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Abstract. ImageNet is a large-scale hierarchical database of object classes. We

propose to automatically populate it with pixelwise segmentations, by leverag-

ing existing manual annotations in the form of class labels and bounding-boxes.

The key idea is to recursively exploit images segmented so far to guide the seg-

mentation of new images. At each stage this propagation process expands into

the images which are easiest to segment at that point in time, e.g. by moving to

the semantically most related classes to those segmented so far. The propagation

of segmentation occurs both (a) at the image level, by transferring existing seg-

mentations to estimate the probability of a pixel to be foreground, and (b) at the

class level, by jointly segmenting images of the same class and by importing the

appearance models of classes that are already segmented. Through an experiment

on 577 classes and 500k images we show that our technique (i) annotates a wide

range of classes with accurate segmentations; (ii) effectively exploits the hierar-

chical structure of ImageNet; (iii) scales efficiently; (iv) outperforms a baseline

GrabCut [1] initialized on the image center, as well as our recent segmentation

transfer technique [2] on which this paper is based. Moreover, our method also

delivers state-of-the-art results on the recent iCoseg dataset for co-segmentation.

1 Introduction

Foreground-background segmentation is the fundamental task of producing a binary

segmentation of an image, separating the foreground object from the background [1,3,4].

Segmentation is useful in many higher-level applications such as object recognition,

as it provides the spatial support for extracting texture and shape descriptors on ob-

jects [5,6]. It is also valuable for human pose estimation, where silhouettes have been

shown to reliably convey pose [7], and for 3D reconstruction from silhouettes. However,

manually annotating images with segmentations is tedious and very time consuming.

This prevents the above applications to scale both in the number of training images and

the number of classes. On the other hand, we have witnessed the advent of very large

scale datasets for other computer vision applications, including image search [8] and

object classification [9].

In this paper, we want to bridge the gap between these domains by automatically pop-

ulating the large-scale ImageNet [10] database with foreground segmentations (fig. 1).

ImageNet1 contains millions of images annotated by the class label of the main object.
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Fig. 1. Example segmentations produced by our method on ImageNet at stage 2 (left) and stage

3 (right). Each row of a stage shows 5 images of a class with the segmentations overlaid in red.

The rightmost column of each class shows segmentation faults.

However, only a small fraction of the images is annotated with bounding-boxes, and

none with foreground segmentation. Our method leverages these existing annotations

while exploiting the semantic hierarchy of ImageNet to populate its images with seg-

mentations of their main objects, see fig. 1. Our work weaves together and extends sev-

eral recent developments including Grabcut [1], segmentation transfer [11,2], efficient

binary codes [8], cosegmentation [3,12] and structured output learning [13,14] into a

fully automatic, computationally efficient and reliable large scale segmentation frame-

work. We jointly segment groups of semantically related images by sharing appearance

models, and help the process by importing appearance models from related classes that

were segmented in previous stages of our segmentation propagation process.

In an extensive experimental evaluation, we show that our process accurately seg-

ments 500k images over 577 classes. To our knowledge, this is the largest segmenta-

tion experiment to date. Moreover, we validate the components of our approach on the

smaller iCoseg dataset, where we outperform the state-of-the-art [3,12,15,16].

2 Related Work

Object segmentation. Fully supervised segmentation techniques aim at separating

instances of an object class from their background (e.g. horses, faces, cars [17,18,19]).

They are supervised in that the training set shows images of other instances of the

class along with their binary segmentations. Two main directions have been explored

to reduce the burden of annotating images with ground-truth segmentations. The first

is to reduce the degree of supervision [20,21,22] by either annotating only a fraction
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Fig. 2. Illustration of segmentation progapation on ImageNet. The stage of propagation is marked

by t. Nodes are classes and edges represent the class hierarchy. Node colors indicate the state of

a class: white = “unsegmented”, red = “currently being segmented” (Tt), and black = “already

segmented” (St−1). Diagonally split nodes are classes partially annotated with bounding-boxes

(bottom-left corner). Segmentation transfer is shown by arrows.

of the pixels [22] or by providing only the names of the object class appearing the im-

age [20,21]. Our work is related to this, as most of the images in ImageNet are only

labeled by class names. A second, recent trend is to guide the segmentation process us-

ing generic object localization tools [23,24], as in [2,15]. We build on the segmentation

transfer scheme of [2], but make it computationally much more efficient to scale up to

ImageNet.

