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Abstract 
A model of object shape by nets of medial and boundary primitives is justified as richly capturing multiple aspects of shape 
and yet requiring representation space and image analysis work proportional to the number of primitives. Metrics are 
described that compute an object representation's prior probability of local geometry by reflecting variabilities in the net's 
node and link parameter values and that compute a likelihood function measuring the degree of match of an image to that 
object representation. A paradigm for image analysis of deforming such a model to optimize a posterior probability is 
described, and this paradigm is shown to be usable as a uniform approach for object definition, object-based registration 
between images of the same or different imaging modalities, and measurement of shape variation of an abnormal anatomical 
object compared with a normal. Examples of applications of these methods in radiotherapy, surgery, and psychiatry are given. 
 
Introduction 
 
Our intuition tells us that to segment, display, match, or analyze an object in a 2D or 3D medical image, 
we should look for a region of the image that is consistent with what we know about the object's 
geometry. We should be able, for example, to find a ventricle-shaped object in an MR image of the 
brain. This paper gives a means of representing shape that allows the efficient, stable application of this 
idea to problems of image analysis. 
 
We describe a representation that. 

1) richly and efficiently captures object geometry, and  
2) allows measurement of the shape difference between two instances of an object, in the framework of 

realistic images, and thereby  
3) provides a common framework for the medical image operations of segmentation, object-based 

registration, measurement of shape variation, and indication of regions of pathological shape 
change.  

The general paradigm for image analysis that we will present here involves two components. The first 
component is to create a model R comprised of interconnected figures, where a figure is either a whole 
object or the main object part or a protrusion or indentation in another figure. It is this focus on the 
figure as the basic unit of shape that distinguishes the approach that we will describe in this paper. The 
second component of the approach is to determine a geometric transformation T that maps R into the 
most probable variant, given the image data. The measure of probability involves two components:  
1) the probability Pgeom, of observed change in the modeled shape, position, orientation, and size of the 
object; 2) the probability Pimg, that the image data would arise from the object geometry. In this paper 
we decompose Pgeom into first, the probability of the position, orientation, and size of the object and 
second, the probability Pshape of the shape of the figures and of  the interfigural spatial variables. We 
focus on Pshape. Then  

1) for a segmentation objective, R models the object over a family of training images, and T(R) yields 
the segmented object;  
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2) for a registration objective, R is the object representation in the reference image, T(R) is the object 
representation in the target image, and T is the desired registration transformation; 

3) for a shape variation measurement objective, R is the object representation at its base position,  and 
-log Pshape is the measure of change in shape from R to T(R).  

 
Implementing this conceptual framework requires us to specify the representation R of object geometry 
and to specify the formation of the probabilities Pgeom  and Pimg. The remainder of this paper begins 
with a section on representation of object geometry, leading to a multifigural tree of linked, coarsely 
sampled medial loci augmented by a boundary displacement map on the medially implied boundary. It is 
followed by a section on measures of the probability of geometric change and a section on measures of 
the fit of image data to an object representation. Sections follow indicating how these ideas can be used 
for image analysis, in particular, segmentation, registration, and measurement of shape anomaly or 
differences. However, since we wish to focus here on the shape representation, we leave details of the 
algorithms for these objectives to other papers on the individual algorithms [Wilson 1995, Wilson 1996, 
Fritsch 1995, Fritsch 1997, Liu 1998]. In the discussion of image analysis we give examples from 
radiotherapy planning, surgery planning, and psychiatric diagnosis, but we leave fuller illustration of 
these applications to other papers on the individual clinical topics [Fritsch 1996, Clary 1997]. 
 
1. Alternatives for Representing Object Shape 
  
We take the common view that the shape of an object includes all the spatial aspects of its layout that are 
invariant to similarity transforms, made from translation, rotation, and uniform magnification. Thus an 
object in d-space is fully spatially described by its shape together with its similarity transform 
parameters: its position, orientation, and scale. We will call the shape together with these similarity 
transform parameters of an object its morphography.  But how can we represent the shape in a way that 
richly captures the aspects that are visually important, allows efficient calculation of shape variation and 
location of regions of shape variation, and allows stable application to image data, with all their 
disturbances of intensity noise and blurring, boundary texture, and especially complexity of background? 
 
Traditionally shape has been derived from points with recognizable local geometry called landmarks 
[Kendall 1989, Bookstein 1991] or from a representation of the boundary by sampled points [Cootes 
1993] or by boundary-representing basis function coefficients [Staib 1992, 1996; Székely 1996, 
Kelemen 1998]. Hybrids of boundary and other curve loci with landmarks, e.g., [Yuille 1992], and 
representations by sampling the full space [Christensen 1997, Grenander 1994] have also been 
suggested. The methods with point primitives have assumed that the boundary representations or 
landmarks could be accurately, homologously, reproducibly, and conveniently extracted in sufficient 
number, but they have suffered from the fact that all of these assumptions are frequently questionable in 
real images.  
 
Efficiency is also a concern. Given N shape primitives, if N is very large, as in the number of pixels in a 
2D image or the number of voxels in a 3D image, the time for instantiating a shape representation based 
on an image can be unacceptably large. If N is small, efficiency may not be a concern but the shape 
representation is frequently not rich enough. If N is in the moderate range of some hundreds, the 
efficiency depends on whether the required computation requires O(N) or O(N2) steps. The similarity 
transform parameters are easily extracted in O(N) time. However, various methods have extracted shape 
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multiplication of an O(N)-vector by a square matrix of side O(N), also requiring O(N2) steps. The 
minimal bending energy method of Bookstein [1991] falls into this category.  
 
Among O(N) methods, the Procrustes method has modeled shape by variations in the vectors from the 
point primitives to their center of mass. Interrelationships among points are not modeled, so the measure 
of shape produced is somewhat weak. The same can be said about methods based only on the local 
relations between adjacent boundary points, thus capturing only the local curvatures of the boundary.  
 
Another way of producing an O(N) method has been to take only a constant number of linear 
combinations of the N primitives, as provided by Principal Component Analysis of the primitive point 
positions or boundary coefficients in training images after normalization for a similarity transform 
[Cootes 1993; Kelemen 1998]. These approaches yield shape parameters that reflect global information 
and thus are weak in their ability to capture aspects of shape that are specific to a particular location, 
protrusion, or indentation.  
 
We suggest that a method for providing O(N)-time shape analysis and the ability to capture both local 
and global shape variations in a way stable against common image uncertainties and complexities lies in  

a) recognizing that certain boundary points are related in special ways determined by figural 
properties,  

b) realizing that a shape is made up of related figures,  
c) focusing on the facts that shape is magnification invariant and that the tolerance of positions in 

object representation primitives is a critical factor (see Fig. 5, later), and  
d) making coarse-to-fine analysis an inherent aspect of the shape description.  

This leads us to a representation that is a hierarchy of coarse-to-fine collections of nets of medial 
primitives, augmented by nets of boundary displacement primitives, all with associated probability 
distributions. We will describe these ideas with examples in two spatial dimensions. We have shown 
these ideas to work without change in 3D as well, but we leave the 3D aspects to another paper. 
 
