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Abstract

The use of Environmental Microorganisms (EMs) offers a highly efficient, low
cost and harmless remedy to environmental pollution, by monitoring and de-
composing of pollutants. This relies on how the EMs are correctly segmented
and identified. With the aim of enhancing the segmentation of weakly visible
EM images which are transparent, noisy and have low contrast, a Pairwise Deep
Learning Feature Network (PDLF-Net) is proposed in this study. The use of
PDLFs enables the network to focus more on the foreground (EMs) by concate-
nating the pairwise deep learning features of each image to different blocks of the
base model SegNet. Leveraging the Shi and Tomas descriptors, we extract each
image’s deep features on the patches, which are centred at each descriptor using
the VGG-16 model. Then, to learn the intermediate characteristics between the
descriptors, pairing of the features is performed based on the Delaunay trian-
gulation theorem to form pairwise deep learning features. In this experiment,
the PDLF-Net achieves outstanding segmentation results of 89.24%, 63.20%,
77.27%, 35.15%, 89.72%, 91.44% and 89.30% on the accuracy, IoU, Dice, VOE,
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sensitivity, precision and specificity, respectively.
Keywords: Microscopic images, Transparent microorganism, Image
segmentation, Pair-wise features, Convolutional neural network, Evironmental

microorganism images

1. Introduction

The large scale of industrialization and urbanization is providing good liv-
ing conditions for human beings. However, it has brought serious environmental
pollution, including water, air and soil pollution [I], which raises the risk of dis-
eases such as lung cancer. To eliminate such pollution (pollutants), the use of
environmental microbiological method offers higher efficiency, lower cost and
harmless compared to the use of chemical methods. It involves the use of Enwvi-
ronmental Microorganisms (EMs) for monitoring, controlling and decomposing
pollutants. For example, Epistylis is employed as a sign of poor quality of wa-
ter and Actinophrys is used for decomposition of organic wastes in sludges [2].
Thus, identification of proper EMs and their corresponding physiological charac-
teristics is necessary. Generally, there are four methods used for identification
of EMs. First is the chemical method, which is accurate, but it creates sec-
ondary pollution of chemical reagents [3]. Second is the physical method, which
requires expensive equipment [3]. The third is the molecular biological method,
which distinguishes EMs by sequence analysis of genome [4]. This method needs
expensive equipment, is time consuming and requires professional researchers.
Fourth is the morphological method, which needs an experienced operator to
observe EMs under a microscope and give identification by shape characteristics
[E], [2]. This approach is laborious, time-consuming, inconsistent, and subject
to the moods of the operator.

In order to eliminate such drawbacks, automatic image processing techniques
are used for the identification of EMs. Image segmentation is a crucial stage in
feature extraction [6] and classification [7], so we develop a system for segmen-

tation of EM images. The majority of EM samples are obtained from complex



environments where large amount of impurities like rubbish is present, which
leads to noisy image problems. Moreover, some essential EMs have transpar-
ent like body features such as Ceratium and Actinophrys. This renders less
information of the foreground for segmentation tasks, which leads to under-
segmentation and poor segmentation results. Furthermore, some EM images
suffer from low contrast between the foreground and background, such as Co-
dosiga and Vorticella, which leads to poor segmentation results. To jointly
overcome all segmentation challenges above, we use Pairwise Deep Learning

Features (PDLFs) concatenated on the convolutional network. The Pairwise

Deep Learning Feature Network (PDLF-Net) work flow is shown in Figure
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Figure 1: The work flow of the proposed PDLF-Net.

The steps shown in Figurefrom (a) to (f) respectively, are described below.
(a) Weakly visible classes: In this study we use an in-house dataset which is is
also publicly available in [§] and published in [9]. It contains 21 classes of EMs.
Therefore, from 21 classes, the eight most weakly visible classes are selected.
(b) Data augmentation: To increase the dataset for training the proposed CNN,

augmentation is performed on both original weakly visible dataset and their



corresponding ground truth images. (c) Feature extraction: Firstly, Shi and
Tomas interest points’ locations are identified on each image, then all images
are meshed into patches (of size 40 x 40 pixels) which are centred at interest
points. Then, deep learning features are extracted from each patch using the
pre-trained VGG-16 (which is pre-trained on the ImageNeT dataset) and stored.
(d) Feature pairing: Using the Delaunay triangulation, triangles are identified
from interest points, then the middle points of edges of each triangle are identi-
fied and used as reference points for pairing the feature maps ( the end of each
edge corresponds to extracted features on interest points). (e) Joint pairwise
feature maps formation: The paired features and original features (from inter-
est points) are combined to form a joint pairwise feature for each image. The
resultant joint feature map has an average dimension of 46 x 1000 pixels size for
each image. (f) Concatenation and training: At this last stage, concatenation
of the augmented images and their corresponding joint pairwise feature maps
are performed at different input stages of the base model (SegNet), to produce
the segmented output image.

The contributions of this paper can be folded into three as described below;

1. By extracting deep learning features from small image patches of size
40 x 40 that are centered at the positions of corner interest points, we integrate
the abilities of interest points/ descriptors (hand-crafted features) and deep
learning features. The Shi and Tomas theorem is employed to determine the
interest points. This allows the network to focus on fine information which is
related to edges and corners, thus increasing the segmentation performance and
overcome the problem of low contrast and transparency of weakly visible EM.
2. Speculating that the middle point between two nearby patches (interest
points) have intermediate spatial features, we pair the feature maps of two
nearby interest points, to highlight more features around the foreground which
could not be learned by base SegNet model. The pairing is achieved using
the Delaunay triangular theorem, which concentrates the triangles inside the
foreground, thus increasing the focus of the network to learning more foreground

which overcome the segmentation challenges in weakly visible EM.



3. We concatenate the joint pairwise feature maps to different input scales
of the encoder blocks of the base model (SegNet), which generally increase the
segmentation results of the network. The joint pairwise feature maps are formed
by combining interest point based features and intermediate pairwise features
for each image separately.

This paper is organized as follows: Section [2] gives a review of related works
on microorganisms image segmentation methods (particularly in subsection [2.1))
while the review on feature extraction and pairwise feature methods are given in
subsection Section (3| describes in detail our proposed methods and different
key points of our contributions. Experimental results and analysis are discussed

. . . w ven i .
in section 4} Lastly, conclusion and future works are given in section [5

2. Related Works

In this section, different works related to our work are reviewed. Section
23] gives a review on segmentation of microorganisms images. Due to the im-
portance of feature extraction in our work, different related works on feature
extraction and pairwise features are reviewed in section Finally, the contri-

butions of our work are given at the end of section [2.2]

2.1. Microorganims Image Segmentation

Different techniques are implemented to enhance good segmentation perfor-
mances of microorganisms. These techniques can be categorized into classical
and machine learning based techniques [I]. Table [I} gives a summary of the

categories and subcategories of microorganisms image segmentation methods.