Interactive segmentation [1,25,26] has been thoroughly researched since the very

popular GrabCut [1]. Most of these approaches minimize a binary pairwise energy func-

tion whose unary potentials are determined by appearance models estimated based on

user input on the test image. Our approach builds on their energy formulation, but is

fully automatic.

Our work is also related to co-segmentation, where the task is to segment multiple

images at the same time [3,12,15,16,27]. Similar to [3,12], we share appearance models

when segmenting many images of the same class. This sharing helps identifying which

image regions belong to the foreground object.

Knowledge transfer. There is also a trend towards transferring knowledge to help

learning a new class from a few training examples by leveraging examples from related

classes [28,29,30]. Most of these works aim at object recognition or detection, not seg-

mentation. Knowledge transfer is typically done by regularizing model parameters [28],

through an intermediate attribute layer [29] or by sharing parts [30]. For segmentation,

we propose to use appearance models of previously segmented classes to help seg-

menting a new class. Moreover, our segmentation propagation scheme automatically

determines which classes to segment next.

3 Overview of Our Approach: Segmentation Propagation

Our goal is to derive a binary segmentation for each image in ImageNet, accurately de-

lineating its main object. A key idea is to employ the images segmented so far to help

segmenting new images. At any stage t, we employ a source pool St−1 of segmented

images to transfer segmentations to a target set Tt of new unsegmented images. The

idea is to transfer segmentations masks from windows in a subset of St−1 to visually

similar windows in Tt and then use GrabCut to refine the segmentation (sec. 4). The

subset of St−1 is chosen based on semantic similarity between classes. The newly seg-

mented images in Tt are then added to the source pool, forming the pool St, which is
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used as source in the next stage. Since no segmented images are available in ImageNet,

we start this recursive process from the PASCAL VOC 2010 segmentation challenge

images (S0). The process is like a wave spreading through ImageNet, gradually seg-

menting more and more images (fig. 2). In stage t = 1, the wave propagates from S0

to ImageNet images annotated with ground-truth bounding-boxes. We start from these

images because here the segmentation task is the easiest as the bounding-boxes provide

a reliable estimate of the object location. Moreover, we jointly segment images in the

same class by sharing appearance models across them (sec. 5). This further improves

segmentation accuracy. Because of all these factors, the output of stage t = 1 are ex-

cellent segmentations for tens of thousands of images, which can be used as surrogate

ground-truth in the next stages (see sec. 6.2 for a quantitative evaluation).

After the images in T1 are segmented, they are added to the source pool S1=S0∪T1
to support the segmentation of a larger set of images T2. A key issue is now: which

images should be processed next? All remaining images are annotated only with a class

label, no bounding-box is left. In general, a good choice for Tt would be unsegmented

images most related to the images in the source pool St−1, in terms of the kind of

objects they contain. Importantly, all images in ImageNet are labeled by class labels and

these are organized in a semantic hierarchy. Therefore, we exploit the semantic relation

between the class labels to define Tt. Our choice for T2 is the set of unsegmented images

with the same class label as any image in T1 (i.e. 0 semantic distance). Analog to stage 1,

we jointly segment images in a class C to improve accuracy, using as source the subset

of S1 consisting of S0 and the images of C segmented at stage 1.

After stage t=2, all remaining classes are completely unsegmented and contain no

image with bounding-boxes. Therefore, we create Tt from batches containing to entire

classes. A new class C is included in Tt if it is directly related to a class C′ in St−1.

