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Abstract

The use of Environmental Microorganisms (EMs) offers a highly efficient, low

cost and harmless remedy to environmental pollution, by monitoring and de-

composing of pollutants. This relies on how the EMs are correctly segmented

and identified. With the aim of enhancing the segmentation of weakly visible

EM images which are transparent, noisy and have low contrast, a Pairwise Deep

Learning Feature Network (PDLF-Net) is proposed in this study. The use of

PDLFs enables the network to focus more on the foreground (EMs) by concate-

nating the pairwise deep learning features of each image to different blocks of the

base model SegNet. Leveraging the Shi and Tomas descriptors, we extract each

image’s deep features on the patches, which are centred at each descriptor using

the VGG-16 model. Then, to learn the intermediate characteristics between the

descriptors, pairing of the features is performed based on the Delaunay trian-

gulation theorem to form pairwise deep learning features. In this experiment,

the PDLF-Net achieves outstanding segmentation results of 89.24%, 63.20%,

77.27%, 35.15%, 89.72%, 91.44% and 89.30% on the accuracy, IoU, Dice, VOE,
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sensitivity, precision and specificity, respectively.

Keywords: Microscopic images, Transparent microorganism, Image

segmentation, Pair-wise features, Convolutional neural network, Evironmental

microorganism images

1. Introduction

The large scale of industrialization and urbanization is providing good liv-

ing conditions for human beings. However, it has brought serious environmental

pollution, including water, air and soil pollution [1], which raises the risk of dis-

eases such as lung cancer. To eliminate such pollution (pollutants), the use of

environmental microbiological method offers higher efficiency, lower cost and

harmless compared to the use of chemical methods. It involves the use of Envi-

ronmental Microorganisms (EMs) for monitoring, controlling and decomposing

pollutants. For example, Epistylis is employed as a sign of poor quality of wa-

ter and Actinophrys is used for decomposition of organic wastes in sludges [2].

Thus, identification of proper EMs and their corresponding physiological charac-

teristics is necessary. Generally, there are four methods used for identification

of EMs. First is the chemical method, which is accurate, but it creates sec-

ondary pollution of chemical reagents [3]. Second is the physical method, which

requires expensive equipment [3]. The third is the molecular biological method,

which distinguishes EMs by sequence analysis of genome [4]. This method needs

expensive equipment, is time consuming and requires professional researchers.

Fourth is the morphological method, which needs an experienced operator to

observe EMs under a microscope and give identification by shape characteristics

[5], [2]. This approach is laborious, time-consuming, inconsistent, and subject

to the moods of the operator.

In order to eliminate such drawbacks, automatic image processing techniques

are used for the identification of EMs. Image segmentation is a crucial stage in

feature extraction [6] and classification [7], so we develop a system for segmen-

tation of EM images. The majority of EM samples are obtained from complex
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environments where large amount of impurities like rubbish is present, which

leads to noisy image problems. Moreover, some essential EMs have transpar-

ent like body features such as Ceratium and Actinophrys. This renders less

information of the foreground for segmentation tasks, which leads to under-

segmentation and poor segmentation results. Furthermore, some EM images

suffer from low contrast between the foreground and background, such as Co-

dosiga and Vorticella, which leads to poor segmentation results. To jointly

overcome all segmentation challenges above, we use Pairwise Deep Learning

Features (PDLFs) concatenated on the convolutional network. The Pairwise

Deep Learning Feature Network (PDLF-Net) work flow is shown in Figure 1.

)

Figure 1: The work flow of the proposed PDLF-Net.

The steps shown in Figure 1 from (a) to (f) respectively, are described below.

(a) Weakly visible classes: In this study we use an in-house dataset which is is

also publicly available in [8] and published in [9]. It contains 21 classes of EMs.

Therefore, from 21 classes, the eight most weakly visible classes are selected.

(b) Data augmentation: To increase the dataset for training the proposed CNN,

augmentation is performed on both original weakly visible dataset and their
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corresponding ground truth images. (c) Feature extraction: Firstly, Shi and

Tomas interest points’ locations are identified on each image, then all images

are meshed into patches (of size 40 × 40 pixels) which are centred at interest

points. Then, deep learning features are extracted from each patch using the

pre-trained VGG-16 (which is pre-trained on the ImageNeT dataset) and stored.

(d) Feature pairing: Using the Delaunay triangulation, triangles are identified

from interest points, then the middle points of edges of each triangle are identi-

fied and used as reference points for pairing the feature maps ( the end of each

edge corresponds to extracted features on interest points). (e) Joint pairwise

feature maps formation: The paired features and original features (from inter-

est points) are combined to form a joint pairwise feature for each image. The

resultant joint feature map has an average dimension of 46×1000 pixels size for

each image. (f) Concatenation and training: At this last stage, concatenation

of the augmented images and their corresponding joint pairwise feature maps

are performed at different input stages of the base model (SegNet), to produce

the segmented output image.

The contributions of this paper can be folded into three as described below;

1. By extracting deep learning features from small image patches of size

40× 40 that are centered at the positions of corner interest points, we integrate

the abilities of interest points/ descriptors (hand-crafted features) and deep

learning features. The Shi and Tomas theorem is employed to determine the

interest points. This allows the network to focus on fine information which is

related to edges and corners, thus increasing the segmentation performance and

overcome the problem of low contrast and transparency of weakly visible EM.

2. Speculating that the middle point between two nearby patches (interest

points) have intermediate spatial features, we pair the feature maps of two

nearby interest points, to highlight more features around the foreground which

could not be learned by base SegNet model. The pairing is achieved using

the Delaunay triangular theorem, which concentrates the triangles inside the

foreground, thus increasing the focus of the network to learning more foreground

which overcome the segmentation challenges in weakly visible EM.
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3. We concatenate the joint pairwise feature maps to different input scales

of the encoder blocks of the base model (SegNet), which generally increase the

segmentation results of the network. The joint pairwise feature maps are formed

by combining interest point based features and intermediate pairwise features

for each image separately.

This paper is organized as follows: Section 2 gives a review of related works

on microorganisms image segmentation methods (particularly in subsection 2.1)

while the review on feature extraction and pairwise feature methods are given in

subsection 2.2. Section 3 describes in detail our proposed methods and different

key points of our contributions. Experimental results and analysis are discussed

in section 4. Lastly, conclusion and future works are given in section 5.

2. Related Works

In this section, different works related to our work are reviewed. Section

2.1 gives a review on segmentation of microorganisms images. Due to the im-

portance of feature extraction in our work, different related works on feature

extraction and pairwise features are reviewed in section 2.2. Finally, the contri-

butions of our work are given at the end of section 2.2.