2. Figural Shape Representation 
 
2.1. Medial Primitives and Nets of Medial Primitives 
 
Having assumed that positional tolerance is a central aspect of shape [Morse 1996], we focus first on the 
large-tolerance aspects of shape that allow us to say that the two objects in Fig. 1 are the same figures 
but differ in the texture, i.e., the small-tolerance detail, of the boundary. We suggest that these large 
tolerance aspects are those involving cross-figural linking, which we represent via medial primitives. 
Blum [1967] and Marr, among others, realized early that cross-figural linking was an important aspect of 
shape, and Psotka [1978], Frome [1972], and Burbeck & Pizer [1995, 1996] elicited psychophysical 
evidence of human vision's sensitivity to such linking.  
 
While we wish to reverse the common view of medial primitives that they are derived from a boundary 
to a view in which they imply a boundary, with tolerance, for the next few sentences assume that the 
boundary is known. We focus first on the special relations between boundary points that a simple object, 
protrusion, or indentation has. The two special relations between boundary points are the adjacency 
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relation traditionally dealt with and the symmetric relation of linking a boundary point across a figure 
with a figurally opposing point, called its medial involute (for example in Fig. 2a, each point Ai and an 
opposing point Bi are each other's medial involutes). The involution relationship has traditionally been 
defined by the fact that the normals to the boundary at the involutes intersect at a so-called medial point 
equidistant from the two involutes. However, we reverse the process, defining a medial primitive as a 
medial point with two associated boundary-pointing vectors of equal length (Fig. 2b) and taking the 
medial involution relation between the points at the end of the two boundary-pointing vectors to be a 
consequence of our primitive (Fig. 2c) rather than a relation defining it. The sections of the boundary so 
defined are orthogonal to the respective boundary-pointing vectors and are taken to have positional 
tolerance in the directions of the respective vectors. 
 

 
Fig. 1. Two instances of the same figure, one with smooth boundary texture and one with rough boundary texture. 
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Fig. 2. a) A figure with pairs of medial involutes (A,B).   b) A medial primitive and its implied involutes, with tolerance. 
c) The three (A,B) medial involute pairs defined by three medial primitives. The dashed boundary should be thought of as 
being interpolated through the implied boundary points. 
 
Traditionally, medial information is given by the values of 1) the location x of the intersection of 
normals to the boundary points and 2) the common distance r from this location to the two 
corresponding boundary involutes [Blum 1978]. When the boundary points and boundary normals are to 
be implied by the medial primitive rather than vice-versa, it is necessary to record as well the unit 
vectors 1nρ  and 2nρ  pointing from x toward the respective boundary points. For reasons of geometric 
informativeness to be discussed later, we choose to define a medial primitive by the medial position x, 
the width r, a unit vector b

ρ
 bisecting (averaging) the boundary-pointing vectors, and an angle θ between  

b
ρ

 and the two boundary-pointing vectors (half the angle between the boundary-pointing vectors). θ is 
called the object angle. The implied medial involutes are at ( )brR

ρ
θ+x  and ( )brR

ρ
θ−+x , where ( )θR  

is the operator rotating its operand by θ. The boundary-pointing vectors are each taken to imply a 
boundary fragment normal to its vector, so these fragments are at angle π-2θ to each other. 
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We are now ready to more formally define "figure".  As illustrated in Fig. 3, a figure is a geometric 
object implied by a sequence of medial primitives such that each of the two implied boundary point 
sequences ( ){ }brR

ρ
θ+x   and ( ){ }brR

ρ
θ−+x  is ordered along the implied boundary in the same order as 

the primitives. The sequence may be closed by an end primitive that has arrows to ( )brR
ρ

θ+x , 
( )brR

ρ
θ−+x , and br

ρ
α+x  [Clary 1997], where x is the elongation given in the end primitive. The 

sequence of boundary points on one side of a figure can straddle an attached subfigure, i.e., a protrusion 
or indentation on one side of the figure. Fig. 3 illustrates four figures: a large "sweet potato", a protrusion 
on the sweet potato, an indentation in the sweet potato, and a nearby "bean". 
 
Medial primitives are associated using two types of links: intrafigural and interfigural. An interfigural 
link connects a primitive in a subfigure to a primitive in a parent figure. Intrafigural links connect medial 
primitives along a figure. The spacing of approximately r  indicated in Fig. 3 is intended to be typical. In 
3D the medial primitives form a net, and we will use "net" to refer to the sequence of primitives in 2D as 
well.  
 
A net of primitives ends either with a medial primitive at the open end of a protrusion or indentation or 
with an end primitive. Following Leyton [1992], we distinguish end primitives as a special type of 
medial primitive. According to Leyton, in analogy to the importance of endstopping of lines in human 
vision, endstopping of figures corresponding to the distal end of a medial locus is also an important 
aspect of shape and happens at a maximum curvature point on the boundary where a circle centered at 
the medial locus end osculates the boundary. Such a point of maximum curvature of the appropriate 
sense is called a vertex.   
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Fig. 3. Linked sequences of medial primitives im
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roughly constant width.  The facts that the protrusion is attached somewhat above the middle of the 
sweet potato, is oriented at around -70 degrees relative to the sweet potato, and has a width about a 
quarter of the width of the sweet potato will fall into the category of interfigural shape. 
 
While intrafigural shape is fully described by the relations among all the medial primitives forming the 
figure, our visual capabilities for comprehending shape seem limited to nearby primitives. For this 
reason and the desire to produce an O(N) description, we will mostly limit the description of shape 
discussed in this paper to those given by adjacent medial primitives in the net. We will see later, when 
focusing on coarse-to-fine aspects of the description, that this need not limit us from capturing certain 
more global figural shape aspects. 
 
In describing interfigural shape, we follow many others in computer vision who have found that an 
important shape relation is the graph relations between figures and their attached subfigures or 
neighboring or included figures. We consider one of the figures in this relation the parent and one the 
child or subfigure, with the result that the whole structure forms a directed acyclic graph, which in many 
cases is a tree. The structure of this graph will be taken to indicate topology, which in this paper will be 
treated as deterministic. The consequence is that we will be able to represent shapes such as livers, 
kidneys, cerebral ventricles, and hippocampi but not be able fully to represent shapes such as blood 
vessel trees and the cerebrum with its sulci and gyri, since these latter examples vary among individuals 
in how many branches there are from a particular figure and in what branches from what. 
 
For now we take each relation between a figure and its subfigure to be represented by a single link 
between a medial point on the parent figure and a proximal medial endpoint of the subfigure. Including 
these links (dashed in Fig. 3) still leaves us with O(N) links for N medial primitives.  
 