Table 1: Categories of microorganisms segmentation methods: (ML means Machine Learning)

Categories | Subcategories | Specific methods examples | Related works
Threshold Otsu, adaptive and global | [10]

Classical | Edge based Canny, Sobel [11]
Region based | Maker watershed [12]

ML Unsupervised | k-means, SOM [13], [14]
Supervised U-net, SVM, VGG-16 [15], [16], [17]




Classical methods are the traditional techniques which have found broad
applications. For instance, in [I0] outstanding results are achieved by apply-
ing Otsu thresholding in the segmentation of floc and filament. In order to
enhance shape feature extraction, an active contour method is used in [II] for
segmentation of Rotavirus-A. A seed watershed algorithm is applied in [12] for
segmentation of Bacillus subtilis bacteria in clustered biofilm. Generally, classi-
cal methods are associated with challenges such as, they can not work direct on
colour images, they need pre-processing like denoising and colour conversion and
they cannot perform well on images which have uneven background colours. To
overcome above challenges machine learning based methods have been adopted
for segmentation.

Machine learning based methods can be categorised into unsupervised and
supervised [I], as shown in table|l] Unsupervised machine learning (ML) tech-
niques build their mathematical models from a set of data that contain only
input without target output labels (segmentation can be referred to as pixel
level classification, in that context the target labels are the individual pixel
values/ranges in the ground truth mask images. Where, for the case of of unsu-
pervised ML they are not required. An example of unsupervised ML algorithms
is the k-means clustering). These techniques unsupervisely discover the data
pattern and cluster them into segments [I8]. For instance, in order to automate
the detection of pulmonary tuberculosis (TB) which is caused by Mycobacterium
tuberculosis, k-means and self organizing map (SOM) clustering were proposed
in the segmentation of the basilli from Ziehl-Neelsen sputum smears [13] and
[14]. While in [19], a modified fuzzy divergence clustering method which is based
on Cauchy membership function is leveraged in the segmentation of Plasmodium
vivaz from C channel CMYk color model of images containing the parasites in
blood smears. Although unsupervised methods are simple to apply, their ability
to learn the pattern of data is inadequate in transparent images, which is the
case for the weakly visible EM.

In recent years the use of supervised methods has shown promising results in

segmentation tasks. Supervised machine learning algorithms build mathemat-



ical models from a set of labeled data. Example of supervised techniques are
convolution neural networks (CNN), support vector machine (SVM) and naive
Bayes model. Due to the ability of CNN to capture pattern of data in challeng-
ing datasets, they have been used in many works. For instance, [15] increases
the receptive field by applying 7 x 7 filter size on fully convolutional network
(FCN), this results in an outstanding segmentation performance of 99.7% accu-
racy on feline calicivirus images. In [16], [I7], in order to tackle the challenge
of imbalance between the foreground and background, a dice coefficient is ap-
plied as a loss function in U-net for segmentation of the rift valley virus and
Leishmania parasites. To exploit fully the benefits of CNN, a large amount of
training dataset is needed. One of the challenges we have in the weakly visible
EM is the scarcity of datasets, However the innovation of strong models such
as SegNet [20] and U-net [2I] which are capable of working in small number of
datasets, gives us a suitable option for our dataset. Moreover, SegNet shows
more superiority for having few parameters and hence faster to train, because
it passes pooling indeces to the upsampling layers and does not use the heavy
deconvolution layers. U-net has been applied in many works for segmentation
of EM. Nevertheless, to the best of our knowledge no any work has been done
on segmentation of EMs using SegNet, except for one work which uses SegNet
directly without any network changes from the original one on sementation of
yeast cells [22]. Thus, in this paper we attempt to leverage SegNet for segmen-

tation of weakly visible microorganisms.

2.2. Feature Extraction and Pairing of Features

Feature extraction is an important stage in the image processing pipeline. In
most cases features are used in image classification and object matching works
such as [23], [24] and [25]. Mainly there are two categories of feature extraction
methods, hand crafted and feature learning [26], as indicated in table

Hand crafted features are manual features which are extracted based on prior
knowledge. For example, color (ie. RGB, HSV, LAB, HUE color modes), tex-
ture which is defined by the spatial distribution of pixels in the neighbourhood



Table 2: Categories of feature extraction methods

Categories Specific feature (techniques) exam- | Related works
ples
Hand crafted Geometric features (Area, perime- | [27], [28], [29], [30]

ter), Local features (SIFT, SURF),
Colour, Texture

Feature Learning | Deep learning (VGG-16, AlexNet, | [31], [32], [33], [34]
ResNet), BoVW

of an image (ie. energy, entropy, homogeneity, correlation, and contrast [35]) ,
geometric features (area, perimeter and length), global shape (ie. Krawtchouk
moment) and local shape features (ie. SURF and SIFT). Local features are the
collection of basic and frequent features that can be used to estimate a class’s
shape knowledge as they learns from finite samples of training data. Besides,
two classes which are fairly similar cannot be distinguished by local features
alone. Utilizing global features convey greater discriminative information of a
class domain by making use of more specific and uncommon features [36]. Hand
crafted features, particularly local features (SIFT and SURF) are very useful in
detection of interest points. Interest points are distinctive spots/regions that
help to distinguish between different objects (images). [37]. Corner, blob, and
ridge descriptors are examples of interest points. They play an important role in
image classification and matching tasks. For example, in [27], [28] image match-
ing of EMs is achieved used SIFT features, where these features are derived from
corner interest points of 10 channels of different color modes. In [29] edge and
Fourier descriptors are applied for classification of EMs using SVM classifier.
Interest points (descriptors) are useful in classification and image matching due
to the fact that they are invariant to changes of illumination, rotation, and
translation. Besides, local discriminant information content is abundant in the
local image structure surrounding the interest point [38]. Thus, we leverage
the corner descriptors’ locations in enhancing the segmentation of weakly visi-
ble EM. However, corner descriptors (hand crafted features) are not sufficient
to present diverse appearance of weakly visible EM. Therefore, we complement

them by using deep learning features (feature learning).