2.1. Microorganims Image Segmentation

Different techniques are implemented to enhance good segmentation perfor-

mances of microorganisms. These techniques can be categorized into classical

and machine learning based techniques [1]. Table 1, gives a summary of the

categories and subcategories of microorganisms image segmentation methods.

Table 1: Categories of microorganisms segmentation methods: (ML means Machine Learning)

Categories Subcategories Specific methods examples Related works

Classical
Threshold Otsu, adaptive and global [10]
Edge based Canny, Sobel [11]
Region based Maker watershed [12]

ML
Unsupervised k-means, SOM [13], [14]
Supervised U-net, SVM, VGG-16 [15], [16], [17]
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Classical methods are the traditional techniques which have found broad

applications. For instance, in [10] outstanding results are achieved by apply-

ing Otsu thresholding in the segmentation of floc and filament. In order to

enhance shape feature extraction, an active contour method is used in [11] for

segmentation of Rotavirus-A. A seed watershed algorithm is applied in [12] for

segmentation of Bacillus subtilis bacteria in clustered biofilm. Generally, classi-

cal methods are associated with challenges such as, they can not work direct on

colour images, they need pre-processing like denoising and colour conversion and

they cannot perform well on images which have uneven background colours. To

overcome above challenges machine learning based methods have been adopted

for segmentation.

Machine learning based methods can be categorised into unsupervised and

supervised [1], as shown in table 1. Unsupervised machine learning (ML) tech-

niques build their mathematical models from a set of data that contain only

input without target output labels (segmentation can be referred to as pixel

level classification, in that context the target labels are the individual pixel

values/ranges in the ground truth mask images. Where, for the case of of unsu-

pervised ML they are not required. An example of unsupervised ML algorithms

is the k-means clustering). These techniques unsupervisely discover the data

pattern and cluster them into segments [18]. For instance, in order to automate

the detection of pulmonary tuberculosis (TB) which is caused by Mycobacterium

tuberculosis, k-means and self organizing map (SOM) clustering were proposed

in the segmentation of the basilli from Ziehl-Neelsen sputum smears [13] and

[14]. While in [19], a modified fuzzy divergence clustering method which is based

on Cauchy membership function is leveraged in the segmentation of Plasmodium

vivax from C channel CMYk color model of images containing the parasites in

blood smears. Although unsupervised methods are simple to apply, their ability

to learn the pattern of data is inadequate in transparent images, which is the

case for the weakly visible EM.

In recent years the use of supervised methods has shown promising results in

segmentation tasks. Supervised machine learning algorithms build mathemat-
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ical models from a set of labeled data. Example of supervised techniques are

convolution neural networks (CNN), support vector machine (SVM) and naive

Bayes model. Due to the ability of CNN to capture pattern of data in challeng-

ing datasets, they have been used in many works. For instance, [15] increases

the receptive field by applying 7 × 7 filter size on fully convolutional network

(FCN), this results in an outstanding segmentation performance of 99.7% accu-

racy on feline calicivirus images. In [16], [17], in order to tackle the challenge

of imbalance between the foreground and background, a dice coefficient is ap-

plied as a loss function in U-net for segmentation of the rift valley virus and

Leishmania parasites. To exploit fully the benefits of CNN, a large amount of

training dataset is needed. One of the challenges we have in the weakly visible

EM is the scarcity of datasets, However the innovation of strong models such

as SegNet [20] and U-net [21] which are capable of working in small number of

datasets, gives us a suitable option for our dataset. Moreover, SegNet shows

more superiority for having few parameters and hence faster to train, because

it passes pooling indeces to the upsampling layers and does not use the heavy

deconvolution layers. U-net has been applied in many works for segmentation

of EM. Nevertheless, to the best of our knowledge no any work has been done

on segmentation of EMs using SegNet, except for one work which uses SegNet

directly without any network changes from the original one on sementation of

yeast cells [22]. Thus, in this paper we attempt to leverage SegNet for segmen-

tation of weakly visible microorganisms.

2.2. Feature Extraction and Pairing of Features

Feature extraction is an important stage in the image processing pipeline. In

most cases features are used in image classification and object matching works

such as [23], [24] and [25]. Mainly there are two categories of feature extraction

methods, hand crafted and feature learning [26], as indicated in table 2.

Hand crafted features are manual features which are extracted based on prior

knowledge. For example, color (ie. RGB, HSV, LAB, HUE color modes), tex-

ture which is defined by the spatial distribution of pixels in the neighbourhood
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Table 2: Categories of feature extraction methods

Categories Specific feature (techniques) exam-
ples

Related works

Hand crafted Geometric features (Area, perime-
ter), Local features (SIFT, SURF),
Colour, Texture

[27], [28], [29], [30]

Feature Learning Deep learning (VGG-16, AlexNet,
ResNet), BoVW

[31], [32], [33], [34]

of an image (ie. energy, entropy, homogeneity, correlation, and contrast [35]) ,

geometric features (area, perimeter and length), global shape (ie. Krawtchouk

moment) and local shape features (ie. SURF and SIFT). Local features are the

collection of basic and frequent features that can be used to estimate a class’s

shape knowledge as they learns from finite samples of training data. Besides,

two classes which are fairly similar cannot be distinguished by local features

alone. Utilizing global features convey greater discriminative information of a

class domain by making use of more specific and uncommon features [36]. Hand

crafted features, particularly local features (SIFT and SURF) are very useful in

detection of interest points. Interest points are distinctive spots/regions that

help to distinguish between different objects (images). [37]. Corner, blob, and

ridge descriptors are examples of interest points. They play an important role in

image classification and matching tasks. For example, in [27], [28] image match-

ing of EMs is achieved used SIFT features, where these features are derived from

corner interest points of 10 channels of different color modes. In [29] edge and

Fourier descriptors are applied for classification of EMs using SVM classifier.