The links, both intrafigural and interfigural, between medial primitives (see Fig. 4) carry the figural 
shape information. Specifically, the shape information is in the "shape tuple" 

bbrrr
ρρ

-xx/ ∆∆∆∆∆ ˆ,,,,/, θθ , where “^” denotes normalization to a unit vector, ∆ indicates a difference 
between the linked primitives, differences between unit vectors denote an angle, and r and θ are 
measured at the tail of the link. All of these measures are dimensionless. If the link is between adjacent 
primitives within a figure, rx/∆  carries information about the local elongation of the figure, rr /∆  and 

θ carry information about the local widening or narrowing rate of the figure, b
ρ

∆  carries information 
about the local curvature of the figural (medial) axis, and θ∆  carries information about the local 
curvature of the boundary relative to the axis [Blum & Nagel 1978]. The direction of x∆  relative to b

ρ
 

of the reference primitive carries information of spatial derivative order higher than two.  
 
If the link is between a primitive in a parent figure and a primitive in a subfigure, rr /∆  carries 
information about the proximal width of the subfigure relative to the local width of its parent figure, b

ρ
∆  

carries information about the proximal orientation of the subfigure relative to the local orientation of its 
parent figure, and the direction of x∆  relative to b

ρ
 of the parent primitive carries information on the 

location on the parent figure of the subfigure (e.g., in Fig. 3 whether the protrusion is high on the sweet 
potato, towards the middle, or low).  
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The local shape related to a particular medial primitive can be taken to be given by the set of shape 
parameters of all of the links incident on that primitive. This set of dimensionless quantities and vectors 
is invariant to the similarity transform operations of uniform magnification, translation, and rotation. But 
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Fig. 4. Two linked medial primitives, before and after figural deformation. Take the lower medial primitive to be the 
reference primitive, and let the upper one be either an adjacent primitive along the same figure (connected by a grey line in 
Fig. 3) or a linked subfigural primitive (connected by a dashed line in Fig. 3). 
 
note with emphasis that we have taken the tolerance of the boundary fragments implied by a medial 
primitive to be a significant aspect of the primitive. The spacing of primitives (the length of the links 
between primitives) is also an important aspect. In addition, we may follow the common wisdom that 
boundary radius of curvature is an important aspect, even when it is of the (fuzzy) boundary implied by 
the medial primitives. For medial width (r), tolerance, link length, and boundary radius of curvature all 
to be variables associated with the medial primitives used to represent a shape locally, these distance-
dimensioned variables must scale together. That is, if we need to describe shape with locality, then as 
illustrated in Fig. 5a, tolerance, the distribution of link length, and the distribution of 1/boundary 
curvature (i.e., radius of curvature) must scale locally with the local value of r. The wider the figure is, 
the larger the tolerance of the figurally implied boundary must be, the smoother the implied boundary 
must be, and the longer the intrafigural links must be.      
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Fig. 5. a) The net of medial primitives shown represents a figure and implies a boundary whose mean is shown by the curve 
and whose tolerance, as a Gaussian probability distribution in the direction of the normal to the mean, is shown by the two 
levels of shading. b) Boundary displacements. The boundary of small tolerance, indicated by the narrower curve, is 
represented by displacements, at a fine sampling, from the mean curve implied by the medial primitives in a direction normal 
to that mean curve. 
 

a) b) 
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Interpolation between adjacent medial primitives by interpolation in b
ρ

, θ , and log r is consistent with 
these requirements. The resulting continuous locus of medial primitives implies a continuous boundary 
which is the boundary implied by the net of medial primitives. 
 
In the case of the root figure in the tree of figures, we can think of it having a link to the full image 
space. That is, the spatial variables describing its link to the image are the global similarity transform 
variables of the whole object. These are not shape variables but are also important in the object 
representation. 
 
2.3. Boundary Displacement Shape 
 
Figural shape only implies a boundary with a large tolerance and with restrictions on the range of 
curvatures it can have. This large tolerance allows a coarse spacing of medial primitives and thus an 
efficient representation. 
 
However, an object boundary certainly also has shape at a smaller scale. This aspect of shape 
information can be determined more stably if, instead of following the common practice where the 
primitives are boundary primitives containing a position and normal that are located only in relation to 
the image space, the final boundary location is located relative to the mean boundary implied by the 
medial primitives and is constrained by the tolerance of the boundary implied by the medial primitives. 
That is, we define the boundary at small scale by displacements relative to and along the normal to the 
mean boundary implied by the net of medial primitives (Fig. 5b). Thus these displacements can be 
defined in one dimension, along the normal direction to the medially implied mean boundary. Relations 
among nearby displacements can reflect local textural properties of the boundary. 
 
Forming a net of boundary displacement primitives requires piecing together the boundary primitives 
between subfigures and their parent figures. Chen [1998] has shown how to do this in his work on object 
rendering via the representations discussed in this paper.  
 
On what basis is a particular topology of medial primitives and boundary displacement primitives 
defined to be the right set to represent the figural shape information in a particular population of objects 
relative to a particular set of images? We take this to depend on the task at hand and not to be somehow 
innate to the images. For example, for a purpose in which finger shape is to be studied, a hand might be 
modeled as a palm figure, with 5 protrusion subfigures representing four fingers and a thumb, and the 
extensions of the fingernails represented by boundary displacements. For another purpose, the same hand 
might be modeled as a mitten, with 4 subfigures being the between-finger and finger-thumb 
indentations. For yet another purpose the fingernail extensions might be modeled as subfigures of the 
fingers instead of by boundary displacements. For the time being, we take these modeling decisions to be 
most appropriately done by human intelligence, whereas the values of the primitives ought to be 
extracted algorithmically according to the values of training images. We leave the effect of these 
modeling decisions to future work.  
 
2.4. Coarse-to-Fine Representation 
 
The principle that medial primitives represent the object information at one scale, proportional to the 
inter-medial-primitive distances, and that boundary primitives represent the object information at a 
smaller scale, proportional to the inter-boundary-primitive distances, and that boundary primitive 
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location is dependent on boundary locations implied by the medial primitives is an instance of general 
principle of coarse-to-fine representations. For our purposes we will deal with four levels of coarseness 
(see Fig. 6): a) for the whole object or group of objects, b) for each figure, c) for local intrafigural 
relations, and d) for boundary displacements. These have interprimitive connections at successively 
smaller maximal distances (i.e., scale). Such representations can lead simultaneously to efficiency, to 
handling both long- and short-distance shape relations, and to stability of image analysis against image 
disturbances. We leave to a future paper the major discussion of this principle and its implementation 
and especially the discussion of successively diced nets of medial primitives and of boundary primitives. 
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Fig. 6.  Coarse-to-fine shape representations: a) Primitives at object level; all can interact with all others. b) Primitives at 
figural level. Each figure is handled separately, except for its interfigural link to its parent. Within each figure all primitives 
can interact. c)  Individual medial primitives, each interacting only via its intrafigural links to adjacent primitives.  
d) Boundary primitives (normals not shown); each can interact only with a few neighbors. 
 
At each stage there are collections of medial primitives that can interact (change in a correlated fashion). 
Put another way, the shape-tuples formed from the interprimitive links described in section 2.2 can 
change in a correlated fashion. 
 