Two classes are directly related if they are connected by an edge in the ImageNet DAG

(i.e. they are parent-child). In addition to jointly segmenting all images in a new class

C, here we also import appearance models from its related classes C′, which further

helps accuracy (sec. 5.2). Over the subsequent stages, the wave progressively spreads

to siblings, then to cousins, and continues until the whole ImageNet is segmented.

When transferring from St−1 to a class C in Tt, we restrict the source pool to classes

directly related to C and all their respective sources. Hence, the source pool is tailored

to a target class to be maximally related to it and always contains S0. When there is no

possible confusion, we will simply denote the source pool as S. Overall, our segmen-

tation propagation scheme balances two opposing forces. On the one hand the source

pool rapidly grows and contains exactly those images most highly related to the target

ones, which helps segmentation transfer. On the other hand, errors in segmentations

generated in a stage degrade the quality of the source pool and risk propagating to later

stages. Our scheme balances these forces to make segmentation transfer work at every

stage and ultimately produce high quality segmentations for a large subset of ImageNet.

We detail below the components of our approach. In sec. 4 we describe segmentation

transfer. Then, sec. 5 details the energy minimization framework used to jointly segment

all images of a class. This includes sharing appearance models within the class (sec. 5.1)

and importing appearance models of related classes from the source pool (sec. 5.2).
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Fig. 3. Two examples of window-level segmentation transfer at stage 3. (a) two out of 100 windows

extracted in a target image; (b) the most similar windows from the source set S2 transfer their

segmentation masks to the windows of the target image, giving (c); (d) the 100 individual window

masks are aggregated into a single soft-segmentation mask M for the whole target image.

In sec. 6, we present experimental results on the iCoseg data set (sec. 6.1), then on 500k

images from ImageNet (sec. 6.2) and draw conclusions (sec. 6.3).

4 Large-Scale Segmentation Transfer

We present here the paradigm of segmentation transfer [11,2], and explain how to make

it computationally very efficient to scale up to ImageNet. We then describe how the

parameters of this transfer mechanism are learnt.

To segment a new image i, the idea is to transfer segmentation masks from the im-

ages most similar to i in the source pool S of pre-segmented images. The transferred

masks are then used to derive a unary potential of a pairwise energy function which is

minimized to refine the segmentation (sec. 5).

4.1 Window-Level Segmentation Transfer

The basic scheme [11] compares the image i to the source images S based on global

descriptors capturing the image as a whole. The segmentation masks of the most similar

source images are averaged into a mask Mi for i. Very recently, [2] improved on this

basic scheme by transferring segmentation masks at the level of windows (fig. 3a). In

each image, we first extract 100 candidate windows using the objectness sampling [23]

and then transfer masks from windows in S (fig. 3b) to visually similar windows in i
(fig. 3c). Because of the objectness sampling, some candidate windows are centered on

objects (e.g. cow, motorbike, telephone) rather than background elements, making them

a better spatial support for segmentation transfer. Using windows is preferable because

they exhibit less variability than whole images, so they are easier to match. Moreover,

they enable to compose novel scenes using local parts of different images from S.

After transferring masks for each window independently (fig. 3c), they are aligned

to their corresponding windows in i and aggregated into a single mask Mi (fig. 3d,

see sec. 4.3). Hence, Mip∈ [0, 1] estimates the probability that the pixel p is foreground

in image i (fig. 3d). Mi is then used in two different ways in our energy minimization
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framework (see sec. 5). First, they automatically setup the unary potentials based on

appearance models by estimating their parameters for the foreground and background

classes. Second, they are used directly as a location prior unary potential that encour-

ages the final segmentation to be close to Mi (see [2]).

4.2 Efficient Segmentation Transfer

The quality of the output segmentation depends on the source pool S containing win-

dows with appearance as similar as possible to windows in i and with segmentation

masks truly reflecting the underlying segmentation of i. In the spirit of recent work for

recognition [9], we aim at collecting the largest possible pool of segmented windows.