Interest points (descriptors) are useful in classification and image matching due

to the fact that they are invariant to changes of illumination, rotation, and

translation. Besides, local discriminant information content is abundant in the

local image structure surrounding the interest point [38]. Thus, we leverage

the corner descriptors’ locations in enhancing the segmentation of weakly visi-

ble EM. However, corner descriptors (hand crafted features) are not sufficient

to present diverse appearance of weakly visible EM. Therefore, we complement

them by using deep learning features (feature learning).
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Feature learning (features) are high dimension features generated by the

composition of local features such as SIFT. Bag of visual words (BoVW) [39],

sparse coding (which analyse a large number of images to learn set of bases where

each expresses a characteristics pattern of a patch [40]), and deep learning fea-

tures are examples of feature learning [41]. In most cases deep learning features

are genereted from training the deep (convolutional) neural networks such as

VGG-16, ResNet, and AlexNet. Deep learning networks represent high level

features composed from low level ones. They have superior descriptive power

than hand crafted features methods [42], because they replicate the feature ex-

traction capability of visual cortex in human brain [43]. VGG-16 is among the

most superior and used models in segmentation and classification tasks because

of its high ability in learning features. For example, in [31], VGG-16 achieves an

outstanding performance on classification of viral pneumonia and bacteria from

x-ray images. In [2], a VGG-16 pre-trained is used as a base model for segmen-

tation in the Deeplab-VGG, this is achieved by replacing the fully connected

layers with average pooling, three convolutions and interpolation layer, then use

it for initial segmentation of EMs. Leveraging the capability of VGG-16, in this

study we employ it in extracting the deep learning features at every location

of the detected corner descriptor. Because of its robustness and simplicity the

Bag of visual words (BoVW) is among the most used feature learning technique.

However, because of the orderless representation of local features in it, it does

not achieve maximum performance. To remedy that and improve the perfor-

mance of BoVW, some studies have considered spatial arrangement of features

to discover higher order in BoVW for object matching and classification [44],

[45]. Among the methods of arranging spatial features is by pairing of close

visual words [46]. For instance, in [34] and [47] pairing is done on visual words

(where Prior to pairing, feature descriptions are mapped to the visual words,

and then pairing is carried out on the visual words). Yet, the underlying dis-

tribution of pairs of neighboring local feature descriptors appears to be ignored

by the pairing of visual words. To address that, [32] and [33] suggested that the

pairing of spatial close local descriptors (such as SIFT) can be done before the
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building of BoVW. This seem to achieve maximum improvement on classifica-

tion of challenging dataset. Motivated by the concept of pairing features and to

the best of the authors’ knowledge, there is no any work which has been done

on pairing of deep learning features for segmentation task, thus in this study we

pair deep learning features generated from corner interest points’ locations and

concatenate them to the base model for segmentation of weakly visible EMs.

3. Methods

This section desctribes in details the novel techniques used in this paper.

The main focus being on tackling the segmentation challenges on weakly visible

EMs. These are EMs which show poor segmentation results in our initial tests

using the original base model SegNet. Example of weakly visible EMs are shown

on figure 2.

(a) Actinophrys (b) Codosiga (c) Epistylis

(d) Paramecium (e) Rotifera (f) Keratella Quadrata

Figure 2: Weakly visible EMs

As observed in figure 2, weakly visible EMs suffer from low contrast, trans-

parency and indistinct boundary between background and foreground. To be

able to achieve better segmentation results, the following techniques are applied.
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3.1. SegNet

SegNet is one of the powerful models in computer vision for semantic seg-

mentation [20]. It consists of the encoder and decoder, as shown in figure 3.

Figure 3: SegNet, a base model for the proposed network.

The encoder of the SegNet consists of 13 convolutional layers similar to VGG-

16, without the last fully connected layers. Thus, the encoder network is largely

reduced in parameters compared to VGG-16 and can easily be trained. Each of

the 13 encoder layers constitutes of a series of convolutional layer with 64 filter

banks (contrary to the original SegNet which use 7×7 filter size, we apply 5×5 to

reduce the receptive field suitable for small size of EMs in images). Followed by

batch normalization. Then a ReLu activation function f(x) = max(0, x) which

eliminates negative values follows. To achieve translation invariance over small

spatial shift of input images, max-pooling with window size of 2×2 and stride 2

(non overlapping window) follows, which results into output being sub-sampled

by the factor of 2 after each step. The application of 13 max-pooling down sam-

pling layers in the encoder achieves more robust pixel level classification but

there is a loss in spatial resolution of feature maps (boundary details). To over-

come this, the boundary information in the encoder feature maps are captured

and stored before next sub-sampling in each stage by storing the max-pooling

indices which are more efficient for restoring boundary information and require

less memory. The decoder network (which has similar convolution layers in

up sampling manner) upsamples the input feature maps using the memorized
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max-pooling indices from corresponding encoder feature maps. Each upsam-

pling is followed by convolution and batch normalization layer to produce dense

features that are similar in size to the corresponding inputs at the encoder. Fi-

nally, the softmax is used as the classification layer. We utilize SegNet as the

base model for binary segmentation of weakly visible EMs. For all experiments

we use binary cross entropy as a loss function and SGD optimizer with learning

rate of 0.01 and momentum of 0.9. Although ReLu has shown some drawbacks

such as decreasing the performance in the gradient descent operations because

all gradient values would be zero when the activation values are zero [48], we

still opt to use it instead of LeakyReLu which provides effective learning even

when the values of activation are zero. This is because during our preliminary

experiments on activation functions, the average results for ReLu were slightly

highter than LeakyReLu by the margin of 0.19% accuracy.

3.2. Feature Extraction

Due to the challenges on weakly visible EMs dataset, the base model misses

fine information from images during training, which gives poor segmentation

results when using SegNet alone. Therefore, we use external pairwise features

to enhance the performance of the base model by combining the advantage of

interest points’ locations (hand crafted features) and deep learning features.

Specific techniques are describes below;

3.2.1. Shi and Tomas Intest Points’ Location

In order to enhance the segmentation results, we choose to use corner interest

points, because from test/initial experiments the base model misses tiny outer

corners and boundaries on the weakly visible EMs due to low contrast and

transparency on images. A corner is as a place or point in the image where

a small change in location causes a significant change in intensity in both the

horizontal (X) and vertical (Y) axes. It can also be described as the intersection

of points on an object’s contour edges that preserve significant object’s features

[49]. Shi and Tomas corners theorem is one the most superior corner theorems

12



[50]. Simply the Shi and Tomas theorem operates on three steps;

Firstly, it is to find the window which produces high variation in intensity

with a small change in the X and Y -axis. Numerically, to find a window that can

produce large variation, let the window be centred at (x, y) and an intensity at

this point be I(x, y). I(x, y) is an individual intensity at a position which varies

from 0 to 255 for gray level image. When the window is shifted by (u, v), the

intensity at the new location will be I(x+u, y+v) and [I(x+u, y+v)− I(x, y)]

is the difference in intensity due to shift. For a corner, this difference must

be high. Therefore we maximize this term by differentiating it with respect

to x and y. Letting w(x, y) be the weights of pixels over the rectangular or a

Gaussian window, Then, E(u, v) which is the difference between the original

and the shifted window, is defined as :

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]
2

(1)

Applying the Taylor series with only the first order, which is

T (x, y) = f(u, v) + (x− u)fx(u, v) + (y − v)fy(u, v).. (2)

Rewritting the shifted intensity using the above formula:

