig. 1. Recognition system diagram. 

horizontal positions where the segmenting objective 
function was maximized. This method is able to cut 
most lightly touching characters; however, it was un- 
able to separate heavily touching characters, parti- 
cularly such as "oo ' ,  "oe" and "od", etc., because the 
pixel projection waveforms for these kinds of touching 
characters vary gradually due to the lack of the vertical 
strokes near the touching points. Figure 3 shows an 
example of touching characters "oo ' .  

In order to improve the segmentation process, the 
authors propose two discrimination functions based 
on pixel and profile projections. The pixel projection 
and profile projection are described as follows: 

(1) The pixel projection is defined as {PXP(k), k = 
1, 2 . . . . .  LT}. It consists of the total number of black 
"1" pixels in each vertical column. LTis the length of 
the touching characters. 

(2) The profile projection is defined as {PFP(k)= 
TP(k) - BP(k), k = 1, 2 . . . . .  LT}. TP(k) is the top profile 
of the external contour of the touching characters as 
seen from the top; BP(k) is the bottom profile of the 
external contour of the touching characters as seen 
from the bottom. 

Figure 3 illustrates these projections for the com- 
ponent "oo". Two segmentation discrimination func- 
tions based on the profile and pixel projections are 
then defined as follows: 

F~(k)=[ PFP(k + L1)--2PFP(k) + P F P ( k - L 1 ) ]  

(1) 

F'2(k) = [ PXP(k + L 2 ) -  2PXP(k) + PXP(k - L2)]" 

L PXP(k) _l 
(2) 

where L1 and L2 in equations (1) and (2) denote the 
distances between the current column and the adjacent 
columns L1 and L2 apart. L1 and L2 are determined 
empirically based on the size of the characters in the 
documents. As an example for text with "times" font 
of size 11, LI and L2 were chosen as 8 and 4, respectively. 
~t which represents the power of F1 and F2 is typically 
chosen to be an integer larger than 1. Figure 4 illustrates 
the effect of ~ on the values of the discrimination 
functions. Figures 4(c) and (d) show the discrimination 
functions for ~t = 1 and 2, respectively. It is evident that 
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Fig. 2. (a) First scan of component labelling ("w" has 3 labels, 
'r has 2 labels and 'th' has 4 labels). (b) Second scan of 
component labelling ('w' has 1 label, 'i' has 2 labels and 'th" 
has 1 label). (c) Final result of the labelled "with" ('w', T and 

'th" have 1 label). 

the values of  the discrimination functions are increased 

significantly with ct = 2, especially when F1 and F2 

are larger than 2. Using suitable threshold, candidate 

cutting points are derived for further processing. Fig- 

ures 4(c) and (d) show four candidate cutting points 

for the component  "oo" with a threshold of 11. It is 

noted that in this case, the correct cutting location is 

determined by the discrimination function F2(k) based 

on the profile projection. Figure 5 illustrates the process 
for the component "th". In this case, it is clearly seen 

that the discrimination function FZz(k) based on the 
pixel projection yields candidate cutting points that 
contain the correct cutting location. We therefore define 
the discrimination function as follows: 

F~(k), 

F~(k), 
F(k)= ,  F~(k), 

0, 

if FZ(k) > T&F2(k)> T 

if F2(k)> T&F2(k)< T 

if F2(k) < T& F22(k) > T 

if F2~(k) < T& F2(k) < T. 

(3) 

Several cutting point candidates, including some false 
cutting points, were obtained at the locations where 
the values of the discrimination function were greater 
than a specific threshold. The optimal cutting points 

were found after several iterations by applying the 
dynamic recursive segmentation algorithm. Some 
broken characters caused by false cutting points can 
be merged using layout context information. This will 
be discussed in the following sections. 

2.2. The dynamic recursive segmentation algorithm 

The recursive segmentation algorithm with adaptive 
windows, developed by Casey and Nagy, (5) performed 
template matching after a suitable window was chosen. 
According to Casey and Nagy, if the classification 
failed, a different partitioning of the input pattern was 
tried. However, even for a specific font, proportional 
spacing characters make it difficult to choose a suitable 
window on the first trial. Tsujimoto and Asada used a 
break cost to segment touching characters. (4) They 
constructed a decision tree and a set of additional rules 
to obtain the character component sequences. However, 
their algorithm required intensive computation to build 
a decision tree and search for a correct path; the more 
touching characters in a word, the larger the decision 
tree would be. Also their algorithm tended to accept 
several paths in the tree structure concurrently. 

