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Abstract

Edges at multiple scales provide complementary group-

ing cues for image segmentation. These cues are reliable

within different ranges. The larger the scale of an edge,

the longer range the grouping cues it designates, and the

greater impact it has on the final segmentation. A good seg-

mentation respects grouping cues at each scale.

These intuitions are formulated in a graph-theoretic

framework, where multiscale edges define pairwise pixel

affinity at multiple grids, each captured in one graph. A

novel criterion called average cuts of normalized affin-

ity is proposed to evaluate a simultaneous segmenta-

tion through all these graphs. Its near-global optima can

be solved efficiently.

With a sparse yet complete characterization of pairwise

pixel affinity, this graph-cuts approach leads to a hierarchy

of coarse to fine segmentations that naturally take care of

textured regions and weak contours.

1. Introduction

Segmentation is straightforward when edges in the im-

age correspond to real boundaries in the scene. Unfortu-

nately, such an ideal one-to-one correspondence rarely ex-

ists in real images(Fig. 1): edges in a textured region do

not indicate boundaries, while boundaries may exist at weak

contours or between textures that do not give rise to edges.

Inferring boundaries based on low-level edge features

is hard; any method could suffer from these massive false

positives and false negatives. However, such a dichotomy

is meaningful only when edges are extracted at one scale.

When multiple scales are used, there are multiple responses

at each pixel location, and they may not agree with each

other (Fig. 1c,d).

I’d like to show in this paper that, in fact, the multiscale

nature of low-level features holds the promise of solving the

two difficulties that segmentation faces. The key ideas are:

a. image b. boundaries

c. small scale edges d. large scale edges

e. from small scale f. from large scale

g. from optimal scale h. new: from all scales

Figure 1: Segmentation as resolving ambiguity in correspondence

from edges to boundaries. a: image and b: its boundaries marked

by human subjects [7]. c,d: edges at two scales. e,f,g: segmenta-

tions by normalized cuts [12] based on edges shown in e, f and op-

timal edges across all scales. h: new result from this work, which

utilizes edges at all scales. It groups both big torso and thin tail

without losing precision in boundary localization.



1. Both boundaries and edges should not be treated as a

binary and single scale phenomenon.

2. There is complementary and useful segmentation in-

formation from edges extracted at different scales.

Such information is most naturally cast as grouping

cues among their pixel supports.

3. If we take reliable grouping cues from each scale and

feed all of them to a sensibly designed pixel group-

ing engine, we can make a global segmentation deci-

sion that treat both texture and weak contour problems.

These ideas are in contrast with most current segmenta-

tion approaches. Instead of keeping edges at all scales till

segmentation, previous works strived to eliminate the scale

ambiguity before segmentation and use only one hopefully

better edge map during the segmentation.

For example, [3, 5] tried to determine the optimal scale

of each edge by using a winner-take-all mechanism on

edge strengths. Such a local decision is often premature, re-

sulting in a segmentation that has both shortcomings: as

blind to large regions as that from small scales, and as

poor in boundary localization as that from large scale edges

(Fig. 1e,f,g). On the contrary, if we use edges at all scales,

we can have the best of both worlds (Fig. 1h).

Another line of efforts to improve the final edge map is

to fix contours of low contrast. For that, Canny edge detec-

tor [1] used hysteresis, [2] and most boundary completion

approaches [9, 13] employed curvilinearity. However, the

approaches developed to tackle weak contour problems of-

ten do not work on texture. Their basic assumption is that

smooth contours are likely to be boundaries even when they

are weak, which is not valid for textures made of strong and

smooth contours. The implication here is that the smooth-

ness of boundaries is not necessarily the cause, but rather a

consequence of the distinction between regions that define

them. Furthermore, in practice it is difficult to reliably deter-

mine local smoothness between contour segments. Pursuing

the derived properties in 1D while abandoning the underly-

ing region properties in 2D often makes the original prob-

lem unnecessarily hard.

To handle both texture and weak contours, [4] explicitly

modeled texture with textons, and later [6] learned a clas-

sifier to estimate the probability of a pixel location being

boundary based on local image evidence. All these mea-

sures try to settle onto one edge map before segmentation.

Although they do not preclude multiscales, I’d like to show

that multiscale edges often suffice as front end computation.

Shown in Fig. 2, the new method here has three steps.

Edges are first extracted at multiple scales. Every edge map

then leads to a set of pixel grouping cues defined over mul-

tiple ranges, each captured in an affinity graph in a graph-

theoretic framework. Finally, a simultaneous segmentation

through all these graphs is sought to optimize the average

cuts of normalized affinity at each graph. This procedure

yields coarse to fine segmentations where large scale prop-

erties are captured first and small details are revealed later.