I(x+ u, y + v) = I(x, y) +
d(x, y)

dx
(u) +

d(x, y)

dy
(v)

(3)

Let:
d(x,y)

dx = Ix , and,
d(x,y)

dy = Iy

Ix and Iy are image derivatives in X and Y directions respectively. Then,

E(u, v) =
∑
x,y

w(x, y)[I(x, y) + Ixu+ Iyv − I(x, y)]
2

E(u, v) =
∑
x,y

w(x, y)[Ixu+ Iyv]
2

(4)

Expanding the above equation,

E(u, v) =
∑
x,y

w(x, y)[I
2
xu

2
+ I

2
yv

2
+ 2IxIyuv] (5)
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Taking u,v out and rewritting in matrix notation, the equation becomes;

E(u, v) = (u, v)M

u
v

 (6)

where,

M = w(x, y)


∑
x,y

I
2
x

∑
x,y

IxIy∑
x,y

IxIy
∑
x,y

I
2
y


Where, M is a symmetric 2× 2 matrix whose eigenvalues are used to determine

whether the scanned window contains a corner.
Secondly, Calculating the score value S associated with scanned window [50].

It is given by;
S = min(λ1, λ2) (7)

where, λ1 and λ2 are eigenvalues of the matrix M .

Thirdly, is to determine points along the shift of the window that can be

considered as corners. For the point to be considered as corner, the score value

S must be greater than the specified value (if both the λ1 and λ2 are greater

than the minimum threshold values respectively).

Shi and Tomas theorem show superiority by having stability, invariant to

scale changes, invariant to translation and invariant to rotation [50], moreover,

comparing with Harris corner points which we applied in our previous work [28],

Shi and Tomas gives better results and more useful interest points than Harris’.

Thus, we use it determine corner points on every image. Example of images

with corner points indicated on them are shown in figure 4.

(a) Vorticella (b) Stylongchia (c) Rotifera

Figure 4: Shi and Tomas corner points (in green) detected on weakly visible EMs

As can be seen from the figure 4, the interest points are capable of identify-
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ing corner points that contain unique information about the EMs, which were

ignored by the base model (SegNet) during our initial tests for the base model.

It should be noted that, in this study we limit the number of corner points

between 10 to 15 (due to computational complexity of the feature extraction

model). Then the coordinates of each corner point are identified and stored. We

take advantage of the corner points by meshing each image into patches of size

40×40 which are centred at each corner points as shown in figure 6 part (a) and

(b). Then from each patch, we extract deep learning features using convolution

neural network VGG-16.

3.2.2. VGG-16

VGG-16 is a very deep convolution neural network for image recognition,

proposed by Simonyan et al in [51]. It is upgraded from AlexNet by replacing

large sized kernel filters (11 and 5) with 3 × 3. It has achieved high accuracy

in many image classification tasks. It contains 21 layers with only 16 weight

layers, which include 13 convolution layers with very small receptive fields of

3×3 (which gives its capability to capture the pattern of tiny information fields),

followed by max-pooling layers of size 2 × 2 and stride 2 which decreases the

spatial resolution of the feature maps. In the end there are three fully connected

layers, which combines all learned features from previous layers and generalize

them for classification. ReLu activation function is applied to all hidden layers.

Lastly is the classifier layer. In order to leverage the fully connected (FC) layers,

we extract deep learning features on the last FC layer. The dimension of each

extracted feature is about 1 × 1000 pixels size. The figure 5 shows the VGG-16

network layers and the point form which deep learning features are extracted.
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Figure 5: VGG-16 network showing feature extraction layer (fully connected layer 3)

Due to the small number of weakly visible EM which can not train the

VGG-16 from scratch for better results, we use the transfer learning concept

to optimize the VGG-16 extracted features. VGG-16 network, pre-trained on

the ImageNet dataset has proven success in many works when fine turned on

other datasets for classification [52]. Therefore, we fine tune the pre-trained

VGG-16 using weakly EMs and extract deep learning features. For each image,

10 patches of size 40×40 are meshed out and from each patch deep learning fea-

tures are extracted (each patch is centred at interest points’ coordinate). Then

10 features for each image are stored parallel to their corresponding interest

points’ coordinates. Figure 6 summarizes the process of deep learning features

extraction.

3.3. Feature Pairing

To pair feature maps which have been extracted from the interest points’

coordinates, we use the Delaunay triangulation theorem.

3.3.1. Delaunay Triangulation (DT) Theorem

DT theorem is one of the most robust graphical theorems for the represen-

tation of data. It is the triangulation theorem which forms triangles (Delaunay

triangles) by connecting each data (coordinates) to its nearest neighbour, such

that the circumcircle associated with each triangle does not contain a point in
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Figure 6: The work flow for extraction of deep learning features from EM images (a) detection
of interest points’ coordinates indicated by yellow colour on the original image, (b) meshing
of patches which are centred at interest points (c) deep learning feature extraction (d) storage
of features and interest points’ coordinates

its interior [53]. Geometrically, Delaunay triangulation for a given set A of dis-

crete data in a plane is a triangulation (DT), such that no data in A is inside

the circumcircle of any triangle in DT(A). Delaunay triangulation maximizes

the minimum angle of all the angles of the triangles in the triangulation [54].

It is very effective for presentation of scattered data as it concentrates all data

inside the major circumcircle formed by the most outer triangle as shown in fig-

ure 7 (b). Due to strong presentation power, it is used in many image matching

works [55], [56]. Moreover, it is tolerable to spatial displacement of data (image

objects) because it keeps the same association of the nearest objects within the

image, regarded that the distortion is uniform all over the image.

The Delaunay triangle edges are formed by connecting nearest neighbour

data points. This means two points (vertices) which share the same edge (line)

have close related characteristics (features). Thus, the middle point of the

edge contains features which are an average of the edge end point features.

Although (from our experiments) few middle points might be out of the EM’s

body which will have non similar characteristics between the edge end points;

these points are very few (less than 5% of all the middle points). More than

95% of the middle points are within the main body of the EM (foreground) and
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(a) (b) (c)

Figure 7: Pairing of features (a) Detection of interest point coordinates which are indicated in
blue colour, (b) application of Delaunay triangulation, (c) pairing of features at middle points
of edges which are indicated in red. Blue coloured points are interest points

have intermediate characteristics between the corresponding edge end points as

it can be observed in figure 7 (c). Owing to this, we pair the features which

correlates to the vertices sharing same edge, so as to get the features of the

middle point of edges. By so doing, we increase the foreground’s influence

during segmentation as shown in figure 7 (c). The pairing of features is done by

using the geometric principle of the the middle point of straight line, because the

edges of the triangles are straight lines. This is done by averaging the two feature

vectors (maps) corresponding to each edge end coordinates as described in the

equation 8 and 9. The edge coordinates are the interest points’ coordinates with

their corresponding features (1 × 1000 dimension) extracted from patches.