In our approach, we proposed a dynamic recursive 
segmentation algorithm that implements a forward 
segmentation or a backward merge procedure based 
on the output of a character classifier operating on the 
components generated by the cutting points. This pro- 
cedure terminates when the segments generated by 

specific points are recognized by the character clas- 
sifier with high confidence. Figures 6 and 7 illustrate 
the algorithm for two types touching characters: the 
double-O "oo" and the serif touching pair "th", and 
the triplet "thi". Figure 6(a) shows the candidate cutting 
points determined by the discrimination function F(k). 
The first cutting point yields segments P1 and P2 
which are sent to the character classifier. The classifier 
recognizes PI as a valid 'c' while P2 is rejected as an 
invalid character. P2 is then segmented by the second 
candidate cutting point yielding P3 and P5. P3 is 
rejected by the classifier, while P5 is recognized as a 
valid "o ' .  The segment P3 is then merged with seg- 
ment P1 and the resulting segment P4 is correctly 
classified as a valid "o ' .  At this point both the left and 
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right segments are recognized with high confidence as 
valid characters ("o" and "o" in this example). Figures 
6(a)-(c) illustrate the various stages of this technique. 

Figure 5 shows 12 candidate cutting points for split- 
ting component "th" by using the discrimination func- 
tion based on the pixel projection. In the segmentation 
process, even though cutting points sometimes deviate 
from the correct locations, the optimal cutting points 
Xc, t are found after several forward and backward 
cutting iterations. Figure 7 illustrates the proposed 
algorithm for two sets of touching characters "th" and 

"thi". The first case involving "th" with two possible 
cutting locations is very similar to the case of "oo" 
discussed earlier. The second case is interesting and 
brings out the effectiveness of the proposed algorithm. 
Due to the figure space limitation, only five candidate 
cutting points (Figs 7(c) and (d)) are generated by the 
discrimination function. 

(1) Initially the triplet labelled P0 is segmented into 
two components P1 and P2 of which only P1 is accepted 
as a valid character "1" by the classifier. 
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(2) P2 is further segmented into P3 and P5, both of 
which are rejected by the classifier. 

(3) P3 is merged with P1 yielding P4 which is accep- 
ted by the classifier as "t". 

(4) P5 is further split into P6 and P7 of which only 
P6 is accepted by the classifier as "1" which P7 is 
rejected. 

(5) P7 is split into two components P8 and P10, 
both of which are rejected by the classifier. 

(6) P8 is merged with P6 yielding P9 that is accepted 
by the classifier as a valid "1". 

(7) P10 is split into P l l  and P12, both of which are 
accepted as valid characters "I" and 'T'. 

At this stage we have a segmentation that yields four 
characters "t", 'T', 'T '  and 'T'. It is obvious that this 
segmentation is erroneous as the correct segments 
should have been "t", "h" and "i ' .  For  touching charac- 
ters that contain three or more characters, broken 
characters may appear in the sequence of the recognized 
characters. The error can only be resolved using contex- 
tual classes and other contextual information. This is 
discussed in later sections. Italic characters in a word 
were subject to slant correction prior to the application 
of recursive segmentation. "°) 

3. FEATURE EXTRACTION AND CLASSIFICATION 

Even in machine-printed documents, shape discre- 
pancy among characters belonging to the same proto- 
type is sometimes quite large because of the poor 
quality and low resolution of document images. Parti- 
cularly, when touching characters arc segmented, the 

noise blobs near the cutting points overlap both sides 

of the characters, possibly resulting in a large dis- 
similarity between the input pattern and the correspond- 
ing sample class. Image processing techniques such as 
border tracing or component labelling are able to 
remove noise blobs that are not touching the character 
component; however, it is impossible to remove touch- 
ing noise blobs by simple techniques. Wc have de- 
veloped a new feature, the Overlap-Neiohbour-Direction- 
Feature, that is largely based on the border chain code 
histogram proposed by Kimura and Shridhar. !1 ~) They 
independently calculated a local histogram of the 
quantized chain codes (0 for "-", 1 for "/", 2 for "V', 