When applying this idea to millions of images that contain hundreds of windows, a key

requirement is efficiency both in terms of computation and memory.

The first step to reduce computational cost is to describe windows very quickly. In-

stead of GIST as used in [11,2], we prefer HOG which are much faster for virtually no

loss in retrieval performance. The second step is to speed up the computation of dis-

tances between the descriptors of all windows in i to all windows in S. This is in theory

the most computationally expensive step in segmentation transfer. With 100 windows

per image and |S| =100k images, 1 billion distance computations are needed to seg-

ment a single image! Moreover, storing the HOG descriptors for 10M windows in S
requires 310 GB of memory. This is both too large to fit in the memory of a desktop

machine and too slow to read from disk for each new image to segment.

In this paper we employ the efficient binary coding scheme called ”Iterative Quan-

tization” (ITQ) [8] to circumvent this issue. The key idea of ITQ is to encode high-

dimensional descriptors as short binary vectors so that points close in L2 distance in

the original descriptor space are close for the Hamming distance in the binary space.

Using 512 bits (i.e. 64 bytes) to encode each HOG, 10M windows now account for a

mere 640Mb. Moreover, hamming distances are particularly fast to compute on modern

CPUs, which can perform a 64-bit XOR in a single operation. Our standard desktop

computer achieved a rate of about 40 million distances computations per second (on a

single core of an Intel Core i7 CPU 923 2.67GHz). While this is already fast enough

for the large-scale experiments in this paper, it could be accelerated even further with

fast nearest neighbour techniques dedicated to hamming codes [31].

4.3 Aggregating Neighbor Masks

As explained above, the key operation in our scheme is to transfer segmentations from

the K appearance nearest neighbors {s1, s2, . . . , sK} in S to the target window w.

We model the mask mw for w as a weighted sum of the masks msk of its neighbors:

mw =
∑K

k=1
λkmsk , where λk ≥ 0,

∑
k λk = 1 and all the masks are normalized to

the same size. Using uniform weights λk would make the transfer very dependent on

K . An excessively large K would simply average the segmentations in the source pool,

ignoring image appearance, making K an important parameter to be set. Instead, we

propose here to learn λk using training images from PASCAL VOC10 along with their

ground-truth segmentations, which we use to derive ground-truth masks mw. We train

the weights λk by minimizing the Frobenius norm || · ||F of the residuals:
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Image j

Image i

S Ai Aj AC AC′ Final segmentation

Fig. 4. Our joint segmentation model. Left: two images i and j of a class to segment. The location

priors Mi and Mj are obtained by segmentation transfer from S (second column). Image models

Ai and Aj contribute to an image-specific unary potential (third column). The fourth column

shows the class-wide unary potential (AC) applied to these two images. The fifth column uses

the appearance model AC′ of a related class C′ on these two images. Gray nodes represent fixed

models, while white nodes illustrate models that are updated during the iterations of the energy

minimization. Unary potential are represented by mapping the most likely background pixel to

blue and the most likely foreground pixel to red. Rightmost column: final segmentations produced

by our model.

min
{λk}

∑

w

∥

∥

∥
mw −

K
∑

k=1

λkmsk

∥

∥

∥

2

F
s.t. ∀k, λk ≥ 0, and

K
∑

k=1

λk = 1. (1)

We reparametrize this constrained convex quadratic program by

λk = exp(λ̂k)/

K
∑

k=1

exp(λ̂k). (2)

We solve the resulting unconstrained program using Matlab’s fminunc, based on an

interior-point algorithm. As the weights decrease rapidly, we automatically set K to the

rank of the first neighbor with near zero weight (i.e. K = 10).