Feature learning (features) are high dimension features generated by the
composition of local features such as SIFT. Bag of visual words (BoVW) [39],
sparse coding (which analyse a large number of images to learn set of bases where
each expresses a characteristics pattern of a patch [40]), and deep learning fea-
tures are examples of feature learning [41]. In most cases deep learning features
are genereted from training the deep (convolutional) neural networks such as
VGG-16, ResNet, and AlexNet. Deep learning networks represent high level
features composed from low level ones. They have superior descriptive power
than hand crafted features methods [42], because they replicate the feature ex-
traction capability of visual cortex in human brain [43]. VGG-16 is among the
most superior and used models in segmentation and classification tasks because
of its high ability in learning features. For example, in [31], VGG-16 achieves an
outstanding performance on classification of viral pneumonia and bacteria from
x-ray images. In [2], a VGG-16 pre-trained is used as a base model for segmen-
tation in the Deeplab-VGG, this is achieved by replacing the fully connected
layers with average pooling, three convolutions and interpolation layer, then use
it for initial segmentation of EMs. Leveraging the capability of VGG-16, in this
study we employ it in extracting the deep learning features at every location
of the detected corner descriptor. Because of its robustness and simplicity the
Bag of visual words (BoVW) is among the most used feature learning technique.
However, because of the orderless representation of local features in it, it does
not achieve maximum performance. To remedy that and improve the perfor-
mance of BoVW, some studies have considered spatial arrangement of features
to discover higher order in BoVW for object matching and classification [44],
[45]. Among the methods of arranging spatial features is by pairing of close
visual words [46]. For instance, in [34] and [47] pairing is done on visual words
(where Prior to pairing, feature descriptions are mapped to the visual words,
and then pairing is carried out on the visual words). Yet, the underlying dis-
tribution of pairs of neighboring local feature descriptors appears to be ignored
by the pairing of visual words. To address that, [32] and [33] suggested that the

pairing of spatial close local descriptors (such as SIFT) can be done before the



building of BoVW. This seem to achieve maximum improvement on classifica-
tion of challenging dataset. Motivated by the concept of pairing features and to
the best of the authors’ knowledge, there is no any work which has been done
on pairing of deep learning features for segmentation task, thus in this study we
pair deep learning features generated from corner interest points’ locations and

concatenate them to the base model for segmentation of weakly visible EMs.

3. Methods

This section desctribes in details the novel techniques used in this paper.
The main focus being on tackling the segmentation challenges on weakly visible
EMs. These are EMs which show poor segmentation results in our initial tests
using the original base model SegNet. Example of weakly visible EMs are shown

on figure

(a) Actinophrys

(b) Codosiga (c) Epistylis

(d) Paramecium (e) Rotifera (f) Keratella Quadrata

Figure 2: Weakly visible EMs

As observed in figure [2| weakly visible EMs suffer from low contrast, trans-
parency and indistinct boundary between background and foreground. To be

able to achieve better segmentation results, the following techniques are applied.
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3.1. SegNet
SegNet is one of the powerful models in computer vision for semantic seg-

mentation [20]. It consists of the encoder and decoder, as shown in figure

‘D Conv + Batch Norm + Relu [ll] Pooling [JJj Unpoeling [] softmax |

Figure 3: SegNet, a base model for the proposed network.

The encoder of the SegNet consists of 13 convolutional layers similar to VGG-
16, without the last fully connected layers. Thus, the encoder network is largely
reduced in parameters compared to VGG-16 and can easily be trained. Each of
the 13 encoder layers constitutes of a series of convolutional layer with 64 filter
banks (contrary to the original SegNet which use 7x 7 filter size, we apply 5x5 to
reduce the receptive field suitable for small size of EMs in images). Followed by
batch normalization. Then a ReLu activation function f(z) = maz(0,x) which
eliminates negative values follows. To achieve translation invariance over small
spatial shift of input images, max-pooling with window size of 2 x 2 and stride 2
(non overlapping window) follows, which results into output being sub-sampled
by the factor of 2 after each step. The application of 13 max-pooling down sam-
pling layers in the encoder achieves more robust pixel level classification but
there is a loss in spatial resolution of feature maps (boundary details). To over-
come this, the boundary information in the encoder feature maps are captured
and stored before next sub-sampling in each stage by storing the max-pooling
indices which are more efficient for restoring boundary information and require
less memory. The decoder network (which has similar convolution layers in

up sampling manner) upsamples the input feature maps using the memorized
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max-pooling indices from corresponding encoder feature maps. Each upsam-
pling is followed by convolution and batch normalization layer to produce dense
features that are similar in size to the corresponding inputs at the encoder. Fi-
nally, the softmax is used as the classification layer. We utilize SegNet as the
base model for binary segmentation of weakly visible EMs. For all experiments
we use binary cross entropy as a loss function and SGD optimizer with learning
rate of 0.01 and momentum of 0.9. Although ReLu has shown some drawbacks
such as decreasing the performance in the gradient descent operations because
all gradient values would be zero when the activation values are zero [48], we
still opt to use it instead of LeakyReLu which provides effective learning even
when the values of activation are zero. This is because during our preliminary
experiments on activation functions, the average results for ReLu were slightly

highter than LeakyReLu by the margin of 0.19% accuracy.

3.2. Feature Extraction

Due to the challenges on weakly visible EMs dataset, the base model misses
fine information from images during training, which gives poor segmentation
results when using SegNet alone. Therefore, we use external pairwise features
to enhance the performance of the base model by combining the advantage of
interest points’ locations (hand crafted features) and deep learning features.

Specific techniques are describes below;

3.2.1. Shi and Tomas Intest Points’ Location

In order to enhance the segmentation results, we choose to use corner interest
points, because from test/initial experiments the base model misses tiny outer
corners and boundaries on the weakly visible EMs due to low contrast and
transparency on images. A corner is as a place or point in the image where
a small change in location causes a significant change in intensity in both the
horizontal (X) and vertical (Y) axes. It can also be described as the intersection
of points on an object’s contour edges that preserve significant object’s features

[49]. Shi and Tomas corners theorem is one the most superior corner theorems
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[50]. Simply the Shi and Tomas theorem operates on three steps;

Firstly, it is to find the window which produces high variation in intensity
with a small change in the X and Y-axis. Numerically, to find a window that can
produce large variation, let the window be centred at (z,y) and an intensity at
this point be I(z,y). I(x,y) is an individual intensity at a position which varies
from 0 to 255 for gray level image. When the window is shifted by (u,v), the
intensity at the new location will be I'(x+u,y+v) and [I(z+u,y+v) — I(z,y)]
is the difference in intensity due to shift. For a corner, this difference must
be high. Therefore we maximize this term by differentiating it with respect
to z and y. Letting w(x,y) be the weights of pixels over the rectangular or a
Gaussian window, Then, E(u,v) which is the difference between the original

and the shifted window, is defined as :

Bu,v) = 3wz, )z +u,y +v) - I(z,y))° 1)

z,y

Applying the Taylor series with only the first order, which is

T(z,y) = f(w,v) + (z — ) fo(u,v) + (y — v) fy (v, v).. @)

Rewritting the shifted intensity using the above formula:

I(z+u,y+v)=I(z,y) + ——— (u) +

d(z,y)
dz

d,v)
T4y (v) -

Let: 48 — 1, and, 4580 = 1,
I, and I, are image derivatives in X and Y directions respectively. Then,

Bu,v) = 3wz, y)[I(x,y) + Lou + Lv - I(z,y))°

oy
E(u,v) = > w(@,y)[lou+ I,v]? (4)

Expanding the above equation,
B(u,v) = > w(z,y)[Iou® + Iv® + 21, Iyuv] (5)

T,y
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Taking u,v out and rewritting in matrix notation, the equation becomes;

E(u,v) = (u, v)M (“) (6)

where,

S > L,

M =w(z,y) [ =¥ i
DLl X1
z,y z,y

Where, M is a symmetric 2 X 2 matrix whose eigenvalues are used to determine
whether the scanned window contains a corner.