4 for "r') in 4 x 4 rectangular zones (Fig. 8) (see refer- 
enee (11) for detail). The modified feature is then extract- 
ed as illustrated in Fig. 9, where there are six overlap 
regions across the interface of each sub-rectangle; three 
vertical strips with width m2, and three horizontal 
strips with width ml. When a local chain code histogram 

is calculated, the direction chain codes in the overlap 
regions contribute their direction values to the histo- 
grams of the related local sub-rectangles. 

Kimura's feature extraction method of Kimura's 
created a large distance between the two "d"s shown 
in Figs 8(a) and (b) because the rightmost vertical 
stroke of two "d ' s  occupy the different sub-rectangles. 
However, the Euclidian distance between the feature 
vectors of the two input patterns in Figs 9(a) and (b) 
decreases with the modified feature by properly choos- 
ing two parameters, ml and m2. Our experiments 
indicate that with the Overlap-Neighbour-Direction- 
Feature, the Euclidian distance between the input pat- 
terns and the stored prototypes decreases by approx- 

F / 

, / 7 / /  

(a) 

direct ion n u m b e r  

O* ( - )  0 

4e°( / )  o 
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(b) 

direct ion  n u m b e r  

0 ° ( - )  0 

4 5 ° ( / )  o 

90 ° ('1) 40 

~:m ° ( '0 o 

(c) (d) 

Fig. 8. The direction chain code feature. (a) and (c) Normalized character 'd's and their chain codes in a 
sub-rectangle. (b) and (d) Direction chain code histogram in a sub-rectangle. 



832 S. LIANG et al. 

a r- - - -  

(a) 

. . . . .  . J  

direction 
o* (-)  
4~ (/9 
90' 

(b) 

number 
0 
0 
56 
0 

";--- 

ml-'~" ! 1  ' ~ 1 '  , 

. . . .  ] - - , m , - T  

II i-' 

___J'__i 

direction 
o* (-)  
45" (/) 
90"/I} 
1 ~  "° ( \ )  

number 

0 

0 

56 
0 

(c) (d) 

Fig. 9. Thc Overlap Neighbour Direction feature. (a) and (c) Normalized character 'd's and their chain codes 
in an extensive sub-rectangle. (b) and (d) The direction chain code histogram in an extensive sub-rectangle. 

imately 23~o on the average when ml = 10 and m2 = 8 
in the 64W x 80H pixel unit rectangular frame. 

The minimum-distance classifier cl 2,13)is an effective 

technique for classification problems in which the pat- 
tern classes exhibit a reasonably limited degree of 
variability. For  a specific and clear machine printed 
text, the pattern of each class tends to cluster tightly 
about a typical or representative pattern for that class. 
Under these conditions, a minimum-distance classifier 
can be a very effective approach to the classification 
problems. 

Consider M pattern classes and assume that they 
are represented by the mean feature vectors of the 
training classes, i.e./~1, #2 . . . .  , Pro. The Euclidian dis- 
tance between an input feature vector X and the ith 
class is given by 

D , =  I IX- /~ , ) l  = ( X  - -  / ~ , ) T ( x  - -  ~ , ) .  (4) 

In the experiments, X is a 64-dimensional feature vector, 
i.e. X =(x1 ,x2 , . . . ,x64)  T, where the superscript T 
denotes the transpose. Each component x~ of X, for 
i = 1, 2 . . . .  ,64, is composed of a local histogram of 
overlap-neighbour direction chain codes of a character 
shape boundary based on 4 x 4 subsquares of a nor- 
malized binary pattern. A minimum-distance classifier 

based on a feature extraction approach computes the 
distance from an input pattern to the mean vector of 
each class and assigns the pattern to the category of 
the closest mean, i.e. X is classified to the class i if 
D i < D j, for all j # i. 