5 Joint Segmentation of a Set of Images

Thanks to the technique of sec. 4, each image i of a class C in the target set Tt now has a

transferred soft-segmentation mask Mi. In this section we focus on the next processing

stage, i.e. producing a binary segmentation of all images in C jointly. We model this

task in a classic energy minimization framework [1,2] which we extend to multiple

unary potentials, including image-specific and class-wide appearance terms (sec. 5.1),

a location prior derived from M , and appearance terms imported from semantically

related classes (sec. 5.2, used from stage t = 3 onward). In sec. 5.3 we learn the optimal

weights of all potentials in the model by solving a structured SVM problem [13].
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5.1 Sharing Appearance within a Class

Given a set of images i ∈ I, let xip be the label for pixel p in image i and x be the
vector of all xip. In this paper I contains all images of a class C of ImageNet. The
energy function for jointly segmenting all images in I using the source pool S is

E(x;A,S) =
∑

i

(

∑

p

Eip(xip;A,S) +
∑

p,q

Eipq(xip, xiq)

)

(3)

The pairwise potential is

Eipq(xip, xiq) = δ(xip �= xiq) · d(i, p, q)
−1 · exp(−γ||cip − ciq||

2) (4)

Analog to [1,26,32,33,34], this potential encourages smoothness by penalizing neigh-

boring pixels taking different labels. The penalty depends on the color contrast between

the pixels, being smaller in regions of high contrast (image edges). The summation over

(p, q) is defined on a 8-connected pixel grid.
The unary potential is a linear combination of several terms

Eip(xip;A,S)= −αI log p(xip; cip, Ai)−αC log p(xip; cip, AC)−αM logMip(xip;S) (5)

Each potential p(xip; cip, A) evaluates how likely a pixel of color cip is to take label

xip, according to the appearance model A. The set of appearance models A contains

one model Ai specific to each image and one class model AC common to all images in

I. This class model enables to share appearance among the images, so they are jointly

segmented. The image-specific models account for visual characteristics unique to an

image (e.g. the hair color of a soccer player), while the class model accounts for class-

wide characteristics (e.g. the color of the team’s shirt). As in [1], an appearance model

A consists of two Gaussian mixture models (GMM), one for the foreground (used when

xip = 1) and one for the background (used when xip = 0). Each GMM has 5 compo-

nents. Each component is a full-covariance Gaussian over the RGB color space.

Because of the probabilistic nature of Mip as obtained from sec. 4, we can directly

use Mip(xip;S) = M
xip

ip (1−Mip)
1−xip as a unary potential in eq. (5). Figure 4 illus-

trates the various unary potentials.

Our joint segmentation model can be seen as a generalization of both Grabcut [35]

and Batra et al. [36]. In Grabcut each image is segmented independently, based on an

appearance model for each image: A = {Ai}i∈I . Conversely, Batra et al. [36] uses only

a single model shared among all images: A = {AG}. Both [35,36] and other works us-

ing analog energy functions [26,37] require user interaction to estimate the appearance

model, typically a manually drawn bounding-box or scribbles. In our work instead, fol-

lowing [2], the appearance models are automatically estimated from the mask Mi. After

this initial estimation, we follow [35] and alternate between finding the optimal segmen-

tation x given the appearance models, and updating the appearance models given the

segmentations. The first step is solved globally optimally by minimizing eq. (5) using

graph-cuts as our pairwise potentials are submodular. The second step fits GMMs to la-

beled pixels. Each image model Ai is fitted to the current segmentation of the respective
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image, while a single global model AC is fitted to the segmentations of all images at

the same time. The benefits of having AC can be understood in the light of this iterative

scheme. The class model can be more robustly estimated from all images, as the er-

rors due to inaccurate segmentations average out. In turn this more accurate appearance

model helps improving segmentations in the next iteration.

Propagation scheme. The general scheme above is adapted at each stage t to fit

the situation (sec. 3). At stage 1 we constrain the solution of eq. (3) to the available

ground-truth bounding-box. At stage 2, when segmenting unannotated images in the

same classes as stage 1, we include the images of stage 1 in eq. (3) but keep their seg-

mentation fixed to the output of stage 1. This way they can improve the segmentation

of new images by contributing to the class model AC .