I will detail the three steps of the method in the next

section, followed by experimental results and discussions

which demonstrate that such a region segmentation scheme

based entirely on multiscale edges can deal with texture and

weak contours to a large extent.

2. Method Details

Region segmentation is not to group pixels just based

on their feature values. It is also about the spatial arrange-

ments of these feature values. Such a spatial context is natu-

rally described in a relational graph [12, 14]. In this frame-

work, every pixel becomes a node, and the likelihood of two

nodes belonging together is captured in a weight attached to

the edges linking pixel nodes. Image segmentation then be-

comes a weighted graph partitioning problem.

There are three steps involved in such an approach.

1. What features to extract from the image? I will show

that edges at multiple scales contain complementary infor-

mation and all rather than a subset should be used.

2. What grouping cues to derive from these features? I

will show that edges should be used to derive the likeness

between their pixel supports and a multigrid neighbourhood

structure can effectively select reliable grouping cues.

3. What criterion to use to integrate these grouping cues?

I will propose the average cuts of normalized affinity as a

new criterion for grouping and show that it not only has de-

sired duality property and elegant numerical solution, but

also simplifies cue interaction and integration.

2.1. Image Features: Multiple Edges Maps

Consider filters shown in Fig. 3. They are tuned to detect

edges of different shapes, parameterized by ρ = [ρs, ρe, ρo],
where ρs, ρe and ρo refer to scale, elongation, and ori-

entation respectively. These quadrature pairs of filters, de-

noted as Fo(ρ) and Fe(ρ), differ in their spatial phases. The

odd-phase filters are essentially the first-order derivatives,

whereas the even-phase filters are the second-order deriva-

tives, both smoothed with Gaussians specified by ρ. Given

image I , the quadrature energy E(ρ) is defined as [4]:

E(ρ) = (I ∗ Fo(ρ))2 + (I ∗ Fe(ρ))2, (1)

where ∗ is the convolution operator. E(ρ) has a maxi-

mum response for contours of shape ρ, whereas the zero-

crossings of filter Fe(ρ) locate the positions of the edges.

Traditionally, edges are considered a binary phenomenon

and multiple filter responses at a single pixel only serve as

a means to derive a better estimate of the edge. This is of-

ten done by a competition of the edge energies, which are
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Step 1: Edges are extracted at multiple scales.

. . .

Step 2: Pairwise pixel grouping cues are defined at multiple grids for each edge map.

. . .

Step 3: Optimal average cuts of normalized affinity are sought.

. . .

Results: coarse to fine segmentations

Figure 2: Method overview. 1)Edges are fi rst extracted at multiple scales. 2)Edges at each scale defi ne pixel grouping cues at multiple

ranges. Each range gives rise to one affi nity graph. All pixels have the same number of neighbours in every graph. The difference is that the

neighbours are placed on a regular grid with a spacing increasing with the scale of the edges. Shown here is the neighbourhood structure

of a marked pixel. The boundaries of a binary segmentation are overlaid on every graph. As the neighbourhood gets larger, more pixels

are involved in evaluating segmentation boundaries. 3)A simultaneous segmentation through all these graphs is sought so that the grouping

cues at each scale are respected. Computationally it is reduced to partitioning on one equivalent affi nity graph and it can be computed

effi ciently. 4)Final segmentations exhibit a coarse to fi ne organization, where larger scale properties are foremost respected.
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Fo(ρ) Fe(ρ)

Figure 3: Linear fi lters of 4 orientations, 2 elongations, 2 scales,

in both odd and even phases that form quadrature pairs.

made comparable by normalizing the L1 norm of each fil-

ter [5, 3]:

E∗ = max
ρ

E(ρ), (2)

where E∗ is the final edge energy from the winning filter.

Although the idea is straightforward, one edge map has

trouble recognizing contours at different scales. Already ev-

ident in Fig. 1c and d, while small scale edges follow details

and curves, large scale edges acknowledge weak contours

and ignore texture. The information from small and large

filters is complementary (See Table 1), yet when they com-

pete in terms of edge energy, the final “optimal” edge map

lose good cues at both scales (Fig. 4).

small filter response large filter response

pros precise localization insensitive to texture

closely follow curves detect weak contours

cons sensitive to noise poor localization

miss weak contours extend straight lines

Table 1: Edges at different scales encode complementary infor-

mation and reflect the trade-off between the robustness to detect

contrast and the flexibility to follow curves.

Figure 4: The optimal edge map E∗ falls short of representing

boundaries at multiple scales. For example, long weak contours

detected by large scale fi lters on the back of the cheetah are gone

in the fi nal edge map.