4. WORD ANALYSIS BASED ON CONTEXTUAL 
KNOWLEDGE 

4.1. Character contextual  classes 

Using contextual information to analyze a recognized 
word can improve the performance of the text recog- 
nition system. Characters occurring in a text line are 
generally related to one of the classes based on their 
location with respect to the baselines, t14) In Table 1, 
the classification of character contextual classes is sum- 
marized for the fonts used in our application. To 
improve the flexibility and applicability of our docu- 
ment recognition system, we have made use of size and 
font information to achieve an accurate contextual 
class description of the character components in a 
particular text line. The "t" and "i" are aggregated 
into a specific contextual class, because they have a 
smaller number of pixels above the upper baseline than 
the other Ascender characters in a specific font. This 
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th It C I  - -  C la s s  I ( A m c e n d e r )  

C 2  - -  C lass  2 ( A J c e n d e r )  
C3  - -  C la s s  $ ( c e n t r e d )  

matched ¢I ,hnot matched 

m n t  
o,o,o,\ 

matched class 111 not matched 

merged 'm' 

Fig. 10. Merging broken characters with the knowledge of the character contextual classes. 

eliminates the ambiguities that easily occur between 

("i . . . .  I'), ('T"T'), ("t""f") etc. Character contextual 

classes define character sets as statistically disjoint 

from the results of classification. The incorrect seg- 

mentation achieved earlier for the connected com- 

ponent "thi" can be resolved by using contextual classes. 

As shown in Fig. 10, the combination "th" which can 

often be split into three valid characters "t", 'T" and "I" 

can be corrected by recognizing that "1" and "I" do not 

belong the same contextual class and merging the two 

segments "1" and "I" into one segment that is accepted 

by the classifier as a valid "h". Thus using character 

contextual classes, the component "thi" is correctly 

split into "t" and "h" and 'T'. 

To determine the contextual features of character 

components, the baselines of words are required. The 

most straightforward method to determine these base- 

lines is to find the character locations with respect to 

Table l. Character contextual classes. 

Class  Description Example 

1 Ascender All capital letters, numerals, 
and b, d, f, h, k, 1 

2 Ascender i, t (not for all fonts) 
3 Centred a, c, e, m, n, o, r, s, u, v, w, x, z 
4 Descender g, p, q, y 
5 Full-height j 

] ,~aid th~ lx~iic~ i'n-ln~x uhe, , .Giverxltv i .  : i . ,~ 
, q ~ I - I 

Fig. 11. Baseline detection in a segmented text line. 

the maximal value of the first-order difference of the 

pixel projection of the text line image in the horizontal 

direction/5) Unfortunately, naturally skewed text lines 

always appear in practical document images, resulting 

in incorrect character contextual class assignments, 

Projection of the segmented text lines can be used to 

relieve this problem (see Fig. 11). 

We took advantage of a two-phase detection of 

baselines. The first phase was based on the baselines 

extracted from isolated words; failure of this phase 

prompted the activation of the second phase which 

extracted the baselines from segmented text lines. These 

baselines were used to assign a contextual class to an 

input character component. This two-phase strategy 

makes the process more accurate and effective. 

4.2. Mergin 9 broken characters 

The dynamic recursive segmentation algorithm de- 

scribed in Section 2 may decompose one character into 

two or three valid but incorrect character components. 

Here are some examples: 

an "m" is regarded as "r" and "n" or "r' ,  "r" and 'T';  

an "n" is replaced by "r" and "I"; 

a "B" is segmented into "I" and "3"; 

an "h" becomes 'T' and "r"; 
a "U" is separated into 'T '  and "J"; etc. 

Therefore, a merge procedure based on the similarity 

calculation is performed to rejoin the broken characters 

in the following steps: 

(1) If the characters such as "1", "I", "J", "r", "n", 

"t", etc. appear adjacently in one word, they are con- 

sidered to be candidate broken character components. 
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(2) An adjustable window with a maximum size of 
three character units is moved from left to right across 
the input word to check if two or three pieces of the 
character components mentioned in step (1) appear 
adjacently and simultaneously in the window. If any 
such character components are detected, a classifier 
with a specific rejection threshold is applied to the 
image array corresponding to those detected character 
components. Any rejection indicates that the input 
array contains two or more distinct characters; other- 
wise, the composition of the character components 
probably is one character. 