5.2 Importing Appearance from Related Classes

From stage t = 3 onward, the propagation wave reaches new target classes Tt which

are semantically related to the source classes in St−1 (see sec. 3). As these related

classes have been already segmented in the previous stage, we propose to import their

appearance models to help segmenting the new classes. This idea is related to knowl-

edge transfer for object classification [38], localization [39] and detection [40], but we

believe it is unexplored for segmentation.
More precisely, when segmenting a new class C, we add to eq. (3) a unary potential

for each of its related classes C′ ∈ R(C), which carries its appearance model AC′ . We
therefore extend the unary potentials in eq. (5) to

Eip(xip;A,R(C)) =− αI log p(xip; cip, Ai)− αC log p(xip; cip, AC) (6)

− αM logMip(xip;R(C))−
αR

|R(C)|

∑

C′∈R(C)

log p(xip; cip, AC′)

Note how the related source classes all have the same weight αR, instead of their own

specific weight αC′ . As the number of related source classes varies for each target class,

it is very difficult to learn a weight per related model (sec. 5.3).

Note how in eq. (6) we restrict the source pool used for segmentation transfer to

R(C), to make it maximally related to C (as discussed in sec. 3).

5.3 Learning the Weights α

We learn the weights α of the unary potentials using some manually segmented images

from ImageNet. We train two weight vectors α = {αI , αC , αM} specific to stage 1

and 2 respectively, and one generic weight vector α = {αI , αC , αM , αR} for all later

stages. This involves a total of only 90 segmented training images.

Letxi be the labeling of all pixels in image i. Givenn training imagesI = (i1, . . . , in)
with associated ground-truth labelings x∗ = (x∗

1, . . . ,x
∗
n), we seek for the parameters

so that the energy of the ground-truth labeling x
∗
i of each image is lower than the energy

of any other labeling xi of that image, assuming fixed modelsA and source poolS. This

translates to the following contraints
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E(x∗
i |i,α) ≤ E(xi|i,α), ∀xi �= x

∗
i , ∀i ∈ I. (7)

where E(x|i,α) is one term in the outermost summation of eq. (3), corresponding

to only image i. For simplicity, we omit A and S as they are predetermined by the

segmentation transfer process and cannot change during inference on eq. (3).

To learn the parameters α we solve a generalized support vector machine training

problem, following [13]

min
α,ξ

1

2
‖α‖2 + C

n∑

j=1

ξi (8)

s.t. E(xi|i,α)− E(x∗
i |i,α) ≥ ∆i(x

∗
i ,xi)− ξi, ∀xi �= x

∗
i

ξi ≥ 0, ∀i ∈ I

where C > 0 is a constant; ξi is the slack variable for xi, which is necessary if no α

fulfilling all constraints exists; ∆i(x
∗
i ,x) is a loss function quantifying the difference

between a labeling xi and the ground-truth x
∗
i .

Our choice for ∆i is the average number of mislabelled pixels, weighted to account

for the ratio of foreground/background pixels in the image: ∆i(x
∗
i ,xi) =

∑
p∈iwip

|xip − x∗
ip|, where wip = 1/n+

i if x∗
ip is foreground and wip = 1/n−

i otherwise;

n+

i , n
−

i are the number of ground-truth foreground/background pixels in i. In essence,

this weighted loss gives equal importance to foreground and background regions, thus

avoiding biases towards the background which often occupies most of an image.

As each labeling xi corresponds to a constraint, the number of constraints is expo-

nential in the number of pixels. Constraint generation circumvents this issue by itera-

tively solving (8) while updating a set of most violated constraints. Finding the most

violated constraint for an image i involves minimizing E(xi|i,α)−∆i(x
∗
i ,xi). Since

∆i can be expressed as a unary potential over pixels, this problem can be solved exactly

using graph-cut [14].