At the object stage (Fig. 6a), there are the most coarsely spaced primitives, but all primitives can 
interact. At the figural stage (Fig. 6b), only primitives within the figure and between the figure and the 
object (the interfigural link) can interact, and these are at shorter distances than for the object. Thus the 
primitives are spaced more finely than for the object stage. Moreover, at increasing levels of fineness we 
treat the parent figure, then its subfigures, then their subfigures, etc. At the medial primitive stage (Fig. 
6c), there need be no interprimitive interaction, but there is interaction between the primitive and the 
primitives at the figural stage. At the boundary primitive stage (Fig. 6d), the spacing is smaller than at 
the medial primitive stage, and while there can be interaction between nearby boundary primitives, we 
now include only interaction between each boundary primitive and the adjacent medial primitives. We 
refine these ideas further in Section 3. 
 
At each stage, the principle of local shape requires that tolerance be proportional to primitive interaction 
distance. Thus tolerance decreases as one moves through the stages of scale. The primitives at one scale 
are taken as variations from the values interpolated from the just larger-scale level. The previous level 
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can be thought of as providing a prior for the next smaller level of primitive values. In this way, the 
coarsest medial nets can represent shape relations at the full length of a figure while finer medial nets 
represent more local shape relations. All this is done with a representation that still has O(N) links, over 
all levels of coarseness. 
 
The scheme just laid out may fail when small-scale boundary changes in an object are correlated at a 
long distance along the figure. For example, the method may not be able to represent the case off a 
worm's head always twitching when its tail twitches. Representing such information will require either 
giving up shape locality or finding another means of achieving an O(N) representation. 
 
2.5. Measurement Aperture Size and Magnification Invariance 
 
We have seen that different aspects of our shape representations provide boundary information at 
different tolerances, that is, at different scales. Accordingly, image information can be used to position 
primitives of an object representation R at different scales by using proportionately sized apertures to 
measure the property of being on the boundary or being normal to the boundary. 
 
The width of the aperture used to locate a locus in an image is an important variable. In previous 
writings Koenderink [1984], Lindeberg & ter Haar Romeny [1994], and we [Pizer 1996] have used the 
word scale for this quantity and have gone as far as to say that this is not a parameter but a variable as 
important as spatial position in characterizing an image. In particular, the aperture width is proportional 
to the tolerance with which the locus, a boundary in our case, can be determined. Thus, for the object 
level of representation (see Fig. 6a), the aperture width will be quite large. If measurements are to be 
made to determine the value of individual medial primitives, the aperture width must be proportional to 
the r value of the primitive [Pizer 1996] and have significant extent. The aperture width determining 
boundary displacements must be much smaller. 
 
Burbeck & Pizer [1995] have found that in human vision the aperture width σ  at which cross-figural 
linking (medial primitive location) is done is nearly in proportion to figural radial width (σ ≈ 0.25r ) and 
for all but the thinnest of figures is significantly greater than the scale at which boundary location and 
boundary shape is determined. With such a measurement scale and in figural components with 
boundaries not too far from parallel, sampling theory would suggest a sampling rate of approximately 
one medial primitive per cr/3, where c is the elongation of the aperture along the boundary (see Fig. 7 in 
Section 4). This sampling rate leads to under 16 medial primitives for all but the most elongated 2D 
figures, providing a considerable efficiency of representation. In the coarse-to-fine regime that we have 
suggested, even coarser sampling would be used at earlier stages. 
 
We now see that maximum interprimitive interaction distances, tolerance of the implied boundary, and 
aperture width ought all to be proportional. Therefore, we can broaden our use of the word "scale" to 
mean any of these.  
 
We close Section 2 with a summary: The representation of the morphography of an object that we are 
proposing involves a) the similarity transform parameters, b) a linked set of nets of medial primitives, 
each net possibly in a coarse-to-fine collection, and c) a net of boundary displacement primitives, 
possibly in a coarse-to-fine collection. The linked nets of medial primitives specify the interfigural 
relations and the general shape of each figure, and the net of boundary displacements specifies the 
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boundary texture. A linked net of medial primitives, with or without a net of boundary displacements, 
form a geometric description that imply a boundary with tolerance. 
  
As suggested earlier, this representation can be used for image analysis to extract the most probable 
instance of a modeled object from an image or to measure the degree of abnormality of this instance. To 
do this, one needs to be able to measure both how abnormal a represented object is and how consistent it 
is with a particular image. The next two sections treat these two measurements.  
 
3. Measuring shape anomaly 
 
We take a Bayesian point of view of image analysis, designing methods that extract the most probable 
object given the image, i.e., that maximize the posterior probability p(object | image), or equivalently  
log p(object | image). We will refer to the negative of the log of a probability as a "metric". For example, 
if a probability is a Gaussian, the metric is proportional to a Mahalanobis distance. 
 
Bayes' Theorem implies that maximizing log p(object | image) extracts that object representation that 
minimizes [-log p(image | object) + -log p(object)]. The first term, the log likelihood, is a metric of the 
match between the image data and the object representation. We treat this metric in Section 4 and 
continue here with  -log p(object). This is the -log of the prior probability of this object representation's 
occurrence in the population of all objects that might appear in the imaged region. It measures how 
anomalous a shape, pose, and size is relative to some standard.  
 
There are two major issues in this section on measuring shape anomaly. In Section 3.2 we explain how 
metrics involving medial or boundary primitives can be either statistical or geometric. The statistical 
metrics measure -log p(object | image) based on information extracted from training images. Geometric 
metrics measure how far the object deviates from a reference object by some combination of spatial 
distances, size differences, and orientation differences. First, in Section 3.1, we discuss how to find 
metrics by successive refinement of scale and an associated factoring of the morphographic information 
into the information at a larger scale and the information at a smaller scale, conditioned on the 
information at the larger scale. 
 
3.1 Factoring morphographic probabilities coarse-to-fine 
 
The overall morphographic probability participating in the posterior optimization is -log p(object), i.e.,  
-log p(all primitives at all scales). This metric can be simplified by probabilistic factoring by scale level 
(where levels are numbered by decreasing scale so that level 1 has the largest scale), in a way similar to 
that described in [Grenander 1994]. There are a number of scale levels, and at each scale level the 
boundary and a locus of medial primitives is implied at some tolerance, decreasing in order of level. The 
primitives at each level thus can be considered as displacements from those implied at the previous, 
larger scale level. Because the information at larger scale largely ignores information at significantly 
smaller scales, we can use the Markov assumption that the probabilistic dependence of information of 
displacements at a smaller scale on information at larger scales can be expressed entirely through its 
dependence on the next larger scale. For example, the boundary displacements are conditioned only on 
the local medial primitive locations and need not account for the object-level or figural-level information 
except transitively through the local medial primitive level. While this hierarchical modeling assumption 
can be expected to be most often valid for objects in medical images, it will fail in situations where there 
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is significant correlation between parameter values at widely different scale levels, e.g., where boundary 
wrinkling texture is correlated with the position of one of the major figures on the object. 
 
The probabilistic factoring is thus a successive application of the factoring,  
 
 
p(displacements at scale level k | info. at all larger scales) =  
p(displacements at scale level k from rep'n interpolated at scale level k-1 | displacements at scale level 
k-1)  ×  
p(displacements at scale level k-1 | info. at all larger scales). This can be rewritten  
-log p(displacements at scale level k | info. all larger scales) =  
-log p(displacements at scale level k from rep'n interpolated at scale level k-1 | tolerances implied by 
scale level k-1)  +  
-log p(displacements at scale level k-1 | info. at all larger scales) .  
 