It is not surprising that we need multiple edge maps.

Edge detectors are designed for isolated edges [1]. Only

in isolation is it meaningful to compute the optimal scale,

elongation and orientation of an edge by comparing the re-

sponse strengths [3, 5]. In real images, however, corners and

junctions are ubiquitous, object parts of various scales and

shapes co-exist. Such a one-edge-map approach is bound to

fall short of representing all of them.

2.2. Grouping Cues: Pixel Affinity at Multigrids

To turn edges into grouping cues, I’d like to generalize

the intervening contour idea [4] to multiple edge maps. Two

pixels do not like each other if there is an edge encountered

on the straight line connecting them. The stronger the edge

energy, the less affinity between them.

Formally, for pixels i and j, let AIC(i, j; ρ) be their

affinity based on edges at scale ρs and elongation ρe:

AIC(i, j; ρ) = exp

(

−
maxt∈~ij,ρo

E(t; ρ)

σ · maxρo
E(ρ)

)

, (3)

where ~ij denotes the set of pixels on the line between pixel

i and j, and σ is a parameter controlling the sensitivity of

affinity to edge energy. Notice that orientation is no longer

a parameter of A. In effect, we are dealing with a total of

#scales × #elongations edge maps.

Although the above affinity is defined for every pair of

pixels in the image, it is not equally reliable everywhere.

The range of applicability is lower bounded by the edge lo-

calization certainty at that scale, and upper bounded by the

grouping principle of proximity.

First, the larger the size of the filter, the less certainty

in the localization of an edge. Since contrast information

is pooled over a large area, when an edge fires between

two closeby pixels i and j, the real cause could lie any-

where within the receptive field of the filter. Therefore,

AIC(i, j; ρ) only becomes reliable when i and j are some

distance apart.

This certainty distance can be characterized by some di-

mension of the filter. Let d, which I refer to as the charac-

teristic distance of the filter ρ, be defined as:

d(ρ) = ρs ∗ ρe. (4)

It will become the unit of distance at affinity graphs derived

from the edge map parameterized by ρ.

Secondly, intervening contour, like any local grouping

cue, is subject to proximity. Otherwise, the noise in image

features gets blown up in the affinity. For instance, two pix-

els separated by a long weak contour could be mistaken as

friends due to the absence of edges at a small scale. This

is commonly known as the “leakage problem”, the type of

problem which a local segmenter is especially sensitive to.
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Although a global segmenter is more robust to such noise,

we can reduce the noise by only admitting affinity between

pixels within a certain neighbourhood.

As the scale of edges gets larger, the number of neigh-

bours increases tremendously. A multigrid neighbourhood

is adopted to keep complexity under control. Every affin-

ity graph has N pixel nodes, where N is the total num-

ber of pixels in the image I . Every pixel node has (2r +
1)× (2r + 1) neighbours, where r is the neighbourhood ra-

dius. Edges at each scale give rise to affinity graphs at mul-

tiple grids. The grid distance increases with the scale of the

edges.

Formally, let W be the weight matrix for the affinity

graph parameterized by grid distance g and filter ρ:

W (i, j; ρ, g) = AIC(i, j; ρ)δ(dist(i, j) = k·g·d(ρ), k ≤ r),
(5)

where δ is a binary indicator function (1 if the argument is

true and 0 otherwise) and dist(i, j) denotes the block dis-

tance between pixels i and j. As a concrete example, con-

sider neighbourhood radius r = 1, filter d(ρ) = 2 and

grid g = 1, 2. That is, two affinity graphs are derived from

this edge map. In the first graph, each pixel has 9 neigh-

bours spaced at the pixel grid of [−2, 0, 2] × [−2, 0, 2],
while in the second graph, its 9 neighbours are spaced at

[−4, 0, 4] × [−4, 0, 4], where (0, 0) is the pixel itself.

Such a multigrid structure results in a total of:

M = #scales × #elongations × #grids (6)

sparsely connected affinity graphs. Let their weight matri-

ces be denoted by W1,W2, . . . ,WM . The affinity a pixel

has with its M ·(2r+1)2 neighbours gives a complete char-

acterization of its grouping preference.

2.3. Grouping Criterion:

Average Cuts of Normalized Affinity

Let V denote the set of all N pixel nodes. Segmenting

these pixels into K groups is to decompose V into K dis-

joint sets, i.e., V = ∪K
l=1

Vl and Vk ∩ Vl = ∅, ∀k 6= l. Let

the K-way partitioning be denoted by ΓK
V

.