Secondly, Calculating the score value S associated with scanned window [50].
It is given by;

S = min(A1, Az) %
where, A1 and Ay are eigenvalues of the matrix M.

Thirdly, is to determine points along the shift of the window that can be
considered as corners. For the point to be considered as corner, the score value
S must be greater than the specified value (if both the A; and Ao are greater
than the minimum threshold values respectively).

Shi and Tomas theorem show superiority by having stability, invariant to
scale changes, invariant to translation and invariant to rotation [50], moreover,
comparing with Harris corner points which we applied in our previous work [28],
Shi and Tomas gives better results and more useful interest points than Harris’.
Thus, we use it determine corner points on every image. Example of images

with corner points indicated on them are shown in figure

(a) Vorticella (b) Stylongchia (c) Rotifera

Figure 4: Shi and Tomas corner points (in green) detected on weakly visible EMs

As can be seen from the figure [4] the interest points are capable of identify-
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ing corner points that contain unique information about the EMs, which were
ignored by the base model (SegNet) during our initial tests for the base model.
It should be noted that, in this study we limit the number of corner points
between 10 to 15 (due to computational complexity of the feature extraction
model). Then the coordinates of each corner point are identified and stored. We
take advantage of the corner points by meshing each image into patches of size
40 x 40 which are centred at each corner points as shown in figure |§| part (a) and
(b). Then from each patch, we extract deep learning features using convolution

neural network VGG-16.

3.2.2. VGG-16

VGG-16 is a very deep convolution neural network for image recognition,
proposed by Simonyan et al in [51]. It is upgraded from AlexNet by replacing
large sized kernel filters (11 and 5) with 3 x 3. It has achieved high accuracy
in many image classification tasks. It contains 21 layers with only 16 weight
layers, which include 13 convolution layers with very small receptive fields of
3% 3 (which gives its capability to capture the pattern of tiny information fields),
followed by max-pooling layers of size 2 x 2 and stride 2 which decreases the
spatial resolution of the feature maps. In the end there are three fully connected
layers, which combines all learned features from previous layers and generalize
them for classification. ReL.u activation function is applied to all hidden layers.
Lastly is the classifier layer. In order to leverage the fully connected (FC) layers,
we extract deep learning features on the last FC layer. The dimension of each
extracted feature is about 1 x 1000 pixels size. The figure [5| shows the VGG-16

network layers and the point form which deep learning features are extracted.
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Figure 5: VGG-16 network showing feature extraction layer (fully connected layer 3)

Due to the small number of weakly visible EM which can not train the
VGG-16 from scratch for better results, we use the transfer learning concept
to optimize the VGG-16 extracted features. VGG-16 network, pre-trained on
the ImageNet dataset has proven success in many works when fine turned on
other datasets for classification [52]. Therefore, we fine tune the pre-trained
VGG-16 using weakly EMs and extract deep learning features. For each image,
10 patches of size 40 x 40 are meshed out and from each patch deep learning fea-
tures are extracted (each patch is centred at interest points’ coordinate). Then
10 features for each image are stored parallel to their corresponding interest
points’ coordinates. Figure [6] summarizes the process of deep learning features

extraction.

3.3. Feature Pairing

To pair feature maps which have been extracted from the interest points’

coordinates, we use the Delaunay triangulation theorem.

3.8.1. Delaunay Triangulation (DT) Theorem

DT theorem is one of the most robust graphical theorems for the represen-
tation of data. It is the triangulation theorem which forms triangles (Delaunay
triangles) by connecting each data (coordinates) to its nearest neighbour, such

that the circumcircle associated with each triangle does not contain a point in
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Figure 6: The work flow for extraction of deep learning features from EM images (a) detection
of interest points’ coordinates indicated by yellow colour on the original image, (b) meshing
of patches which are centred at interest points (c) deep learning feature extraction (d) storage
of features and interest points’ coordinates

its interior [53]. Geometrically, Delaunay triangulation for a given set A of dis-
crete data in a plane is a triangulation (DT), such that no data in A is inside
the circumcircle of any triangle in DT(A). Delaunay triangulation maximizes
the minimum angle of all the angles of the triangles in the triangulation [54].
It is very effective for presentation of scattered data as it concentrates all data
inside the major circumcircle formed by the most outer triangle as shown in fig-
urem (b). Due to strong presentation power, it is used in many image matching
works [55], [66]. Moreover, it is tolerable to spatial displacement of data (image
objects) because it keeps the same association of the nearest objects within the
image, regarded that the distortion is uniform all over the image.

The Delaunay triangle edges are formed by connecting nearest neighbour
data points. This means two points (vertices) which share the same edge (line)
have close related characteristics (features). Thus, the middle point of the
edge contains features which are an average of the edge end point features.
Although (from our experiments) few middle points might be out of the EM’s
body which will have non similar characteristics between the edge end points;
these points are very few (less than 5% of all the middle points). More than
95% of the middle points are within the main body of the EM (foreground) and
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()

Figure 7: Pairing of features (a) Detection of interest point coordinates which are indicated in
blue colour, (b) application of Delaunay triangulation, (c) pairing of features at middle points
of edges which are indicated in red. Blue coloured points are interest points

have intermediate characteristics between the corresponding edge end points as
it can be observed in figure [7| (c). Owing to this, we pair the features which
correlates to the vertices sharing same edge, so as to get the features of the
middle point of edges. By so doing, we increase the foreground’s influence
during segmentation as shown in figure El (c). The pairing of features is done by
using the geometric principle of the the middle point of straight line, because the
edges of the triangles are straight lines. This is done by averaging the two feature
vectors (maps) corresponding to each edge end coordinates as described in the
equation[§and[g] The edge coordinates are the interest points’ coordinates with
their corresponding features (1 x 1000 dimension) extracted from patches.