We will consider the successive refinement presented in Section 2.4: object, figure, medial primitive, 
and boundary primitive. The posterior optimization at each level geometrically transforms the implied 
boundary and leaves a smaller tolerance than before. The final tolerance is that associated with the 
boundary displacements.  
 
The first coarse-to-fine stage factors -log p(all primitives at all scales)  into -log p(level 1 primitives)  +  
-log p(displacements at scale level 2 | level 1 primitives). In the applications reported in Section 5 we 
have found it possible to restrict the transformation of the level 1 primitives to a similarity transform, so 
that  
-log p(level 1 primitives)  = -log p(location, orientation, and size).  Similarly, in these applications we 
have found it possible to restrict the transformation of the figural primitives to a similarity 
transformation relative to the level 1 primitives, so that -log p(displacements at scale level 2 | level 1 
primitives)  =  
-log p(figural translation, rotation, and size relative to the level 1 primitives). 
It is possible to include a full-object warp at these two scales, but we leave such a possibility to a later 
paper. With the formulation we have used, the first stage determines the probability of the similarity 
transform and the second and following stages determine Pshape.  
 
The third stage of the factoring describes the displacement of the individual medial primitives relative to 
the collection of medial primitives forming a figure. In the applications in Section 5, where the medial 
primitives representing the figure at scale level 2 are the same as those representing local information at 
the scale level 3, we have handled the third scale level via a Markov assumption, treating each medial 
primitive as probabilistically dependent only on the intrafigurally adjacent medial primitives:  
-log p(displacement of a medial primitive at scale level 3 | level 2 primitives)  =  
-log p(displacement of the medial primitive | the intrafigurally adjacent medial primitives).  The values 
of this metric are discussed further in Section 3.2. 
 
The final stage of the factoring treats the boundary displacements along the normal to the boundary 
interpolated from the medial primitives as dependent only on the tolerance implied by the medial 
primitives. Chen [1998] has assumed that for all boundary positions i,  
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boundary displacementi | linked medial primitives is independent of all other displacements, and he has 
modeled p(boundary displacementi | linked medial primitives) by a Gaussian with standard deviation 
equal to the tolerance at implied boundary position i implied by the medial primitives (see Fig. 5). That 
is, if the standard deviation giving the displacement tolerance at implied boundary displacement i is σi ∝  
the figural radius at the medially-implied boundary position, then 
-log p(boundary displacements | linked medial primitives) =  

−Σi log p(boundary displacementi | linked medial primitives) = 0.5 Σi (displacementi)2/σi2.  
3.2 Statistical and geometric shape metrics for medial primitives 
 
To ease our discussion of metrics for medial primitives, let us adopt the notation mi = ( )iiii br θ,,,

ρ
x  for the 

ith medial primitive, lj = ( )jjjjjjj brrr θθ ∆∆∆∆ ,,,/,/
ρ

x  for the jth link, and lj ~ mi  for the indication that 
the jth link involves the ith medial primitive. When the Markov assumptions leading to probabilistic 
factoring are valid, Gibbs distribution theory allows us to conclude that the shape probability at a medial 
primitive is given by a local sum of the link metric over the links to the medial primitive: 

∑=
ij

ji ml
lm

~
. This is the localized shape metric that we have been seeking. Even when combined 

with the metric components at larger scale, the result has only O(N) terms.  
 
We are working at present on generating statistical (i.e., -log probability) metrics ||lj|| from families of 
training images using the principal components approach of Cootes et al. on the incident medial 
primitive links to a medial primitive. When combined with a similar form of statistical analysis at the 
larger scales, a global, statistically trained morphographic metric, with explicit local aspects, results.  
However, the metrics that we have used till now have been geometric instead of statistical. That is, for 
the local metric, relative to a reference link value ref

jl  a link lj is measured by its geometric difference 
from the reference, e.g., the difference in its object angle, rather than its degree of unusualness. With this 
assumption, 

geom
ji

ij
∑ −=

ml
llm

~
ref
j . 

 
While we presently recommend that the geometric metric be a weighted sum of metrics on the 
components, all dimensionless, of the incident ref

jll −j , some of the image analysis methods that are 
reported in Section 5 preceded medial primitives including orientation components. They thus used a 
metric that only involved the position-offset and width-difference components of interprimitive links. 
This geometric metric was suggested by Wilson [1995].  It uses the size of a vector in scale space, 

( )rrdss ,,, xx ∆∆  according to the scale space norm, which takes sizes relative to scale, and the scale 
space cosine ( )rrrss ∆+∆+ ,;,cos xxx  between two vectors in scale space [Eberly, 1994].  
 
The shape metric can be used to measure the geometric difference between a link connecting a pair of 
medial primitives in a particular instance of the shape and the link connecting that pair in a standard 
version of the shape. It can also be used to measure the difference between two homologous objects, e.g., 
between a normal organ and the organ of a particular patient or between a patient's organ at one time and 
that patient's organ at another time. Where the weighted difference is high can be identified to indicate 
pathology. In addition, the shape metric can be used to measure the difference between the pair in a 
model and its deformed version in a deformable loci method of segmentation (see Section 5.1). That is, 
we can produce a formal local Markov random field prior [Wilson 1995], which can be used via the 
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Iterative Conditional Modes (ICM) [Besag 1986] method to optimize the local posterior probability 
given the linked medial primitives' present values.  
 
4. Measuring accordance of image with linked medial primitives 
 
In this section we focus on the metric -log p(image | object), which measures how consistent an image is 
with a particular object representation. For the purposes of this section the object representation is 
assumed to include a set of medial primitives, already placed, oriented, and sized according to values for 
the similarity transform parameters. Just as with the morphographic probability, the image match 
probability can be factored by scale if we make a Markov inter-scale-level assumption, resulting in  
-log p(image | object)  =  -Σk log p(image at scale level k | object displacements at level k and below).  
That is, the image match information needs to be provided at each of the scales at which the object 
displacements are represented, conditioned on positions established at a larger scale of measurement. 
When used in posterior optimization (see section 5), the morphographic metric, factored by scale level, 
and the image match metric, factored by scale level produces and overall metric in which the 
morphographic and image match terms at a given level are grouped: object | image metric =  
Σk  [-log p(object displacements at level k | object represented at scale k+1) + 
 -log p(image at scale level k | object displacements at level k and below)]. Each of the terms of the sum 
are successively optimized, in order coarse to fine. In this section we focus on what happens at any 
particular level of refinement. 
 
First of all, as discussed in section 2.5, the image measurement at any level must use aperture widths 
proportional to the inter-primitive distances at that level. The fact that successive scale levels will use  
match templates with successively smaller apertures makes reasonable our assumption that the image 
information at successive scale levels, conditioned on their respective object representations, are 
independent. Also, the aperture widths at the first, full-object level will be quite large. The use of a large 
aperture serves to give the first stage of the method a large capture distance. That is, the model may be 
placed quite far from its final position and still converge to an optimum posterior. For example, if a 
significant portion of a major figure is within 2 full aperture standard widths away from its final 
position, convergence to a visually reasonable similarity transform can be expected. 
 