From the point of view of each individual node, it agrees

with a global segmentation if its grouping preference is

mostly satisfied within its own group. The grouping pref-

erence of node j toward node i can be measured by the nor-

malized affinity naff(i, j;W ):

naff(i, j;W ) =
W (i, j)

∑

i∈V
W (i, j)

. (7)

naff(i, j;W ) is an ego-centric measure and it is not sym-

metric between i and j. How much j likes(dislikes) group

Q can then be measured by the total normalized affinity be-

tween j and all the nodes in(outside) Q:

like(Q, j;W ) =
∑

i∈Q

naff(i, j;W ), (8)

dislike(Q, j;W ) =
∑

i∈V\Q

naff(i, j;W ). (9)

From the point of view of each group, it agrees with

the global segmentation if the average likeness toward the

group is high, or the average dislikeness is low. That is:

max ε(ΓK
V

;W ) =
1

K

K
∑

l=1

∑

j∈Vl
like(Vl, j;W )

|Vl|
, (10)

min ε̄(ΓK
V

;W ) =
1

K

K
∑

l=1

∑

j∈Vl
dislike(Vl, j;W )

|Vl|
, (11)

where | · | denotes the cardinality of a set. Since like(Q, j)+
dislike(Q, j) = 1, these two criteria are equivalent. I will re-

fer to either of them as the average cuts of normalized affin-

ity criterion. Intuitively, if friends all stay together so that

everyone likes his group, then the community would favor

the global segmentation.

The above criterion is naturally extended to M weighted

graphs defined independently on V:

ε(ΓK
V

;W1, . . . ,WM ) =

M
∑

s=1

ε(ΓK
V

;Ws). (12)

Next I am going to show that near-global optima of this

criterion can be computed efficiently. Following the nota-

tion in [15], the average cuts criterion can be written as an

optimization program in X:

maximize ε(X) =
1

K

K
∑

l=1

XT
l AXl

XT
l Xl

(13)

subject to X ∈ {0, 1}N×K , X 1K = 1N , (14)

where X is an N×K binary matrix. X(i, l) = δ(i ∈ Vl) in-

dicates whether pixel i belongs to group l. XT denotes the

transpose of X . 1n denotes the n × 1 vector of all 1’s. A is

the total normalized affinity matrix defined as:

A =
M
∑

s=1

WsD
−1

s , (15)

Ds = Diag(1T
NWs), (16)

where Ds is the degree matrix of Ws, and Diag(·) denotes a

diagonal matrix formed from its vector argument. Note that

A is asymmetric.

The above optimization problem can be rewritten as:

maximize ε(Z) =
1

K
tr(ZT AZ), (17)

subject to ZT Z = IK , (18)
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where Z = X(XT X)−
1

2 is called scaled partition matrix

[15], tr denotes the trace of a matrix, and IK denotes the

K × K identity matrix.

Relaxing Z into the continuous domain turns the discrete

problem into a tractable continuous optimization problem.

The following proposition can be proven using tr(A) =
tr(AT ) and Lagrange multipliers.

Proposition 1 (Optimal Eigensolution). The global opti-

mum of ε(Z) = 1

K
tr(ZT AZ) subject to ZT Z = IK is

achieved by the first K leading eigenvectors of Ā = A+AT ,

with the optimal objective value as the half of the average

of the first K leading eigenvalues:

ε([V1, . . . , VK ]) =
1

2K

K
∑

l=1

sl = max
Z

ε(Z) (19)

ĀVl = slVl, s1 ≥ s2 ≥ ..., l = 1, . . . ,K. (20)

Near-global discrete optima can be computed subse-

quently using the method described in [15].

2.4. Algorithm

Given an image I , a set of filter parameters ρ’s, a set

of grid spacing parameters g’s, affinity parameter σ, affin-

ity neighbourhood radius r, number of segments K, image

segmentation is performed by:

Step 1: Compute edge energy at multiple scales:

E(ρ) = (I ∗ Fo(ρ))2 + (I ∗ Fe(ρ))2

Step 2: Compute pixel affinity at multiple grids:

t = 0
For s = 1 to #scales,

For e = 1 to #elongations,

d = ρs ∗ ρe

For g = 1 to #grids,

t = t + 1
For j = 1 to N ,

For i such that dist(i, j) = k · g · d, k ≤ r,

Wt(i, j) = AIC(i, j; ρ).

Step 3: Compute average cuts of normalized affinity:

A = W1D
−1

1
+ . . . + WMD−1

M

Ā = A + AT

Solve for the first K eigenvectors V of Ā

Obtain a discrete segmentation from V .