Let the coordinate of the two end points of an edge be represented by (X1, Y7)
and (X2,Y3). The corresponding feature maps of the patches centred at these
two points be F} and F5.
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The middle point coordinate X,,,Y,, is given by;

X X Y7 Y-
X Yo = — 2) — 2) ®)

The pairwise feature map Fj,, which corresponds to middle point X,,, Y,, is

given by;
(F1 + F2)

Fp, = 5

9)

In average 36 to 43 pairwise features (F'm) are formed from 10 original

features for each image.

3.4. Joint Pairwise Feature Formation

At this stage, we join the features formed on the interest points’ coordinates
(F1,F2...) and pairwise features (F'm...). The average amount of pairwise
features for each image is between 36 and 43. 10 features originate from interest
points. Thus, we form the joint feature maps by appending these features
vertically. This joining style has shown best results from the tests done during
experiments. The average joint feature maps sizes range from 46 x 1000 to
53 x 1000 for different images. Therefore, each joint feature map corresponds
to one original image. Because the dominant features are pairwise features, we
name the features as joint pairwise features (Pairwise features). After formation
of joint features, they are stored parallel to their original images and ground

truth images.

3.5. Concatenation and Training

Both the original images and their corresponding joint pairwise features
point to similar ground truth (GT) images. During training, the original images
and corresponding ground truth images are fed to the input (first block) of the
base model (SegNet). The joint pairwise features are resized at different sizes
to fit the spatial dimensions of the encoder blocks of the the SegNet. These
dimensions are 384 x 512, 192 x 256, 96 x 128, 48 x 64 and 24 x 32 for first,

second, third, fourth and fifth blocks respectively. Then we concatenate the joint
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pairwise features at different blocks of the encoder in the SegNet, as shown in
figure [8| of the general proposed network.

Output

(Original images + GT)  334x512 384x512

192x256

Encoder block of SegNet
Decoder block of SegNet

Input original images
and Ground truth
Output segmented image (360x480)

Reshaping and concatenation

Joint pairwise features (Fm)

LR

Reshaping Fm and concatenation
Joint Pairwise features

Figure 8: The proposed network on concatenation of joint pairwise features (in red) to the
base SegNet encoder blocks (in yellow)

We apply different options for concatenating the joint feature maps to the
SegNet model. Example of the options are, concatenation at block 1 only, block

2 only, block 3 only, block 1 and 2 only, block 3 and 5 only, block 1, 2 and 5
only.

4. Experiment

4.1. Experimental Settings

4.1.1. Dataset

During experiments, we use Environmental Microorganism Dataset 5th Ver-
sion (EMDS-5), which is a newly released version of EMDS. The dataset contains
21 classes of EMs. However, in this research, we select only 8 classes which show
poor performance on the base model SegNet during our initial experiments.
We name these images as weakly visible EMs. Particularly, these classes are

Actinophrys which is denoted as weak data class 1 (DC1), Codosiga denoted
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as DC2, Epistylis denoted as DC3, Paramecium denoted as DC4 and Rotifera,
Vorticella, Keratella Quadrala, Stylongchia denoted as DC5, DC6, DC7, DC8
respectively. Each class contains 20 original microscopic images and their cor-
responding ground truth (GT) images. Therefore, in total there are 160 EMs.
It should be noted that every image contains one microorganism in it (not in
colonies) except for class DC3 and DC4 where some images contain two mi-
croorganisms of the same species. An example of such EMs can be seen in Fig.
True corners of the foreground are most important in this research. Thus,
in order to reduce the possibility of false corners we crop all images which have
outer highlighted square frames at the edges of the images and remain with only
the true background and foreground. Then all images are resized to 360 x 480

pixel sizes so as to fit in the SegNet input layer size.

4.1.2. Training, Validation and Testing Dataset

The dataset is divided into training, validation and testing in ratio 1:1:2
respectively. However, in order to overcome the overfitting due to small dataset
and improve the performance of our segmentation models, we applying augmen-
tation on all original weakly visible EM and their corresponding GT images. We
augment by rotating them by 90, 180 and 270 degrees, and flipping them verti-
cally and horizontally. This result into 960 images in total while having 30:30:60
images for each class for training, validation and testing respectively. Then from
each RGB image joint pairwise feature maps are extracted and distributed into

same ratio 30:30:60 corresponding to each class.

4.1.8. Experimental Environments

To conduct the experiments, we use a work station with Intel (R) Core(TM)
i7-7700 CPU with speed of 3.60Hz. RAM of 32GB and NVIDIA GeForceGTX
1080 8GB. For implementation of the networks, we use python 3 and Keras

framework with Tensorfow as backend.
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4.2. Bvaluation Metrics

In order to evaluate quantitatively and compare the segmentation results of
different approaches, we use accuracy (Acc), Dice, intersection of union (IoU,
volumetric overlap error (VOE), Sensitivity (Sens), Precision (Prec) and Speci-
ficity (Spec). Accuracy: measures the percentage of pixels in an image which
are correctly classified. Accuracy and specificity sometimes mislead results
on segmentation when the object of interest is small compared to background
(which is the case for our dataset). Because these measures are biased mainly
on how well negative pixels (background) is predicted. Thus, we use more than
one metric for correct analysis of the results. Dice coefficient: also known
as F1 score, is widely used for evaluation of segmentation performance. The
definition of Dice is given in table[3] Intersection over union: Also known as
Jaccard coefficient, measures the percentage overlap between the target mask
and the prediction output. Volumetric overlap error: Is the complement of

Jaccard coefficient. Table [3] summaries definition of these metrics.

Table 3: Definitions of used metrics

Definition Metric| Definition
Metric
TP+TN TN Dice 2X[Wpra (N Wyt _ 2xTP
A TP+FP+TN+FN ' TN+EFDP Word|+1Wai|  2XTP+FP+FN
cc,
Spec
TP TP VOE FTPIFN TP
TP+FP+FN’® TP+FN > | TPYFP+FN’> TP+FP
ToU, Prec
Sens

From table @ Wpra represents the predicted foreground by the model. W
represents the foreground in the ground truth image. During segmentation of
the EM, images are partitioned into two class pixels representing the foreground
(the EMs) and the background. True positive (TP): is an outcome when the
model correctly predicts the positive class. True negative (TN): is when the
model predicts the negative class correctly. False negative (FN): is the outcome
when the model predicts negative while it is actually positive. True negative

(TN): is when the model predicts negative and it is actually negative. All the
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evaluation metrics are defined based on these terms TN, TP, FN, FP as shown
in table 3| For analysis purposes, the greater the values of accuracy, Dice, IoU,
sensitivity, precision and specificity indicate better segmentation results and the

smaller the value of VOE indicates better results and vice versa.