Let the coordinate of the two end points of an edge be represented by (X1, Y1)

and (X2, Y2). The corresponding feature maps of the patches centred at these

two points be F1 and F2.
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The middle point coordinate Xm, Ym is given by;

Xm, Ym =
(X1 +X2)

2
,

(Y1 + Y2)

2
(8)

The pairwise feature map Fm which corresponds to middle point Xm, Ym is
given by;

Fm =
(F1 + F2)

2
(9)

In average 36 to 43 pairwise features (Fm) are formed from 10 original

features for each image.

3.4. Joint Pairwise Feature Formation

At this stage, we join the features formed on the interest points’ coordinates

(F1, F2...) and pairwise features (Fm...). The average amount of pairwise

features for each image is between 36 and 43. 10 features originate from interest

points. Thus, we form the joint feature maps by appending these features

vertically. This joining style has shown best results from the tests done during

experiments. The average joint feature maps sizes range from 46 × 1000 to

53 × 1000 for different images. Therefore, each joint feature map corresponds

to one original image. Because the dominant features are pairwise features, we

name the features as joint pairwise features (Pairwise features). After formation

of joint features, they are stored parallel to their original images and ground

truth images.

3.5. Concatenation and Training

Both the original images and their corresponding joint pairwise features

point to similar ground truth (GT) images. During training, the original images

and corresponding ground truth images are fed to the input (first block) of the

base model (SegNet). The joint pairwise features are resized at different sizes

to fit the spatial dimensions of the encoder blocks of the the SegNet. These

dimensions are 384 × 512, 192 × 256, 96 × 128, 48 × 64 and 24 × 32 for first,

second, third, fourth and fifth blocks respectively. Then we concatenate the joint
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pairwise features at different blocks of the encoder in the SegNet, as shown in

figure 8 of the general proposed network.

Figure 8: The proposed network on concatenation of joint pairwise features (in red) to the
base SegNet encoder blocks (in yellow)

We apply different options for concatenating the joint feature maps to the

SegNet model. Example of the options are, concatenation at block 1 only, block

2 only, block 3 only, block 1 and 2 only, block 3 and 5 only, block 1, 2 and 5

only.

4. Experiment

4.1. Experimental Settings

4.1.1. Dataset

During experiments, we use Environmental Microorganism Dataset 5th Ver-

sion (EMDS-5), which is a newly released version of EMDS. The dataset contains

21 classes of EMs. However, in this research, we select only 8 classes which show

poor performance on the base model SegNet during our initial experiments.

We name these images as weakly visible EMs. Particularly, these classes are

Actinophrys which is denoted as weak data class 1 (DC1), Codosiga denoted
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as DC2, Epistylis denoted as DC3, Paramecium denoted as DC4 and Rotifera,

Vorticella, Keratella Quadrala, Stylongchia denoted as DC5, DC6, DC7, DC8

respectively. Each class contains 20 original microscopic images and their cor-

responding ground truth (GT) images. Therefore, in total there are 160 EMs.

It should be noted that every image contains one microorganism in it (not in

colonies) except for class DC3 and DC4 where some images contain two mi-

croorganisms of the same species. An example of such EMs can be seen in Fig.

11. True corners of the foreground are most important in this research. Thus,

in order to reduce the possibility of false corners we crop all images which have

outer highlighted square frames at the edges of the images and remain with only

the true background and foreground. Then all images are resized to 360 × 480

pixel sizes so as to fit in the SegNet input layer size.

4.1.2. Training, Validation and Testing Dataset

The dataset is divided into training, validation and testing in ratio 1:1:2

respectively. However, in order to overcome the overfitting due to small dataset

and improve the performance of our segmentation models, we applying augmen-

tation on all original weakly visible EM and their corresponding GT images. We

augment by rotating them by 90, 180 and 270 degrees, and flipping them verti-

cally and horizontally. This result into 960 images in total while having 30:30:60

images for each class for training, validation and testing respectively. Then from

each RGB image joint pairwise feature maps are extracted and distributed into

same ratio 30:30:60 corresponding to each class.

4.1.3. Experimental Environments

To conduct the experiments, we use a work station with Intel (R) Core(TM)

i7-7700 CPU with speed of 3.60Hz. RAM of 32GB and NVIDIA GeForceGTX

1080 8GB. For implementation of the networks, we use python 3 and Keras

framework with Tensorfow as backend.
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4.2. Evaluation Metrics

In order to evaluate quantitatively and compare the segmentation results of

different approaches, we use accuracy (Acc), Dice, intersection of union (IoU,

volumetric overlap error (VOE), Sensitivity (Sens), Precision (Prec) and Speci-

ficity (Spec). Accuracy: measures the percentage of pixels in an image which

are correctly classified. Accuracy and specificity sometimes mislead results

on segmentation when the object of interest is small compared to background

(which is the case for our dataset). Because these measures are biased mainly

on how well negative pixels (background) is predicted. Thus, we use more than

one metric for correct analysis of the results. Dice coefficient: also known

as F1 score, is widely used for evaluation of segmentation performance. The

definition of Dice is given in table 3. Intersection over union: Also known as

Jaccard coefficient, measures the percentage overlap between the target mask

and the prediction output. Volumetric overlap error: Is the complement of

Jaccard coefficient. Table 3, summaries definition of these metrics.

Table 3: Definitions of used metrics

Metric
Definition Metric Definition

Acc,
Spec

TP+TN
TP+FP+TN+FN , TN

TN+FP Dice
2×|Wprd

⋂
Wgt|

|Wprd|+|Wgt| = 2×TP
2×TP+FP+FN

IoU,
Sens

TP
TP+FP+FN , TP

TP+FN VOE,
Prec

FP+FN
TP+FP+FN , TP

TP+FP

From table 3, Wprd represents the predicted foreground by the model. Wgt

represents the foreground in the ground truth image. During segmentation of

the EM, images are partitioned into two class pixels representing the foreground

(the EMs) and the background. True positive (TP): is an outcome when the

model correctly predicts the positive class. True negative (TN): is when the

model predicts the negative class correctly. False negative (FN): is the outcome

when the model predicts negative while it is actually positive. True negative

(TN): is when the model predicts negative and it is actually negative. All the
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evaluation metrics are defined based on these terms TN, TP, FN, FP as shown

in table 3. For analysis purposes, the greater the values of accuracy, Dice, IoU,

sensitivity, precision and specificity indicate better segmentation results and the

smaller the value of VOE indicates better results and vice versa.