(3) The merge procedure is not applied if the charac- 
ter components to be merged are not in correct charac- 
ter contextual classes. For  instances, the character "m" 
is only composed of Class 3 (Centred) broken com- 
ponents. The character "h" may contain a Class 1 
(Ascender) broken component in the left side and a 

Class 3 (Centred) broken component in the right side. 
The touching character "It", even if accepted by the 
classifier, can be prevented from being merged to "h", 
because the touching character"It" is composed of one 
Class 1 (Ascender) component in the left side and one 
Class 2 (Ascender) component in the right side, violating 
the merge rule for the character "h" (Fig. 11). 

4.3. Character verification 

If the output of the classifier do not match to the 
character contextual classes to which the characters 
belong, the characters may be corrected according to 
their contextual classes. For  example, both the lower 
and upper cases of the characters c, o, p, s, u, v, w, x, 
y, and z can be distinguished by applying contextual 
class information. Some characters, such as "i" and "j" 
or "t" and "f", etc. may be misclassified after normal- 
ization because of their similarity in shape. The charac- 
ter verification procedure is applied to eliminate these 
ambiguities. If the classifier outputs for a given pattern 
does not match the contextual classes to which the 
pattern should belong, the second character candidate 
accepted by the classifier with matched contextual 
class will be considered as a possible substitution. For  
example, if the input component is recognized as 'T'  
and its contextual class is 5 (i.e. the number of the pixels 
above the upper baseline and below the lower baseline 
is greater than a specific threshold), then the "i" will be 
replaced by an accepted candidate "j" which is a class 
5 character (Table 1). Since the character verification 
process is not absolutely free of error due to baseline 
deviation, the final replacement is made only after spell 
checking. 

5. SPELLING ERRORS AND SPELLING CORRECTION 

The dictionary look-up method is the most reliable 
way to ascertain the character level context, t16-17~ The 
main problem with dictionary look-up methods is the 
large size dictionary (at least 50,000 words) and con- 
sequent costs in memory size and searching time re- 

quired to handle a realistic vocabularyJ ~6} Because 
speed is essential, the spelling correction program 
should be simple and efficient. Fortunately, the UNIX 
operating system provides a powerful spell command 
and a "system" or "popen" function in UNIX C that 
allows one to execute standard UNIX commands in C 
programs that makes "on line" spelling correction 
possible. We assumed that the dictionary in the UNIX 
system included most English words. To avoid making 
the correction procedure too complicated, we also 
assumed that spelling errors in a word came from one 
of three types of errors (substitution, inserted, and 
merged character errors), the total number of substi- 
tution and insert errors in one word did not exceed 
one, and the number of merged character errors did 
not exceed two. Generally, words with more than two 
different types of error cannot be corrected without 
human intervention. The procedure consists of the two 
following steps. 

5.1. Spelling errors 

The words produced by the recognition system after 
the character verification phase are spell checked by 
the UNIX spell program. If the given word passes 
spelling checker test, it is assumed to be a correct word; 
otherwise, the error correction procedure is employed 
until a correct word is obtained. If the correction 
procedure fails to correct the error in the word, the 
system chooses the first candidate word as the final 

output. After merging broken characters and verifying 
characters with contextual class information, we found 
very few words to be rejected by the spell checker in 
our case. Only those words absent from the UNIX 
dictionary were referred to the error correction pro- 
cedure. 

5.2. Spelling correction 

Correction of  substitution character errors. All char- 
acters in a word have corresponding sequential can- 
didates. The number of character candidates corres- 
ponding to one character component is equal to the 
number of classes which have accepted Euclidian dis- 
tances to the input pattern. These candidates are sorted 
in the order of their Euclidian distance values. The 
character candidate with the smallest Euclidian dis- 
tance to the corresponding input pattern is placed at 
the top of the rating table. The algorithm outputs the 
first candidate word accepted by the spell checker. 