4.8. Evaluation of the Pairwise Deep Learning Features Network (PDLF-Net)

on small Dataset Without Augmentation

Because the PDLF-Net originates from SegNet, therefore in this section we
compare the segmentation performance of the PDLF-Net and SegNet on a small
dataset (Each class having 5:5:10 dataset for training, validation and testing re-
spectively). In our initial experiments we examined the performance of the
PDLF-Net on different options of concatenating the joint pairwise features to
different blocks of the encoder, such as concatenation at one block only of the
PDLF-Net encoder as shown in figure |8 two blocks simultaneously, three blocks
simultaneously, four blocks simultaneously and five block simultaneously. Refer-
ring to figure 8] these concatenation options can be described as concatenation
at block 1 only, block 2 only, block 3 only, block 4 only, block 5, block 1 and
2 only, block 1 and 3 only following this order up to block 1, 2, 3, 4, and 5
only. We found that the performances are better when the concatenation is
only at one block either block 1, block 2, block 3, block 4 and block 5 only. The
increase in the number of concatenation blocks simultaneously leads to over-
segmentation. Thus, we focus our research on concatenation at one block for
all other experiments which we present in this paper. We compare and examine
the performance of the PDLF-Net on small dataset of weakly visible classes by
treating each class alone. Table[d]shows the performance of the PDLF-Net with
concatenation at different blocks and the original SegNet.

From table [4] the application of pairwise features show improvement of the
segmentation results. Block 5 and Block 2 results of the PDLF-Net are presented
because they show consistent improvement in all classes compared to other block
options. This is because, the deep layers at block 5 (bottom neck layers) in the
deep network (PDLF-Net) are responsible for learning specific features of the
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Table 4: Segmentation results of the original SegNet and PDLF-Net while concatenation
is at block 2 and 5, on evaluation small dataset. The results for each weakly visible class
1 to 8 (DC1 - DC8) are given separately in each row. The evaluation metrics are accuracy
(Acc), intersection of union (IoU), Dice and volumetric overlap error (VOE), sensitivity (Sens),
precision (Prec) and specificity (Spec). Red coloured values are maximum/best achieved values
in each metric

SegNet [%] Block 2 [%]

Datal] IoU Dice VOE Sens Prec Spec Acc | IoU Dice VOE Sens Prec Spec Acc
DC1| 42.10 59.25 57.91 50.17 90.80 50.00 72.55| 45.00 62.05 55.00 65.00 90.12 65.57 78.76
DC2| 42.07 59.23 57.93 60.01 89.60 60.63 76.80| 37.72 54.67 62.28 77.08 96.58 77.06 59.15
DC3| 36.20 53.15 63.20 65.02 71.19 65.00 69.36| 37.82 54.86 62.18 67.43 73.16 67.40 71.35
DC4| 38.36 55.44 61.64 62.05 80.61 63.06 73.93| 40.95 58.05 59.27 79.31 80.86 79.00 80.27
DC5| 37.43 54.30 62.57 65.48 74.16 64.00 71.34| 45.85 62.78 54.15 65.40 85.80 65.51 77.29
DC6| 36.41 53.37 63.59 73.70 96.05 72.80 69.47| 40.73 57.67 59.27 81.15 83.18 81.56 82.37
DC7| 37.03 53.81 62.97 61.91 63.48 62.20 63.21| 32.06 47.76 67.94 55.06 56.01 56.06 55.91
DC8| 40.50 57.63 59.50 82.47 83.29 82.00 82.97| 43.23 60.33 56.77 69.81 81.60 70.00 76.76
Block 5 [%]

Data] IoU Dice VOE Sens Prec Spec Acc
DC1| 43.50 60.63 56.50 60.12 89.10 60.00 76.38
DC2| 42.46 59.61 57.54 61.35 91.83 60.55 77.50
DC3| 38.15 55.23 61.85 70.00 78.42 70.15 75.43
DC4| 37.71 54.61 62.29 67.51 72.47 66.51 65.56
DC5| 38.88 55.75 61.12 84.80 91.16 84.60 72.45
DC6| 37.07 53.96 62.93 69.56 75.92 69.65 73.75
DC7| 35.08 53.81 64.92 82.38 82.38 82.38 59.34
DC8| 41.14 58.27 58.86 67.80 81.14 68.79 76.02

foreground, therefore adding the joint pairwise features at block 5 emphases
more the network to focus on learning the foreground (EM) thus improves the
performance. The application of pairwise features on different blocks improves
the segmentation performance by 6.21% acc, 2.9% IoU, 2.8% Dice, 14.83% sens
and 15.57% spec on weak data class 1 (DC1). 6.06% acc, 1.95% IoU, 2.08%
Dice, 4.98% sens, 7.23% prec and 5.15% spec on weak data class 3 (DC3).
6.30% acc, 2.59% IoU, 2.61% Dice, 17.26% sens, 0.25% prec and 15.94% spec
on DC4. 5.00% acc, 8.00% IoU, 8.48% Dice, 19.32% sens, 17.00% prec and
20.6% spec on DC5. 12.90% acc, 4.32% IoU, 4.30% Dice, 7.45% sens and 8.76%
spec on DC6. 2.73% IoU and 2.70% Dice on DC8. (The comparison above is
obtained by taking the original SegNet result for a particular dataset class as a
reference and compare it with maximum value of the PDLF-Net result of any
block in that particular data class). The average performance results of the
original SegNet and PDLF-Net at block 2 and 5 on all classes are given in figure
|§| (This is obtained by averaging the results of all classes on a particular method
separately and drawing the performance chart for each method).

From the general figure [9] even though the number of dataset for training
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Figure 9: Comparison between PDLF-Net (when concatenation is applied on block 2 and
block 5) and the original SegNet on small weakly visible dataset (using validation set)

is very small the PDLF-Net shows improvement in IoU, Dice, VoE, Sens, Prec,
Spec and Acc by about 1.66%, 1.50%, 1.55%, 5.34%, 1.65%, 5.37% and 0.28%
respectively. Generally the PDLNet shows improvement, however, the individ-
ual errors (VOE) are still high as shown in table El This is due to the small
dataset which cause the networks not to generalize well during training. In order
to reduce such errors and increase segmentation performance more, we apply

augmentation on all weakly visible dataset and their corresponding GT images.

4.4. Evaluation of the PDLF-Net on Augmented Dataset

In order to enhance the performance of PDLF-Net, we augment all the
weakly visible EMs and their GT images. Then joint pairwise features are
extracted from each image and concatenated to different blocks. Each block
is trained and tested independently for each dataset class. Table [5] shows the
results of the most performing network concatenation configurations.