4.3. Evaluation of the Pairwise Deep Learning Features Network (PDLF-Net)

on small Dataset Without Augmentation

Because the PDLF-Net originates from SegNet, therefore in this section we

compare the segmentation performance of the PDLF-Net and SegNet on a small

dataset (Each class having 5:5:10 dataset for training, validation and testing re-

spectively). In our initial experiments we examined the performance of the

PDLF-Net on different options of concatenating the joint pairwise features to

different blocks of the encoder, such as concatenation at one block only of the

PDLF-Net encoder as shown in figure 8, two blocks simultaneously, three blocks

simultaneously, four blocks simultaneously and five block simultaneously. Refer-

ring to figure 8, these concatenation options can be described as concatenation

at block 1 only, block 2 only, block 3 only, block 4 only, block 5, block 1 and

2 only, block 1 and 3 only following this order up to block 1, 2, 3, 4, and 5

only. We found that the performances are better when the concatenation is

only at one block either block 1, block 2, block 3, block 4 and block 5 only. The

increase in the number of concatenation blocks simultaneously leads to over-

segmentation. Thus, we focus our research on concatenation at one block for

all other experiments which we present in this paper. We compare and examine

the performance of the PDLF-Net on small dataset of weakly visible classes by

treating each class alone. Table 4 shows the performance of the PDLF-Net with

concatenation at different blocks and the original SegNet.

From table 4, the application of pairwise features show improvement of the

segmentation results. Block 5 and Block 2 results of the PDLF-Net are presented

because they show consistent improvement in all classes compared to other block

options. This is because, the deep layers at block 5 (bottom neck layers) in the

deep network (PDLF-Net) are responsible for learning specific features of the
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Table 4: Segmentation results of the original SegNet and PDLF-Net while concatenation
is at block 2 and 5, on evaluation small dataset. The results for each weakly visible class
1 to 8 (DC1 - DC8) are given separately in each row. The evaluation metrics are accuracy
(Acc), intersection of union (IoU), Dice and volumetric overlap error (VOE), sensitivity (Sens),
precision (Prec) and specificity (Spec). Red coloured values are maximum/best achieved values
in each metric

SegNet [%] Block 2 [%]
Data IoU Dice VOE Sens Prec Spec Acc IoU Dice VOE Sens Prec Spec Acc
DC1 42.10 59.25 57.91 50.17 90.80 50.00 72.55 45.00 62.05 55.00 65.00 90.12 65.57 78.76
DC2 42.07 59.23 57.93 60.01 89.60 60.63 76.80 37.72 54.67 62.28 77.08 96.58 77.06 59.15
DC3 36.20 53.15 63.20 65.02 71.19 65.00 69.36 37.82 54.86 62.18 67.43 73.16 67.40 71.35
DC4 38.36 55.44 61.64 62.05 80.61 63.06 73.93 40.95 58.05 59.27 79.31 80.86 79.00 80.27
DC5 37.43 54.30 62.57 65.48 74.16 64.00 71.34 45.85 62.78 54.15 65.40 85.80 65.51 77.29
DC6 36.41 53.37 63.59 73.70 96.05 72.80 69.47 40.73 57.67 59.27 81.15 83.18 81.56 82.37
DC7 37.03 53.81 62.97 61.91 63.48 62.20 63.21 32.06 47.76 67.94 55.06 56.01 56.06 55.91
DC8 40.50 57.63 59.50 82.47 83.29 82.00 82.97 43.23 60.33 56.77 69.81 81.60 70.00 76.76

Block 5 [%]
Data IoU Dice VOE Sens Prec Spec Acc
DC1 43.50 60.63 56.50 60.12 89.10 60.00 76.38
DC2 42.46 59.61 57.54 61.35 91.83 60.55 77.50
DC3 38.15 55.23 61.85 70.00 78.42 70.15 75.43
DC4 37.71 54.61 62.29 67.51 72.47 66.51 65.56
DC5 38.88 55.75 61.12 84.80 91.16 84.60 72.45
DC6 37.07 53.96 62.93 69.56 75.92 69.65 73.75
DC7 35.08 53.81 64.92 82.38 82.38 82.38 59.34
DC8 41.14 58.27 58.86 67.80 81.14 68.79 76.02

foreground, therefore adding the joint pairwise features at block 5 emphases

more the network to focus on learning the foreground (EM) thus improves the

performance. The application of pairwise features on different blocks improves

the segmentation performance by 6.21% acc, 2.9% IoU, 2.8% Dice, 14.83% sens

and 15.57% spec on weak data class 1 (DC1). 6.06% acc, 1.95% IoU, 2.08%

Dice, 4.98% sens, 7.23% prec and 5.15% spec on weak data class 3 (DC3).

6.30% acc, 2.59% IoU, 2.61% Dice, 17.26% sens, 0.25% prec and 15.94% spec

on DC4. 5.00% acc, 8.00% IoU, 8.48% Dice, 19.32% sens, 17.00% prec and

20.6% spec on DC5. 12.90% acc, 4.32% IoU, 4.30% Dice, 7.45% sens and 8.76%

spec on DC6. 2.73% IoU and 2.70% Dice on DC8. (The comparison above is

obtained by taking the original SegNet result for a particular dataset class as a

reference and compare it with maximum value of the PDLF-Net result of any

block in that particular data class). The average performance results of the

original SegNet and PDLF-Net at block 2 and 5 on all classes are given in figure

9 (This is obtained by averaging the results of all classes on a particular method

separately and drawing the performance chart for each method).

From the general figure 9, even though the number of dataset for training
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Figure 9: Comparison between PDLF-Net (when concatenation is applied on block 2 and
block 5) and the original SegNet on small weakly visible dataset (using validation set)

is very small the PDLF-Net shows improvement in IoU, Dice, VoE, Sens, Prec,

Spec and Acc by about 1.66%, 1.50%, 1.55%, 5.34%, 1.65%, 5.37% and 0.28%

respectively. Generally the PDLNet shows improvement, however, the individ-

ual errors (VOE) are still high as shown in table 4. This is due to the small

dataset which cause the networks not to generalize well during training. In order

to reduce such errors and increase segmentation performance more, we apply

augmentation on all weakly visible dataset and their corresponding GT images.

4.4. Evaluation of the PDLF-Net on Augmented Dataset

In order to enhance the performance of PDLF-Net, we augment all the

weakly visible EMs and their GT images. Then joint pairwise features are

extracted from each image and concatenated to different blocks. Each block

is trained and tested independently for each dataset class. Table 5 shows the

results of the most performing network concatenation configurations.