Second, typically the information from the image telling how well it matches with a medial primitive has 
to do with the behavior of the image intensities near the boundary positions implied by the medial 
primitive. We assume that this information is probabilistically independent across the primitives, and we 
make the Markov assumption that the local intensity dependence on all primitives is only on the local 
primitive. Stated mathematically,  -log p(image | collection of medial primitives) =   
-Σi log p(image at boundary positions implied by primitive i | collection of medial primitives).  This 
metric of the match between an image and a medial primitive is what we have called “medialness” in our 
previous work.  
 
As discussed in section 2.5, at the stage of match at which the individual medial primitives, relative only 
to their intrafigural neighbors, are being displaced, the metric of the match between an image and a 
medial primitive must involve image information measured at a scale proportional to the width 
parameter of the medial primitive.  Moreover, we take it to involve only the image information at the 
two boundary positions and normals implied by the medial primitive. We assume the image information 
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in these two boundary regions are probabilistically independent. This yields the summary mathematical 
statement  -log p(image | a medial primitive i or an end primitive i) =   
Σi (-log p((image |  2 or 3 boundary positions and normals i at scale ∝  ri)), where the boundary 
positions, normals, and scale are those implied by the respective medial or end primitive. We call these 
summands “boundariness” or boundary strength metrics. 
 
As with the shape metrics, there are both statistical and geometric image match metrics. The statistical 
ones derive from training images and measure the accordance of a particular local distribution of 
intensities with ones in the homologous positions in the training images [Cootes 1993]. While we are 
working toward using these, to date we have used geometric image match metrics, which measure the 
accordance of the local image intensity function with a template, e.g., a directional Gaussian derivative. 
Such measures of accordance are standard in image analysis; normally they are measured by treating the 
template as a weighting function. 
 
By the previous discussion, an image accords with a medial primitive to the degree that its implied 
boundary points and normals behave in a boundary-like fashion. Using the directional derivative of an 
aperture function geometric metric, the medial strength of the medial primitive m = ( )θ,,, br

ρ
x  is given 

by the sum of two boundary strength values: 
M(m) = ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )yxIyyxIy +−+∇•−+++∇• brRAbRbrRAbR

ρρρρ
θθθθ r,r, , where A is the 

aperture function (Fig. 7a). The aperture function should have an elongation suitable to the medial 
primitive sampling distance. By the theory given in Section 2.5, both the length and the width of the 
aperture should grow in proportion to r.  
   
If one has only the information in a medial primitive, the along-boundary ridge of each aperture function 
would be straight and orthogonal to the direction of differentiation, as in Fig. 7. Alternatively, one can 
use the information in the links from the medial primitive to derive boundary curvature and give this 
curvature to the aperture function.  
 
The image property whose difference determines the boundary can vary across the boundary points. For 
example, the polarity of the intensity difference, whether the change at the boundary is in texture or 
luminance, and whether a luminance change is signaled as an outline (a bar) or a gradual step, and the 
expected sharpness of the step or bar can all vary from point to point. The training can allow the 
particular boundary property which is to be measured to be set at each boundary point.  
 
At the endpoint medial primitives m, the medial strength M(m) adds to the aforementioned formula the 
property of end strength (Fig. 7b). That is, these end primitives have not only two boundary-pointing 
vectors that behave just like those in internal medial primitives, but also an additional vector b

ρ
 for 

which the two boundary strength kernels have coalesced into a single operator covering a sector of  an 
ellipse with radius of curvature equal to the radius of the primitive. There is an additional aperture whose 
position and orientation is implied by this vector. The spatial aperture size normal to the circle at the 
implied position of this additional aperture is proportional to the radius of the circle, and the template is 
oriented in the b

ρ
 direction.  Like boundary strength operators, the end strength operator forms a sort of 

template of intensity variation to which the image data is fit.   
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For scale levels at which a collection of medial and end primitives are jointly being displaced, according 
to the probabilistic discussion earlier in this section and the overall agreement of a net of medial 
primitives {mi} is    

Image match at medial locus = ( )∑
=

N

i
iM

1
m  

The items of the sum which are especially small indicate positions where the image information 
disagrees with the locus. 
 
Similarly, the overall agreement of a set of boundary primitives {bk} derived from displacements from 

the medially implied boundary positions and normals, is ( )∑
=

bN

k
kB

1

b , where B can be a statistical or 

geometric measure of agreement of the image with the model in the normal direction, at a scale smaller 
than that used in the medial primitive match measurements.  

a) 
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Fig. 7. a) Example of a medial strength kernel. b)  Example of an end strength kernel. 
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5. Shape-based medical image analysis 
 
The examples in the following are intended to give a sense of the possibilities of the image analysis 
paradigm we have described. Being from the past, they use only geometric image match and geometric 
shape metrics, and the geometric metrics use only position and width values. Moreover, in some cases 
the medial strength kernels used are isotropic, summing boundary strength over all object angles rather 
than just for two or three vector directions. 
 
5.1 Segmentation and recognition 
 
Consider the problem of the definition of anatomic objects, for example, to facilitate 3D radiation 
treatment planning. Here the objective is to define the boundary of the object that most probably is the 
organ of interest, so that radiation beams can be positioned with respect to this boundary and dose to 
these healthy organs can be minimized. 
 
A method of Bayesian deformable loci which generalizes the deformable contours method to use a 
medial+boundary model has been developed and tested for 2D images [Fritsch 1997].  Given a model, 
the method involves deforming the boundary and medial loci (moving the points defining these loci) to 
optimize the Bayesian log posterior formed by summing the log likelihood given by the measure of 
image match and the log prior giving the measure of morphographic match with the model. This view of 
segmentation as the deformation of the object representation has led us to call an object represented in 
this way, Deformable Shape Loci (DSL). The method can be considered not only a method of 
segmentation, which yields the object boundary, but also a method of recognition that gives the 
probability that the segmented object is the one modeled and which also provides an indication of 
pathology, indicating the places where the segmented object is particularly different in shape or 
morphography from the model. 
 
Methods for first interactively forming a template from a training image and then using a set of training 
images to determine the weights the model are described in [Wilson 1996] and [Fritsch 1997]. Forming 
a model, we believe, must involve human interaction, to reflect understanding of which are the object 
figures that matter. The method for forming a model described in [Fritsch 1997] is based on core 
extraction (a core is a height ridge of medial strength [Pizer 1996]) and a variation of deformable 
contours, followed by interactive positioning of primitives.  
 