Correction for merged character errors. Touching 
characters which have a similar shape to some isolated 
characters are frequently recognized as specific charac- 
ters. These touching characters are even confusing to 
human beings if they do not appear in a word level. 
For  example, touching "r" and "n" are regarded as "m" 
and touching "n" and "n" can be interpreted as "n" and 
"n" or "r" and "m". It is impossible to eliminate these 
ambiguities without spelling tools. The correction 
method proposed here is based on the knowledge of 
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t h o s e  t o u c h i n g  cha rac t e r s .  I r a  w o r d  was  a g a i n  re jec ted  

by  t he  spell  c h e c k e r  af ter  s u b s t i t u t i o n  e r r o r  co r rec t ion ,  

we a s s u m e d  t ha t  there  was  p r o b a b l y  one  o r  two  m e r g e d  

c h a r a c t e r  e r ro r s  in the  word .  By  u s i n g  pos s i b l e  c h a r a c -  

ter  c o m p o s i t i o n s  to subs t i t u t e  these  m e r g e d  charac te r s ,  

a ser ies  o f  w o r d  c a n d i d a t e s  were  o b t a i n e d .  T h e  first 

c a n d i d a t e  to p a s s  the  spell  c h e c k e r  b e c a m e  the  o u t p u t  

word .  

Correct ion o f  inserted character  errors. I t  is very  

difficult  to de le te  inse r t  e r ro r s  w i t h o u t  s o m e  c o n t e x t u a l  

i n f o r m a t i o n .  I n se r t  e r ro r s  a re  a l ways  c a u s e d  by  no i s e  

c o m p o n e n t s  w h i c h  c a n n o t  be e l i m i n a t e d  by  a no i s e  

s m o o t h i n g  f i l ter .  O b v i o u s l y ,  a r b i t r a r i l y  d e l e t i n g  

characters in word strings is impractical. Generally, 
inserted character errors occur in situations where the 

character contextual classes of those inserted com- 
ponents do not match the recognition result of these 
components. For instance, the pixel numbers of inserted 
characters are always below the specific threshold for 
a given character height. Hence, using context infor- 
mation is an important clue to delete the insert charac- 
ters with a least amount of risk. 

6. EXPERIMENTAL RESULTS 

The documents used in our experiment were based 
on 12 pages of"NEWS LINE", a University of Windsor 
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Teaching* researcher 
do mix* Smith says 
''Giving professor the opportur{ii}ty to 
improve t{iI}eir teachi{rI}g does not obstruct a 
u{rl}iversity's best researchers.''{s}tuart 
S{rrl}ith told a plenary session of the 
{c}o{rI}gress of the Canadian Association of 
P{iI}ysicists ({c}AP) here June 17, 
s{rrI}ith is the author of the {1}991 report 
of the Co{rrI}{rrI}ission of Inquiry on Canadia{rI} 
University Education. Last November, the 
{II}{rI}iversityse{rl}ateestablishedco{rrI}{rrI}ittees 
to respond to that report, 
The audience of phys{l}cists received 
S{rn}ith's co{rrI}{rrI}entary with some skepti- 
cism and {s}{rrl}ith found himself defending 
his reco{rrI}{rrl}endations d{ll}ring the question 
period. 
''Society believes the {rrI}ain function of 
a u{rI}iversity is the disse{rrl}i{rI}ation of 
knowledge, but every piece of evidence 
suggests professors believe u{rl}iversi{l}ies 
exist for professors to do research.'' said 
S{rrl}ith, a former head of the science 
Council of Ca{rI}ada.''{13}ut Iet's be frank. 
There is a lot of second-rate research 
bei{rI}g done by people who would rather be 
putting their energy into teaclIing.'' 
He said society has bought i{rl}to the 
idea of lea{m}ing from scholars even though 
it would be less costly if colleges taught 
t{iI}e f{l}rst two years of university. However, 
over the past 2{0} years of s{iI}ri{rl}king funding 
for u{rI}iversities, the n{Ii}{rn}ber of ho{II}rs 
professors spent teachi{rI}g actually went 
down. 