3. Experiments and Discussions

The same set of parameters are used for all the 400 im-

ages tested: ρs = 1, 3, 5, ρe = 1, 2, 3, ρ = 8 orientations,

g = 1, 2, 3, σ = 0.02, r = 3, K = 10. Fig. 5 and Fig. 6 are

sample results from the Berkeley Segmentation Dataset [7]

and Berkeley baseball player dataset [8].
Figure 5: Segmentations with K = 2, 4, 8, 10.
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Figure 6: K = 7 for rows 1-4 and K = 10 for rows 5-9.

Hierarchy of coarse to fi ne segmentations. As already

seen in Fig. 2, these results exhibit coarse to fine segmenta-

tions. There is never a case that a binary segmentation picks

up a very small region, although the boundaries may not

be precise. For example, Row 4 in Fig. 5, the segmentation

boundaries do not snap onto the back of the tiger till K = 8.

Rows 9-10 in Fig. 5 also show that boundaries of weak con-

trast are automatically completed at a fine level segmenta-

tion. The reasons are: 1) affinity at larger scales only cares

about grouping relationships at a larger distance; 2) cuts

on these graphs involve the grouping preference on more

nodes as they are connected over a larger neighbourhood.

In other words, priority is given to the goodness of group-

ing at coarser scales. Thus fine details, captured in small

scale affinity graphs, are honored later.

Handle texture and weak contours. Such a coarse to

fine segmentation mostly results from the multiscale affinity

at long ranges. [2, 4, 6] have also studied the problem of ob-

taining better affinity measures. They focused on richer im-

age features. The multiscale nature of grouping cues has not

been explored. The results here show that in the multiscale

integration framework, a segmenter using entirely edges can

handle most texture and weak contours in real images. Ex-

plicit extraction of textons may not be needed. Fixing edge

maps for weak contours may not be needed.

The average cuts of normalized affi nity criterion al-

lows cue integration and offers numerical advantage

over the normalized cuts criterion. Although both cri-

teria share duality and normalization of the affinity, the nor-

malized cuts criterion [12, 14] does not handle simultane-

ous cuts through multiple graphs. It cannot be reduced to

normalized cuts on a single weight matrix. Therefore, even

if we could extend its definition to multiple graphs as in

Eqn. (12), there is no simple numerical solution.

The difference between the two criteria is illustrated in

Fig. 7. At the same level of segmentation, average cuts have

more precise boundaries and are better at grouping regions

of multiple scales. Such differences are typical and can be

understood from their definitions. Average cuts of the nor-

malized affinity have a clear interpretation of optimizing the

goodness of grouping at each scale. Fine details which do

not conflict with coarser scale grouping cues are encouraged

to come out at a coarse level segmentation. On the contrary,

normalized cuts of the normalized affinity treat neighbours

at all scales altogether, thus small details that only influence

the grouping of a few nodes are too insignificant to be ac-

knowledged at a coarse level segmentation.

Simplifi ed multiscale interactions. How to integrate

grouping cues at multiple scales has not been well stud-

ied. A related work is [11], but it is more concerned with

the speed and the granularity of low-level segmentation. A

common belief is that cues at coarse scales tend to prime the

grouping behaviour at fine scales and a hierarchical prece-
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Figure 7: Segmentations from the average cuts (row 1) and the

normalized cuts (row 2) of Ā respectively. K = 5, 7. Average

cuts follow curvy boundaries better and also allow the thin tail to

emerge together with the big torso, whereas normalized cuts can

only take care of big structures at coarse level segmentation.

dence is often assumed [10]. This work suggests a simple

alternative: to make the best use of cues across scales, just

let them contribute within their most reliable ranges.

Numerically fast and effi cient. For N pixels, M graphs,

B = (2r + 1)2 neighbours, W1 . . . , WM altogether have

N · M · B nonzero entries. The number of connections is

linear with respect to N , yet they contain long range cues as

far as e.g. r·max g·max d(ρ) = 3·3·15 = 135 pixels away!

A further reduction is achieved by choosing the top few best

friends. All results here are obtained with B = 10, and the

total running time in MATLAB on a PC with 2GHz CPU

and 2GB memory is about 100s for those in Fig. 5 (size:

160 × 240) and 600s for Fig. 6 (size: 400 × 400). Two fac-

tors contribute to the speed. One is the multigrid technique

that keeps the connections sparse. The other is that affin-

ity at all ranges makes the eigensolution converge faster. In

short, sparse yet complete cues make grouping easier.

Finally, I’d like to conclude the paper with results on two

extreme images that illustrate the problems of texture and

weak contours (Fig. 8), motivating future research on mul-

tiscale, texture segmentation and boundary completion.
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