From table [5} there is an overall improvement of segmentation performance
contributed by all blocks. Comparing with the original SegNet, the PDLF-Net
shows improvement by an increase of 2.1% acc, 4.11% IoU, 2.90% dice, 2.96%
sens, 3.15% prec and 2.96% spec on weakly visible data class 1 (DC1). 1.51%
acc, 4.28% IoU, 3.33% dice, 3.08% sens, 0.29% prec and 3.20% spec on DC2.
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Table 5: Segmentation results of the original SegNet and PDLF-Net while concatenation is at
block 2,3 , 4 and 5, on validation augmented dataset. The results for each weakly visible class
1 to 8 (DC1 - DC8) are given separately in each row. Red coloured values are maximum/best
achieved values in each metric

SegNet [%] Block 2 [%)]
Datal] IoU Dice VOE Sens Prec Spec Acc IoU Dice VOE Sens Prec Spec Acc
DC1| 63.97 77.92 36.03 91.25 93.91 91.26 92.16| 63.95 77.94 36.05 85.15 97.06 85.20 91.26
DC2| 56.93 72.55 43.07 73.92 96.57 73.90 85.65| 59.32 74.44 40.68 77.00 96.59 77.10 87.16
DC3| 57.54 72.92 42.46 82.00 85.07 82.42 83.99| 54.91 70.64 45.09 81.38 81.70 81.48 81.55
DC4| 58.74 73.78 41.26 85.00 85.29 85.14 85.29| 65.45 79.04 34.55 88.32 88.34 88.00 89.74
DC5| 64.85 78.64 35.15 91.00 90.80 90.71 91.72| 63.48 77.60 36.52 87.90 92.30 86.96 89.81
DC6| 68.78 81.48 31.22 95.80 95.90 95.00 95.86| 69.11 81.70 30.89 95.65 96.77 96.56 95.57
DC7| 60.43 75.21 39.57 86.01 87.38 85.30 87.39| 63.89 77.88 36.11 90.00 91.57 90.57 90.58
DC8| 57.09 72.31 42.91 83.83 82.05 82.90 83.83| 62.18 76.47 37.82 88.97 89.97 87.81 88.98
Block 3 [%] Block 4 [%]
IoU Dice VOE Sens Prec Spec Acc IoU Dice VOE Sens Prec Spec Acc
DC1| 66.28 79.71 33.72 94.21 94.30 94.22 94.26| 67.57 80.59 32.43 80.43 95.87 86.46 91.60
DC2| 61.21 75.88 38.79 73.40 96.40 73.34 85.08| 59.73 74.76 40.27 76.00 96.86 75.93 86.73
DC3| 58.48 73.72 41.52 86.80 86.43 86.18 86.33| 57.71 73.08 42.29 84.54 84.79 84.00 84.64
DC4| 61.53 76.02 38.47 88.00 87.00 86.98 86.98| 62.02 76.35 37.98 86.10 87.33 87.22 87.98
DC5| 62.19 76.54 37.81 90.74 90.75 90.74 88.79| 68.03 80.88 31.97 91.44 91.44 91.42 90.69
DC6| 69.31 81.85 30.69 95.60 95.60 95.90 94.72| 60.27 75.18 39.73 73.00 95.01 72.56 84.19
DC7| 61.14 75.74 38.86 87.95 88.01 87.90 87.96| 59.50 74.26 40.50 86.46 86.47 86.40 86.47
DC8| 62.68 76.77 37.32 88.06 88.86 88.00 88.09| 61.54 75.94 38.46 87.53 88.54 87.50 87.54
Block 5 [%)]
IoU Dice VOE Sens Prec Spec Acc
DC1| 68.08 80.82 31.92 94.10 94.16 94.00 92.43
DC2| 60.53 75.37 39.47 75.50 96.80 75.50 86.36
DC3| 57.12 72.62 42.88 78.33 86.56 79.57 82.82
DC4| 64.19 78.04 35.81 87.00 87.12 86.45 86.77
DC5| 61.95 76.64 38.05 85.95 90.93 86.00 88.71
DC6| 68.81 81.49 31.19 96.10 97.90 95.11 95.32
DC7| 63.19 77.37 36.81 90.90 90.89 89.89 90.42
DC8| 62.18 76.48 37.82 88.87 88.89 88.87 88.87

2.34% acc, 0.94% IoU, 0.8% dice, 4.80% sens, 1.49% prec and 3.76% spec on
DC3. 4.45% acc, 6.71% IoU, 5.26% dice, 3.32% sens, 3.05% prec and 2.86%
spec on DC4. 3.18% IoU, 2.24% dice, 0.44% sens, 1.5% prec and 0.71% spec on
DC5. 0.53% IoU, 0.37% dice, 0.30% sens, 2.00% prec and 1.56% spec on DCG6.
3.19% acc, 3.46% IoU, 2.67% dice, 4.89% sens, 4.19% prec and 5.27% spec on
DC7. 5.15% acc, 5.59% IoU, 4.46% dice, 5.18% sens, 7.92% prec and 5.97%
spec on DC8. The average performances on all dataset for original SegNet and
PDLF-Net are given in figure

Figure shows that the average improvement of about 1.09% acc, 2.20%
ToU, 1.75% dice, 2.00% sens, 2.17% prec and 2.15% spec is observed on seg-
mentation using PDLF-Net compared to the original SegNet. The overall aver-
age maximum results achieved by the PDLF-Net are 89.33%, 63.26%, 77.35%,
36.74%, 88.10%, 91.79% and 87.48% by acc, IoU, Dice, VOE, sens, prec and spec
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Figure 10: The comparison between average performance of the PDLF-Net (when concatena-
tion is applied on block 2,3,4 and block 5) and the original SegNet on all classes of augmented
weakly visible EMs. Using validation sets

respectively. Moreover, the visual comparison of segmented images on original
SegNet and PDLF-Net at blocks 2, 3, 4 and 5 are given in figure [I1]
Comparing the observation performance from figure[II] the PDLF-Net shows
better segmentation results. For instance, in data class DC3 and DC4 (2"¢ and
37 rows from the top) SegNet in (c) has not been able to show the foreground
while there is a good segmented output of the same image by PDLF-Net in (e)
and (f). In DC8 (last row), SegNet over-segments the image while good visual
results are observed by PDLF-Net when concatenation of pairwise feature is
at block 2, 3 and 5. Generally, the visual results show great improvement of

segmentation results when using PDLF-Net.