Fig. 13. Results after applying the dynamic recursive segmentation algorithm. 

publication which contained 8 pages with 40~o touching 
characters and 4 pages with about 60% touching char- 
acters. A typical document image is shown in Fig. 12. 
The document images were scanned with a 300dpi 
scanner connected to an IBM 386. All algorithms in 
this paper were written in C, and executed on a SUN 
SPARC II work station. We collected and constructed 
the character sample classes in five fonts individually 
drawn from the practical document images. The num- 
ber of samples in each class ranges from 6 samples per 
class to 100 samples per class, depending on the char- 
acters available in the training documents. The cluster- 
ing technique "K-Means ''{13) was used to specify and 
partition the given data sample sets. After cluster- 
ing our raw sample data, each sample class set was 
subdivided into at least one subclass based on a selected 
threshold. Text, pictures, and graphic blocks were 
identified, and non-text parts were removed with 
the block segmentation and text discrimination ap- 
proaches proposed by Wong et alJ s) It is conceivable 
that both segmentation and recognition may be con- 
siderably improved by using contextual information. 
In our case, layout contextual knowledge dealing with 
baseline information of text lines and the location of 
the character components with respect to their neigh- 

bours was used to assign a specific class to all the 
character components in the text lines. We successfully 
merged the broken character components by using the 
character contextual classes. 

A multiple-font system is realized by putting each of 
the font symbols into a separate class. To obtain high 
efficiency and minimal computation, font recognition 
is essential in the recognition system. Different proto- 
types for each class are constructed for different fonts 
by tagging corresponding font labels. There is little 
difficulty in classifying an unknown input pattern and 
assigning a font label to it at the same time. Since it is 
not guaranteed that every word contains only one font 
label, we used the font hypothesis process. The "fre- 
quency" of font labels is defined as the ratio of the 
number of the characters in a word belonging to font 
i to the total number of the characters in the word. It 
is used to determine mono-font states. The word pat- 
tern is recognized as being composed by font i if the 
"frequency" of font i in the word is greater than the 
"frequency" of any other fonts in the word. After the 
font is identified, the multiple font system is switched 
to the mono-font state. The mono-font state is not 
changed until the dissimilarity score, the average 
Euclidian distance of the characters in one word, is 
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Teaching* researcher 
do mix* Smith says 
''Giving professor the opporturnty to 
improve their teaching does not obstruct a 
university's best researchers.''{s}tuart 
Smith told a plenary session of the 
{c}ongress of the Canadian Association of 
Physicists ({c}AP) here June 17, 
smith is the author of the {1}991 report 
of the Commission of Inquiry on Canadian 
University Education. Last November, the 
university senate established committees 
to respond to that report, 
The audience of phys{l}cists received 
Smith's commentary with some skepti- 
cism and {s}mith found himself defending 
his recommendations during the question 
period. 
''Society believes the main function of 
a university is the dissemination of 
knowledge, but every piece of evidence 
suggests professors believe universi{l}ies 
exist for professors to do research.'' said 
Smith, a former head of the science 
Council of Canada.''But Iet's be frank. 
There is a lot of second-rate research 
being done by people who would rather be 
putting their energy into teaclIing.'' 
He said society has bought into the 
idea of lea{m}ing from scholars even though 
it would be less costly if colleges taught 
the f{l}rst two years of university. However, 
over the past 2{0} years of shrinking funding 
for universities, the number of hours 
professors spent teaching actually went 
down. 

Fig. 14. Resultsa~ermergingbrokencharacters. 

higher than a specific threshold. The font hypothesis 

process is then repeated. In this paper, we mainly 

focus on the segmentation of touching character. There- 

fore, only five fonts of the text are included in our 

system. 
The approaches proposed for segmenting touching 

characters utilize multiple techniques. To make our 

interpretation more clear, we use Figs 13-16 to illus- 

trate the application of various steps of each individual 

technique. Due to space limitation, only a part of 

results of the original document image Fig. 12 are 

illustrated. Figure 13 shows the results of the dynamic 

recursive segmentation algorithm based on Fig. 12. 

The curly braces were used to indicate the errors made 

by segmentation and recognition algorithms. Fig- 

ure 14 shows the results after word contextual analysis 

including merging broken characters. Figure 15 shows 

the results after character verification. Figure 16 shows 

the results after spelling correction. 
Most touching characters, including the italicized 

fonts, were successfully separated. The recognition ac- 

curacy was 99.85~o for the 8 page documents with 40~o 

touching characters and 99.4~o for the 4 pages con- 

taining about 60~o touching characters. The recognition 

errors did not take into account small punctuations 

such as "," and ".", and those symbols that were not 

included in our sample sets. 
Recognition errors in our system stemmed mainly 

from the following sources: 

(1) Some substitution errors, merged character 

errors were not corrected by spelling correction because 

the correct words were absent from the system dic- 

tionary, e.g. names of people or cities. 