6 Experiments and Conclusion

We validate in sec. 6.1 the components of our approach on the recent iCoseg dataset [36],

and then present results on ImageNet in sec. 6.2. We conclude in sec. 6.3.

6.1 Cosegmentation on iCoseg

iCoseg [36] contains 643 images grouped in 38 classes (e.g. stonehenge, brown bear,

gymnasts, airplanes). The task, as set out by previously published works [15,16,36] is

to jointly segment the foreground object in all images of a class. Following these works,

we measure performance as the percentage of correctly labelled pixels (accuracy).

In tab. 6.1 we compare several stripped down versions of our model (sec. 5.1). The

first three use no segmentation transfer (sec. 4) and initialize their appearance mod-

els from a window centered on the image taking 25% of its surface. (1) image only:



Segmentation Propagation in ImageNet 469

Fig. 5. Segmentations produced by our image+transfer+class method on the Elephants class of

the iCoseg dataset

using only the image-specific unary potential Ai. This is essentially identical to Grab-

Cut [1]; (2) class only: using only the class-wide unary potential AC . This is very sim-

ilar to [36], but without user interaction; (3) image+class: using both types of unaries;

(4) image+transfer: using the image-specific unary Ai and segmentation transfer to

initialize the appearance models and to add a location prior unary potential M (sec. 4).

The source pool is fixed to the PASCAL VOC10 training set. This is a computationally

efficient version of [2] using the speedups we proposed in sec. 4.2. As reported in [2], it

obtains state-of-the-art figure-ground segmentation performance on PASCAL VOC10.

(5) image+transfer+class: using image-specific unaries, class-wide unaries, and seg-

mentation transfer with source pool fixed to the VOC10 training set. For the models

using multiple unary potentials (3-5), we use the technique in sec. 5.3 to learn their

weights α in a leave-one-class-out fashion. When evaluating a class, we use weights

learned from two random images from each of the other 37 classes.

As table 6.1 shows, the baseline GrabCut already shows a good performance (82.4%
accuracy). On iCoseg, using class models proves very beneficial, because the object in-

stances in different images of a class have very similar appearance. Class models alone

perform better than image models (83.6%), and greatly improve the performance when

combined with other models: +5.8% with image models, +3.8% with image models

and segmentation transfer (fig. 5). Segmentation transfer [2] also proves very useful: it

improves by +5.2% over GrabCut using image models only, and by +3.2% with both

image and class models. This shows that segmentation transfer is a very effective way

to automatically initialize GrabCut, confirming what observed by [2] on other datasets

(PASCAL VOC10, Graz-02, Weizmann horses). Here, we cannot evaluate the idea of

recursively updating the source pool (sec. 3) nor of importing appearance models from

related classes (sec. 5.2), as classes in iCoseg are not organized in a hierarchy.

Table 6.1 also reports the average accuracy of two recent state-of-the-art works [15,16]

as reported in [15]. In a comparable setting using only iCoseg images, our image+class

method outperforms them both. Our image+transfer+class method performs best by

a considerable margin, but it uses manually segmented PASCAL VOC10 images as

training data. Importantly, our method is also computationally much more efficient

than [15,16]. It takes only minutes to segment a class, in contrast to several hours

for [15,16]. Hence, we can apply our technique to the much larger ImageNet dataset.
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Table 1. Segmentation accuracy on iCoseg. The results for [15,16] are taken from table 1 in [15].

Columns 3-6 are stripped down versions of our model. The last column is our complete model

(see main text).

[16] [15]
image only class only image+class image+transfer image+transfer

≈GrabCut [1] ≈Batra [36] ≈Kuettel [2] +class

Accuracy 78.9 85.4 82.4 83.6 88.2 87.6 91.4

200 classes 200 classes 170 classes 70 classes 6 classes
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Fig. 6. ImageNet: segmentation accuracy for all classes of each stage of our propagation pipeline.