4.5. Evaluation of the PDLF-Net on Test Dataset

To evaluate more the effectiveness of the PDLF-Net, we examine it on the
test dataset. The test dataset contains 480 images, which are twice in number to
the training and validation sets. The average segmentation performance of the
PDLF-Net on test dataset for all classes is shown in figure The graph shows

a comparison of both the test set and validation set for each block performance.
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(b) © )

Figure 11: Example of segmented images on weakly visible dataset. column (a) are original
images, (b) ground truth images, (c) segmented images by original SegNet, (d) segmented
images by PDLF-Net when concatenation is at block 2 (e) concatenation at block 3 or 4, (f)
concatenation at block 5. Form top to bottom are different classes, the top most row is of
weakly data class 1 (DC1), second row DC3, followed by DC4, DC5, DC6, DC7 and DC8
respectively.

28



M Block2 (V) M Block2 (T) M Block3 (V) Block3 (T)
100.00%

M Block4 (V) W Block4 (T) M Block5 (V) M Block5 (T)

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

loU Dice VOE Sens Prec Spec Accuracy

Figure 12: The segmentation performance of PDLF-Net on both test set and validation set.
Block 2(V), Block 3(V), Block 4(V) and Block 5(V) are results for validation sets respectively.
Block 2(T), Block 3(T), Block 4(T) and Block 5(T) are results for test sets respectively

From figure[I2] each pair of bars from left to right, are of similar configuration
(blocks) applied on validation and test sets respectively. The performance of the
PDLF-Net is almost similar in both validation and test sets although the number
of test dataset is twice. This shows the great effectiveness of the PDLF-Net
on unseen dataset (test set). The highest average performances of PDLF-Net
on test dataset are 89.24% accuracy, 63.20% IoU, 77.27% Dice, 35.15% VOE,
89.72% sensitivity, 91.44% precision and 89.30% specificity .

4.5.1. Fvaluation of the model performance on more challenging Test Datasets

In order to evaluate the performance of the PDLF-Net on more challenging
dataset, we test it on images which have been subjected to rotation, illumina-
tion change and additional noise as indicated in the figure [[3] To observe the
improved capability of the PDLF-Net on learning image features on challenging
dataset, we compare it with the base model SegNet.

It can be observed from the graphs on figure [I3] that the PDLF-Net per-
forms better on all challenging images with an average improved performance
of more than 2.00% against SegNet on each metric. This justify the capability

of the PDLF-Net to capture more spatial features in noisy, transparent and low
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Figure 13: Performance of the PDLF-Net on test EMs images which have been subjected to
rotation of 90,180 and 270 degrees. Additional of Gaussian noise by 7% and 13%. Additional
of salt-pepper noise by 5% and 10%. Illumination change by increasing brightness by 13 %
(Bright 13%) and decreasing by 25% (Bright N25%).

contrast images.

4.5.2. Training and Testing Time Fvaluation

In this section we compare the training and testing time of the PDLF-Net

against other well-known CNN based segmentation models as shown in Table [6]

Table 6: Average training and testing time for the PDLF-Net (when concatenation is at
Block2, 3, 4 and 5), SegNet, Unet and Fully connected network (FCN)

Model Block2 Block3 Block4 Block 5 SegNet Unet FCN
Training time (min)  12.17 11.98 11.18 11.08 10.53 7.78 9.56
Testing time (sec) 6.19 5.92 6.15 6.12 5.92 3.21 4.31

From table[6] although the training and testing times for the PDLF-Net are
a bit higher compared to other models, they are generally still low and feasible

for practical segmentation tasks.

4.5.83. Comparison of the PDLF-Net Against Other State-of-the Art Segmenta-
tion Networks

We conduct comparison tests of the proposed model against U-net, FCN,

SegNet, Canny edge based segmentation, Otsu thresholding, k-means clustering

and region growing segmentation techniques on the same test dataset. Because
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the classical methods (Canny, Otsu and region growing) need post-processing
to have better segmentation results, we use same post-processing techniques for
all so as to unify the results. During test experiments PDLF-Net, SegNet, Unet
and FCN are all trained using augmented training EMs dataset and tested on
the same test dataset. The classical methods are subjected to test datasets only.

The results obtained for each networks are represented in table [7}

Table 7: The test results of the PDLF-Net (when concatenation is at block 2 (BL2), BL3,
BL4 and BL5), SegNet, U-net, FCN, Otsu, Canny, k-means and region growing (RG).

SegNet BL2 BL3 BL4 BL5 Unet FCN  k-means Canny Otsu RG
ToU 61.02 62.56 62.91 62.41 63.20 60.65 36.85 29.52 37.65 38.25 31.08
Dice 75.58 76.79 77.08 76.65 77.27 73.06 53.84 36.15 49.45 47.65 41.57
VOE 38.98 37.44 35.15 37.59 36.80 39.35 63.15 63.84 50.54 52.34 61.42
Sens  86.00 86.88 89.72 84.30 87.35 76.12 65.00 60.86 76.21 70.37 51.52
Prec 89.88 91.44 89.79 90.57 89.40 81.59 65.33 34.22 39.90 50.34 51.95
Spec  86.04 87.06 89.30 84.20 87.37 87.00 65.34 66.58 64.66 69.31 68.23
Acc 88.10 89.24 89.21 87.60 88.92 84.94 65.37 65.33 68.24 68.45 64.64

It can be observed from the table[7] that the PDLF-Net performs better than
other networks by having the highest values in all metrics. The average good

performing blocks for the PDLF-Net are block 3 and block 5.

4.6. Method’s Limitations

It should be noted that, although the proposed method has shown potential
on EMs, it focuses only on segmentation of one (single) or two microorganisms
on the image and not biofilms. Example of the segmentation of two EMs on the
same image can be seen in Fig. in classes DC3 and DC4, while other classes
contain only one EM on every image. In the future work, we will extend our
scope to testing our novel method on microorganim dataset with more than two

microorganisms, clusters, and biofilms.

5. Conclusion and Future Work

In this research we propose a Pairwise Deep Learning Feature Network for
segmentation of weakly visible EMs. It combines the advantages of both hand
crafted features (by identifying the Shi and Tomas interest points of the fore-

ground ) and deep learning features (by extracting deep learning features on the
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patches which are centered on each interest point). Then, in order to learn the
intermediate spatial characteristics between the nearby interest points, we pair
the extracted deep learning features using the Delaunay triangulation theorem.
The results show that the proposed network upon improving the performance of
the base mode SegNet, it can focus more on the foreground which can overcome
the segmentation challenges on image such as noise and low contrast. Apart
from being useful in segmentation of EMs, the proposed network can find more
application in segmentation of brain tumor and breast cancer images.

During initial experiments we tested the pairwise deep learning features on
binary classification of two EMs classes using SVM. Promising results were
obtained. Therefore, the pairwise features can also be suitable not only in
segmentation tasks but also in classification and image matching works.

In the future work, we plan to use other superior convolution neural net-
works such as Inception, Xception and DenseNet for extraction of deep learning

features to improve more our segmentation results.
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