From table 5, there is an overall improvement of segmentation performance

contributed by all blocks. Comparing with the original SegNet, the PDLF-Net

shows improvement by an increase of 2.1% acc, 4.11% IoU, 2.90% dice, 2.96%

sens, 3.15% prec and 2.96% spec on weakly visible data class 1 (DC1). 1.51%

acc, 4.28% IoU, 3.33% dice, 3.08% sens, 0.29% prec and 3.20% spec on DC2.
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Table 5: Segmentation results of the original SegNet and PDLF-Net while concatenation is at
block 2,3 , 4 and 5, on validation augmented dataset. The results for each weakly visible class
1 to 8 (DC1 - DC8) are given separately in each row. Red coloured values are maximum/best
achieved values in each metric

SegNet [%] Block 2 [%]
Data IoU Dice VOE Sens Prec Spec Acc IoU Dice VOE Sens Prec Spec Acc
DC1 63.97 77.92 36.03 91.25 93.91 91.26 92.16 63.95 77.94 36.05 85.15 97.06 85.20 91.26
DC2 56.93 72.55 43.07 73.92 96.57 73.90 85.65 59.32 74.44 40.68 77.00 96.59 77.10 87.16
DC3 57.54 72.92 42.46 82.00 85.07 82.42 83.99 54.91 70.64 45.09 81.38 81.70 81.48 81.55
DC4 58.74 73.78 41.26 85.00 85.29 85.14 85.29 65.45 79.04 34.55 88.32 88.34 88.00 89.74
DC5 64.85 78.64 35.15 91.00 90.80 90.71 91.72 63.48 77.60 36.52 87.90 92.30 86.96 89.81
DC6 68.78 81.48 31.22 95.80 95.90 95.00 95.86 69.11 81.70 30.89 95.65 96.77 96.56 95.57
DC7 60.43 75.21 39.57 86.01 87.38 85.30 87.39 63.89 77.88 36.11 90.00 91.57 90.57 90.58
DC8 57.09 72.31 42.91 83.83 82.05 82.90 83.83 62.18 76.47 37.82 88.97 89.97 87.81 88.98

Block 3 [%] Block 4 [%]
IoU Dice VOE Sens Prec Spec Acc IoU Dice VOE Sens Prec Spec Acc

DC1 66.28 79.71 33.72 94.21 94.30 94.22 94.26 67.57 80.59 32.43 80.43 95.87 86.46 91.60
DC2 61.21 75.88 38.79 73.40 96.40 73.34 85.08 59.73 74.76 40.27 76.00 96.86 75.93 86.73
DC3 58.48 73.72 41.52 86.80 86.43 86.18 86.33 57.71 73.08 42.29 84.54 84.79 84.00 84.64
DC4 61.53 76.02 38.47 88.00 87.00 86.98 86.98 62.02 76.35 37.98 86.10 87.33 87.22 87.98
DC5 62.19 76.54 37.81 90.74 90.75 90.74 88.79 68.03 80.88 31.97 91.44 91.44 91.42 90.69
DC6 69.31 81.85 30.69 95.60 95.60 95.90 94.72 60.27 75.18 39.73 73.00 95.01 72.56 84.19
DC7 61.14 75.74 38.86 87.95 88.01 87.90 87.96 59.50 74.26 40.50 86.46 86.47 86.40 86.47
DC8 62.68 76.77 37.32 88.06 88.86 88.00 88.09 61.54 75.94 38.46 87.53 88.54 87.50 87.54

Block 5 [%]
IoU Dice VOE Sens Prec Spec Acc

DC1 68.08 80.82 31.92 94.10 94.16 94.00 92.43
DC2 60.53 75.37 39.47 75.50 96.80 75.50 86.36
DC3 57.12 72.62 42.88 78.33 86.56 79.57 82.82
DC4 64.19 78.04 35.81 87.00 87.12 86.45 86.77
DC5 61.95 76.64 38.05 85.95 90.93 86.00 88.71
DC6 68.81 81.49 31.19 96.10 97.90 95.11 95.32
DC7 63.19 77.37 36.81 90.90 90.89 89.89 90.42
DC8 62.18 76.48 37.82 88.87 88.89 88.87 88.87

2.34% acc, 0.94% IoU, 0.8% dice, 4.80% sens, 1.49% prec and 3.76% spec on

DC3. 4.45% acc, 6.71% IoU, 5.26% dice, 3.32% sens, 3.05% prec and 2.86%

spec on DC4. 3.18% IoU, 2.24% dice, 0.44% sens, 1.5% prec and 0.71% spec on

DC5. 0.53% IoU, 0.37% dice, 0.30% sens, 2.00% prec and 1.56% spec on DC6.

3.19% acc, 3.46% IoU, 2.67% dice, 4.89% sens, 4.19% prec and 5.27% spec on

DC7. 5.15% acc, 5.59% IoU, 4.46% dice, 5.18% sens, 7.92% prec and 5.97%

spec on DC8. The average performances on all dataset for original SegNet and

PDLF-Net are given in figure 10.

Figure 10 shows that the average improvement of about 1.09% acc, 2.20%

IoU, 1.75% dice, 2.00% sens, 2.17% prec and 2.15% spec is observed on seg-

mentation using PDLF-Net compared to the original SegNet. The overall aver-

age maximum results achieved by the PDLF-Net are 89.33%, 63.26%, 77.35%,

36.74%, 88.10%, 91.79% and 87.48% by acc, IoU, Dice, VOE, sens, prec and spec
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Figure 10: The comparison between average performance of the PDLF-Net (when concatena-
tion is applied on block 2,3,4 and block 5) and the original SegNet on all classes of augmented
weakly visible EMs. Using validation sets

respectively. Moreover, the visual comparison of segmented images on original

SegNet and PDLF-Net at blocks 2, 3, 4 and 5 are given in figure 11.

Comparing the observation performance from figure 11, the PDLF-Net shows

better segmentation results. For instance, in data class DC3 and DC4 (2nd and

3rd rows from the top) SegNet in (c) has not been able to show the foreground

while there is a good segmented output of the same image by PDLF-Net in (e)

and (f). In DC8 (last row), SegNet over-segments the image while good visual

results are observed by PDLF-Net when concatenation of pairwise feature is

at block 2, 3 and 5. Generally, the visual results show great improvement of

segmentation results when using PDLF-Net.