Also described in [Fritsch 1997] is a method for optimizing the log posterior for a particular target 
image.  The method is based on image match geometric and morphographic metrics. In this work the 
object morphographic measure, the figural morphographic measure, and the boundary morphographic 
measure were combined into a single morphographic measure, and the image match measures for these 
three scale levels were also combined, with the result that the objective function was  
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where the weights wb, wm, and wl give the relative strength of the small-apertured boundary to image 
match, the larger apertured medial to image match used to describe both object-scale and figural scale 
match, and the model match respectively, and the link Nl+1 is between the parent figure and the image 
space, i.e.,  specifies the similarity transformation for the whole object. The weights of each sum were 
set to interactively defined constants. 
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Briefly, the segmentation method uses the model itself is used to start the optimization, and the location, 
orientation, and magnification parameters of first the full model and then successive figures are first 
iteratively modified to optimize the posterior. At this stage the part of the prior reflecting intrafigural 
links (medial-medial, medial-boundary, and boundary-boundary) does not change as the figural shapes 
are not changed. Then all of the points on the figural loci are iteratively moved to optimize the posterior, 
moving medial points and their associated boundary involutes before moving the boundary points 
themselves. This strategy is particularly effective because the large apertures used for the medial match 
allow the model to conform to large-scale object changes and, moreover, serve to stabilize the finding of 
the boundary by the small-aperture boundary points. 
 
All of the previous stages were done with rather coarsely sampled medial and boundary loci. A final 
stage uses a constrained deformable contours method to fill in boundary points between the coarsely 
sampled boundary points, which are constrained to their positions at the end of the previous stage. 
 
A series of extractions of the ventricle from 2D MRI slices, using a 2-figure model, has shown the DSL 
segmentation to be robust against deformation and intensity noise [Fritsch 1997]. A 5-figure model of 
the ventricle has also been used to automatically segment from 2D MRI images of patients with quite a 
variety of ventricle shapes [Fritsch 1997]. The model and some results are shown in Figs. 8 and 9, 
respectively. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 Fig. 9.  Final position of the deformed template sites on ventricles taken 
from a population of images Fig. 9.  Final position of the deformed template 
sites on ventricles taken from a population of images from different patients. 
 
Fig. 8. A five-figure model of a ventricle, with 
inter-figural links, superimposed on its training
image. 
18 

 
 
 
More recently, this segmentation strategy has been modified to explicitly use the concept of linked 
medial primitives described in this paper. Here, during the local stage of medial primitive optimization, 
each medial primitive unit (the medial point and its two associated boundary involutes) move together as 

The model template used in the optimization is shown in Figure 7. 
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a function of position x, orientation b
ρ

, object angle θ, and radius r. An example brain-stem model is 
shown in Fig. 10.  
 
Shown in Fig. 11 is an example of applying the brainstem model to a target image that was generated via 
thin-plate spline warping of the model image in Fig. 10.  

 
Fig. 10. Training MR brain image and model of brainstem designed from it. 

 
Frequently fewer than a half dozen iterations of the optimization are typically required. For a typical 
anatomic structure an iteration calculating new values for the whole set of medial primitives requires 
about a second at present on a high-end PC. 
 

   
 a b c    
Fig. 11. Segmentation produced from a MR brain images. a) Initial placement of model. b) First-level registration of model 
with image. c) Final configuration of primitives.  
 
We have also performed segmentations using a hierarchy of objects where the more stably found objects 
are used to initialize and constrain the positions, sizes, and orientations of subobjects. An example using 
a CT slice through the abdomen is shown in Fig. 12. Here, only the linearly interpolated  medially 
implied boundaries are shown. The procedure operates as follows. First, only the large-scale model for 
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the entire abdomen is fit to the image data via a similarity transformation. This determined 
transformation is then applied to each of the smaller-scale objects (kidneys, vertebra, and spinal cord). 
Next, each of the smaller-scale objects is registered via a similarity transformation with the image data 
but is constrained in translation, orientation, and size change by a link to the large-scale abdomen model. 
Finally, each of the objects is allowed to deform according to the paradigm outlined at the beginning of 
this section.  
 

 
 Fig. 12.  Use of an object hierarchy to segment structures in an axial CT slice through the abdomen. (a) Original configur-
ation of object models on an unclassified image. (b) Final template configurations following hierarchical segmentation. 

 
As a final example, Fig. 13 illustrates the ability of the model to interpolate across sections of boundary 
with little or no image contrast. The shape term dominates the objective function when there is little 
change in the contrast at the medially implied boundary as the medial primitives are translated. 
 

 
Fig. 13. A model fit to a kidney in a CT slice. 

 
5.2 Registration 
 
In object-based registration the model is extracted from a single reference image of the patient in 
question, although this model may in turn be the result of a segmentation based on a more highly trained 
model, as discussed earlier in this paper. After the  model extraction, one or more target images may be 
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registered. For example, to verify the positioning of the treatment beam in radiotherapy with respect to 
the patient, a portal image obtained during each treatment needs to be registered with a planning image 
such as a simulator radiograph or a radiograph digitally reconstructed from a CT image. 
 
First assume that the two images to be registered are both in 2D (or both in 3D) and that the registration 
transformation T does not change shape (i.e., the images may be registered via a similarity 
transformation). Furthermore, assume that there is no warp between the images to be registered. For this 
registration objective, the global magnification, translation, and rotation may be chosen as the most 
probable, given the image data, and thus it might reflect a prior on these transformations. In many 
situations it may be that knowledge of the prior is not present, so a uniform prior, and thus a maximum 
likelihood approach ought to be used. In this case the morphographic choice, i.e., the choice of T, is not 
to be penalized. Thus the objective function, -log P, consists only of the image match terms:  
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The weights are interactively set, because there is only one reference image and thus no measurement of 
variability over family of images.  
 
Because of the stability of medial strength measurement, we have found good success in registering 2D 

portal images, determining a rotation and translation only, by optimizing ( )∑
=

mN

i
iM

1

m  (using medial 

strength kernels for which the two normals were in opposite directions and the response was optimized 
over the normal direction). In fact, Fritsch [1995] shows this registration can be done automatically and 
produces an accuracy superior to manual registration. For the example in Fig. 14 the registration requires 
around 10 seconds at present on a high-end PC. 
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Fig. 14. Registration of 2D radiotherapy portal and simulation images via medial strength in portal image on cores in 
simulation image. Left:  simulation image digitally reconstructed from CT. Right: portal image registered with the simulation 
image.  
 
In some registrations the geometric transformation allowed may consist  of not only  a similarity 
transform but also a warp. In that case, the probability distribution should cover not only the coefficients 
of the similarity transform, but also the coefficient of the warp terms. Then the situation becomes the 
same as with segmentation, and all of the discussion of sections 2-4 apply to the registration. 
 
5.3 Measuring shape variation and recognition of pathology 
 
As mentioned at the end of Section 3, the analysis of the sublocus of pathological shape change of an 

organ can be determined by locating especially large terms in ∑
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This expression for -log Pgeom  or other expressions for -log Pgeom  reflecting a full training set and 
hierarchical modeling, as discussed in Section 3, can also be used as a measure of shape variation from 
normal. Thus, for example, in psychiatry it is important to correlate the shape change of various 
components of the brain: the ventricle, the hippocampus, and putamen to name a few, with 
schizophrenic disease.  Others have used shape models based on boundary primitives [Cootes 1993] or 
on boundary representation in terms of cyclic basis functions [Székely 1996] for this purpose, with 
principal component analysis providing the statistical means for turning interactively segmented training 
images into a measure of shape variation based on Gaussian probability distributions.  This measure is 
then applicable to measure the Mahalanobis distance of an object in a patient image from the mean 
object shape. 
 