For each stage we show the classes sorted by their accuracy averaged over images. Note how

stage 1 and stage 2 operate on the same classes, but on different images (images in stage 1 have

annotated bounding-boxes, whereas images in stage 2 do not). Each subsequent stage operates on

new classes containing only images without bounding-boxes (fig. 2).

6.2 Segmentation Propagation on ImageNet

We have run our full segmentation propagation method on two subtrees of ImageNet

containing about 500k images over 577 classes. We selected the classes automatically

to ensure that about half of the classes have some images annotated by bounding-boxes,

while half of the classes have none. In total, there are 60k images with bounding-boxes

and 440k images with only class labels. On this subset of ImageNet, segmentation prop-

agation runs for 5 stages to completion. To quantitatively evaluate our approach, we

annotated segmentations via Amazon Mechanical Turk for 10 random images from 446

classes, for a total of 4460 images. These annotations enable to reliably estimate the

segmentation performance of our method on a wide range of classes. We have also

annotated a small separate set of 90 images to estimate α, as discussed in sec. 5.3.

The segmentation accuracy of our full method averaged over all images in the eval-

uation set is 77.1%. In comparison, the baseline GrabCut delivers 71.0% (as in ‘image

only’ in sec. 6.1). Fig. 6 reports per-class accuracy for all 446 classes, divided by the

stage by which they are reached by our propagation wave (sec. 3). Interestingly, accu-

racy degrades gracefully over the stages. The average accuracies for stage 1 to 5 are

87.3%, 76.1%, 74.3%, 72.0%, and 64.2% (see fig. 1 for examples). Note how stage 5

contains very few images and so has little impact of the overall average performance.

Stages 2-5 are interesting because their source pools contain many (imperfect) seg-

mentations produced by earlier stages rather than only the ground-truth masks S0 from

VOC10. This enables to test the effect of the full segmentation propagation idea, com-

pared to segmentation transfer from the fixed S0 pool. For this we compare to our

image+transfer+class method, including also class-wide appearance models (sec. 6.1).

The accuracy of our full segmentation propagation method differs from
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image+transfer+class by +3.6% in stage 2, by +0.7% in stage 3, by 0% in stage 4 and by

-5.9% in stage 5. On average over all images in stages 2-5, the improvement is +1.2%

(from 72.9% to 74.1%). This demonstrates the value of recursively employing images

segmented before to help segmenting new images. However, the progressive decay of

improvement over stages indicates that errors in early stages propagate to later stages.

Finally, we notice that the visual variability in ImageNet classes is huge. As a conse-

quence, the weights α learned on ImageNet are quite different from the ones learned on

iCoseg. Typically, class models in iCoseg perform very well and have high weight. On

the contrary, class and related models have lower weights in ImageNet. This stresses

the value of learning these weights automatically rather than setting them manually.

6.3 Conclusion

We have presented segmentation propagation: a computationally efficient technique to

recursively segment images in ImageNet. It successfully combines ideas from segmen-

tation transfer, cosegmentation, structured output learning, efficient binary codes, and

GrabCut. The technique was shown to segment 500k images over 577 ImageNet classes

with good accuracy. We have shown how accuracy degrades gracefully as the propaga-

tion waves moves from easier images with bounding-box annotations, to unannotated

images in the same classes, to images in completely unannotated classes. We have also

demonstrated the value of the various components of our method on the smaller iCoseg

dataset [36], where it outperforms the state-of-the-art in cosegmentation [15].

In future work, we plan on exploiting the fact that classes in ImageNet are very

diverse. Some have more images than others and some have much larger variations in

appearance than others. This suggests to adapt the segmentation technique to each target

class, and to propagate segmentations based on visual similarity between classes, rather

than only based on semantic similarity. To improve robustness we plan to automatically

detect bad segmentations in early stages, to avoid propating errors to later stages. This

could be achieved, e.g. by analysing the entropy of the transfer mask M , as a measure

of the confidence of the method (fig. 3d).
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