4.5. Evaluation of the PDLF-Net on Test Dataset

To evaluate more the effectiveness of the PDLF-Net, we examine it on the

test dataset. The test dataset contains 480 images, which are twice in number to

the training and validation sets. The average segmentation performance of the

PDLF-Net on test dataset for all classes is shown in figure 12. The graph shows

a comparison of both the test set and validation set for each block performance.
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(a) (b) (c) (d) (e) (f)

Figure 11: Example of segmented images on weakly visible dataset. column (a) are original
images, (b) ground truth images, (c) segmented images by original SegNet, (d) segmented
images by PDLF-Net when concatenation is at block 2 (e) concatenation at block 3 or 4, (f)
concatenation at block 5. Form top to bottom are different classes, the top most row is of
weakly data class 1 (DC1), second row DC3, followed by DC4, DC5, DC6, DC7 and DC8
respectively.
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Figure 12: The segmentation performance of PDLF-Net on both test set and validation set.
Block 2(V), Block 3(V), Block 4(V) and Block 5(V) are results for validation sets respectively.
Block 2(T), Block 3(T), Block 4(T) and Block 5(T) are results for test sets respectively

From figure 12, each pair of bars from left to right, are of similar configuration

(blocks) applied on validation and test sets respectively. The performance of the

PDLF-Net is almost similar in both validation and test sets although the number

of test dataset is twice. This shows the great effectiveness of the PDLF-Net

on unseen dataset (test set). The highest average performances of PDLF-Net

on test dataset are 89.24% accuracy, 63.20% IoU, 77.27% Dice, 35.15% VOE,

89.72% sensitivity, 91.44% precision and 89.30% specificity .

4.5.1. Evaluation of the model performance on more challenging Test Datasets

In order to evaluate the performance of the PDLF-Net on more challenging

dataset, we test it on images which have been subjected to rotation, illumina-

tion change and additional noise as indicated in the figure 13. To observe the

improved capability of the PDLF-Net on learning image features on challenging

dataset, we compare it with the base model SegNet.

It can be observed from the graphs on figure 13 that the PDLF-Net per-

forms better on all challenging images with an average improved performance

of more than 2.00% against SegNet on each metric. This justify the capability

of the PDLF-Net to capture more spatial features in noisy, transparent and low
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Figure 13: Performance of the PDLF-Net on test EMs images which have been subjected to
rotation of 90,180 and 270 degrees. Additional of Gaussian noise by 7% and 13%. Additional
of salt-pepper noise by 5% and 10%. Illumination change by increasing brightness by 13 %
(Bright 13%) and decreasing by 25% (Bright N25%).

contrast images.

4.5.2. Training and Testing Time Evaluation

In this section we compare the training and testing time of the PDLF-Net

against other well-known CNN based segmentation models as shown in Table 6.

Table 6: Average training and testing time for the PDLF-Net (when concatenation is at
Block2, 3, 4 and 5), SegNet, Unet and Fully connected network (FCN)

Model Block2 Block3 Block4 Block 5 SegNet Unet FCN
Training time (min) 12.17 11.98 11.18 11.08 10.53 7.78 9.56
Testing time (sec) 6.19 5.92 6.15 6.12 5.92 3.21 4.31

From table 6, although the training and testing times for the PDLF-Net are

a bit higher compared to other models, they are generally still low and feasible

for practical segmentation tasks.

4.5.3. Comparison of the PDLF-Net Against Other State-of-the Art Segmenta-

tion Networks

We conduct comparison tests of the proposed model against U-net, FCN,

SegNet, Canny edge based segmentation, Otsu thresholding, k-means clustering

and region growing segmentation techniques on the same test dataset. Because
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the classical methods (Canny, Otsu and region growing) need post-processing

to have better segmentation results, we use same post-processing techniques for

all so as to unify the results. During test experiments PDLF-Net, SegNet, Unet

and FCN are all trained using augmented training EMs dataset and tested on

the same test dataset. The classical methods are subjected to test datasets only.

The results obtained for each networks are represented in table 7.

Table 7: The test results of the PDLF-Net (when concatenation is at block 2 (BL2), BL3,
BL4 and BL5), SegNet, U-net, FCN, Otsu, Canny, k-means and region growing (RG).

SegNet BL2 BL3 BL4 BL5 Unet FCN k-means Canny Otsu RG
IoU 61.02 62.56 62.91 62.41 63.20 60.65 36.85 29.52 37.65 38.25 31.08
Dice 75.58 76.79 77.08 76.65 77.27 73.06 53.84 36.15 49.45 47.65 41.57
VOE 38.98 37.44 35.15 37.59 36.80 39.35 63.15 63.84 50.54 52.34 61.42
Sens 86.00 86.88 89.72 84.30 87.35 76.12 65.00 60.86 76.21 70.37 51.52
Prec 89.88 91.44 89.79 90.57 89.40 81.59 65.33 34.22 39.90 50.34 51.95
Spec 86.04 87.06 89.30 84.20 87.37 87.00 65.34 66.58 64.66 69.31 68.23
Acc 88.10 89.24 89.21 87.60 88.92 84.94 65.37 65.33 68.24 68.45 64.64

It can be observed from the table 7 that the PDLF-Net performs better than

other networks by having the highest values in all metrics. The average good

performing blocks for the PDLF-Net are block 3 and block 5.

4.6. Method’s Limitations

It should be noted that, although the proposed method has shown potential

on EMs, it focuses only on segmentation of one (single) or two microorganisms

on the image and not biofilms. Example of the segmentation of two EMs on the

same image can be seen in Fig. 11 in classes DC3 and DC4, while other classes

contain only one EM on every image. In the future work, we will extend our

scope to testing our novel method on microorganim dataset with more than two

microorganisms, clusters, and biofilms.

5. Conclusion and Future Work

In this research we propose a Pairwise Deep Learning Feature Network for

segmentation of weakly visible EMs. It combines the advantages of both hand

crafted features (by identifying the Shi and Tomas interest points of the fore-

ground ) and deep learning features (by extracting deep learning features on the
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patches which are centered on each interest point). Then, in order to learn the

intermediate spatial characteristics between the nearby interest points, we pair

the extracted deep learning features using the Delaunay triangulation theorem.

The results show that the proposed network upon improving the performance of

the base mode SegNet, it can focus more on the foreground which can overcome

the segmentation challenges on image such as noise and low contrast. Apart

from being useful in segmentation of EMs, the proposed network can find more

application in segmentation of brain tumor and breast cancer images.

During initial experiments we tested the pairwise deep learning features on

binary classification of two EMs classes using SVM. Promising results were

obtained. Therefore, the pairwise features can also be suitable not only in

segmentation tasks but also in classification and image matching works.

In the future work, we plan to use other superior convolution neural net-

works such as Inception, Xception and DenseNet for extraction of deep learning

features to improve more our segmentation results.
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l’urss, Classe des sciences mathématiques et na (6) (1934) 793–800.

[55] J. Dou, J. Li, Image matching based local delaunay triangulation and affine invariant geometric

constraint, Optik 125 (1) (2014) 526–531.
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