We are applying this same idea to models based on medial primitives. In an early attempt a family of 20 
random corpus callosum MR images was created by Aylward as follows. From a corpus callosum in an 
MR image 5 (x,y,r) medial values approximately equally spaced along the structure were measured.  
These formed the mean of a 15-variable Gaussian probability distribution. The standard deviations of the 
distribution were chosen to reflect two independent changes: bulging/narrowing toward the anterior 
portion and a swing of the tail. Twenty samples from that probability distribution were taken, and each 
sample, comprising 5 (x,y,r) values, was used as the knots forming splines of x, y, and r, respectively. 
For each such spline triple, a binary image was formed as the union of the disks of radius r at position 
x,y, and this image was superimposed on a low contrast midsagittal MRI slice.  
 
We fitted a set of medial primitives to the corpus callosum in each of these 20 simulated images. We 
started by extracting a core (height ridge in (x,y,r,θ) of medial strength) from each training image. We 
then approximated the medial primitive position, radius, and bisector direction at 16 equally spaced 
positions along the core, fixing the object angle at π/2. Finally, we optimized each primitive’s medial 
strength by modifying its object angle, also allowing slight variation in position perpendicular to the 
core, bisector direction, and radius. 
 
The resulting set of medial primitive parameters were analyzed by principal component analysis – this 
would be the first (full object) stage of a coarse-to-fine shape analysis according to our overall theory. 
The full coarse-to-fine analysis is part of ongoing research. Fig. 15 shows the first two principal modes 
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of variation of the one-stage analysis. These modes respectively capture the very two independent 
variations that were inserted to form the training data. 
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Fig 15. Principal shape variations of a corpus callosum from simulated training images. The center column shows the mean 
medial primitive set, and the left and right columns show respectively  +/- two standard deviations of variation of the medial 
primitives according to that eigenmode. 
 
6. Summary and Discussion 
 
The principal objective of this paper has been to show how to construct a stable, efficiently calculable 
measure of shape and other geometric object properties and how to use this measure in a uniform 
method for segmentation and recognition of image objects, object-based registration, and object shape 
measurement that has a large capture distance. The abilities of this method have been illustrated by 
examples. A more detailed description of the segmentation programs and a presentation of the 
segmentation results of these methods can be found in [Fritsch 1997].  For some of the clinical uses 
described in Section 4 the method has been validated by clinical usefulness or accuracy [Fritsch 1995, 
Fritsch 1997]. In others, this validation is yet to be done. 
 
The measure of shape that we have constructed is dependent on a variety of reasonable probabilistic 
assumptions of the hierarchical dependence of information at the collection of scale levels and of the 
independence and Markov properties of intensity vs. primitive-implied positions and directions. A 
careful study of the realizability and uniqueness of these intensity states remains to be done. Such 
hierarchical modeling is not new to shape based image analysis, having been applied to voxel-flow 
descriptions of shape by Christensen [1997] and Grenander [1994], as well as by McCulloch et al. 
[Laading 1998] in author Valen Johnson's laboratory. However, our application of hierarchical modeling 
to the richer medial and boundary primitives appears to add capability and efficiency to the approach, 
and it brings a deep understanding of the ideas of scale in shape theory to bear. At the same time, it 
raises issues of how to handle abutment relations between model figures (e.g., adjacent organs). 
 
One area of promise of the representation that we have described is in achieving homology between 
primitives as the representation deforms. With the rich collection of parameters contained in medial 
primitives and their relation to boundary primitives, not only the loci of vertices (extrema of boundary 
curvature; crests and troughs in 3D) but also figural loci such as end points (curves in 3D), pinch points 
(curves in 3D), and medial axis vertices (articulations?) can be designated. However, it remains to future 
research to measure the extent to which the present metrics cause correspondences at such loci to be 
maintained and to design metrics that accomplish this goal. Moreover, because it is not always the case 
that biological homology corresponds to geometric homology, the import of the promise to achieve 
geometric homology of primitives is yet to be understood. 
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Compared to a deformable model based on boundary points alone and only on the relations between 
adjacent boundary points, our experience is that the DSL segmentation method much more reliably 
converges to a satisfactory result. A major advantage appears to be in the first stages of the 
segmentation, in which the capture distance from an initial placement, orientation, and scaling of the 
model is considerably greater than methods based on boundary points with small apertures. A capture 
distance of about half the width of the parent figure is typical. As compared to methods using all O(N2) 
relations between the N boundary points, the DSL method is very much faster. 
 
This paper's first motivation of DSLs as shape models was that both model formation and segmentation 
take time O(N). But the method of Cootes & Taylor [1993] requires only time O(N) if a fixed number of 
eigenvectors of shape change are selected, and in many cases it has rather good capture distance. DSLs 
have a different advantage over this method. The first is that the training requires only O(N) time, as 
compared to the minimum of O(N2) and O(the number of training images) for the Cootes & Taylor 
method. Second, and more importantly, the training requires fewer training images because the number 
of variables at each scale stage, and thus the number of major modes of variation at each scale stage is 
few. Third, whereas the Cootes & Taylor method uses the prior information as to shape to constrain the 
deformation, DSL segmentation uses the prior in a weighted fashion. As a result, the DSL method has 
the possibility of converging to a pathological version (one with low prior probability) of the DSL model 
if the image information is convincing enough. Fourth, the DSL method has the advantage of being able 
to determine the locality of a shape difference (or medial strength or boundary difference), compared to 
the training set. The DSL method has the disadvantage that, unlike the boundary based methods, medial 
primitives cannot handle sections of boundary without also handling their involutional partners. 
However, all of this comparison is hypothetical; the Cootes & Taylor method has been found successful 
on a very large number of segmentation problems, whereas the DSL method has been tested on rather 
few problems. 
 
A difficulty with the expressions for Pgeom  that we have discussed is that interfigural homology is 
required between a model and an individual. While many organs that retain such homology over normal 
patients exist, many, such as blood vessel trees and the cerebral cortex, do not. In these the figure-
subfigure structure is not deterministic but stochastic. Similar differences in the figure-subfigure 
structure may occur with pathology. A theory for the geometric difference between figural graphs with 
different and possibly stochastic structures remains to be developed. 
 
We have generalized to 3D of the DSL representation, the measure of image match, the model creation 
tools, and the optimization of the posterior, and we have implemented both model building and posterior 
optimization tools.  The model differs only by the boundary and medial loci forming 2-manifolds rather 
than 1-manifolds, with the consequence that the intra-medial-locus links form a mesh, and by the medial 
primitive benefiting from having the normal to the medial locus as an additional component. The 
morphographic difference measure does not change at all, except that the number of dimensions in links, 
translation, and orientation is one higher than with 2D images. The measure of image match differs only 
in the boundary strength kernels contributing to both boundary strength and medial strength are one 
dimension higher than with 2D images. A paper describing this 3D medial primitive based deformable 
models method awaits our carrying out a satisfactory evaluation of its performance. 
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