Table 2. Summary of segmentation and recognition results 

Total number Total number Substitution Broken Merged Inserted Average 
of characters of errors errors (40~o) errors (50~o) errors (10~o) errors (10~o) recognition rate 

54,000 185 74 92 19 0 99.65~o 
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Teaching* researcher 
do mix* Smith says 
''Giving professor the opporturnty to 
improve their teaching does not obstruct a 
university's best researchers.''Stuart 
Smith told a plenary session of the 
Congress of the Canadian Association of 
Physicists (CAP) here June 17, 
smith is the author of the {1}991 report 
of the Commission of Inquiry on Canadian 
University Education. Last November, the 
university senate established committees 
to respond to that report, 
The audience of phys{i}cists received 
Smith's commentary with some skepti- 
cism and Smith found himself defending 
his recommendations during the question 
period. 
''Society believes the main function of 
a university is the dissemination of 
knowledge, but every piece of evidence 
suggests professors believe universi{t}ies 
exist for professors to do research.'' said 
Smith, a former head of the science 
Council of Canada.''But Iet's be frank. 
There is a lot of second-rate research 
being done by people who would rather be 
putting their energy into teaclIing.'' 
He said society has bought into the 
idea of lea{m}ing from scholars even though 
it would be less costly if colleges taught 
the f{i}rst two years of university. However, 
over the past 2{0} years of shrinking funding 
for universities, the number of hours 
professors spent teaching actually went 
down. 

Fig, 15. Result after character verification. 
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Teaching* researcher 
do mix* smith says 
''Giving professor the opportunity to 
improve their teaching does not obstruct a 
university's best researchers.''Stuart 
Smith told a plenary session of the 
Congress of the Canadian Association of 
Physicists (CAP) here June 17, 
smith is the author of the {1}991 report 
of the Commission of Inquiry on Canadian 
University Education. Last November, the 
university senate established committees 
to respond to that report, 
The audience of physicists received 
Smith's commentary with some skepti- 
cism and Smith found himself defending 
his recommendations during the question 
period. 
''Society believes the main function of 
a university is the dissemination of 
knowledge, but every piece of evidence 
suggests professors believe universities 
exist for professors to do research.'' said 
Smith, a former head of the science 
Council of Canada.''But let's be frank. 
There is a lot of second-rate research 
being done by people who would rather be 
putting their energy into teaching.'' 
He said society has bought into the 
idea of learning from scholars even though 
it would be less costly if colleges taught 
the first two years of university. However, 
over the past 2{0} years of shrinking funding 
for universities, the number of hours 
professors spent teaching actually went 
down. 

Fig. 16. Resulta~ers~llingcor~ction. 

(2) Some incorrect words were accepted by the spell 

checker before or while the correction procedure was 

applied. 

(3) Incorrect words with more than one substitution 

or two merged character errors were not corrected. 

In Table 2, we list the number of errors and the error 

type distribution occurred in our recognition system. 

About 30~o of the errors were broken errors. They were 

caused by deviation of the baseline detection and the 

reject threshold set for merging the broken characters. 

About 60~o of the errors were substitution errors be- 

tween 'T'  and "1", "0" and "O", etc. About 10~o of the 

errors came from merged errors that were not corrected 

by spelling correction because more than one type of 

error occur in a word. 

This is a good result for texts with many touching 

characters. However, there are many factors that govern 

the recognition rates. These factors include the quality 

of the image, image resolution, character font types, 

and the degree of overlap and touching between two 
characters. 

7. CONCLUSION 

We have developed an effective segmentation strat- 

egy for segmenting a word into its character corn- 

ponents. With multiple segmentation technique, we 

have provided robustness to this strategy, and we feel 

that this technique can be introduced into an overall 

document recognition system. These segmentation 

techniques are very efficient and can be applied in real 

time if necessary. 
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