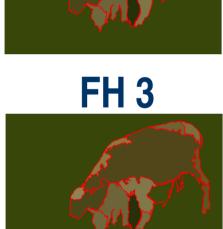
Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach Xiao-Ming Wu Shih-Fu Chang Zhenguo Li **Columbia University**

DYM_{lab}

Problem and Motivations

Segmentation is crucial for highlevel vision. It remains challenging due to visual ambiguity and variety.

Observations Different methods behave differently. Each method gives different results under different parameters.

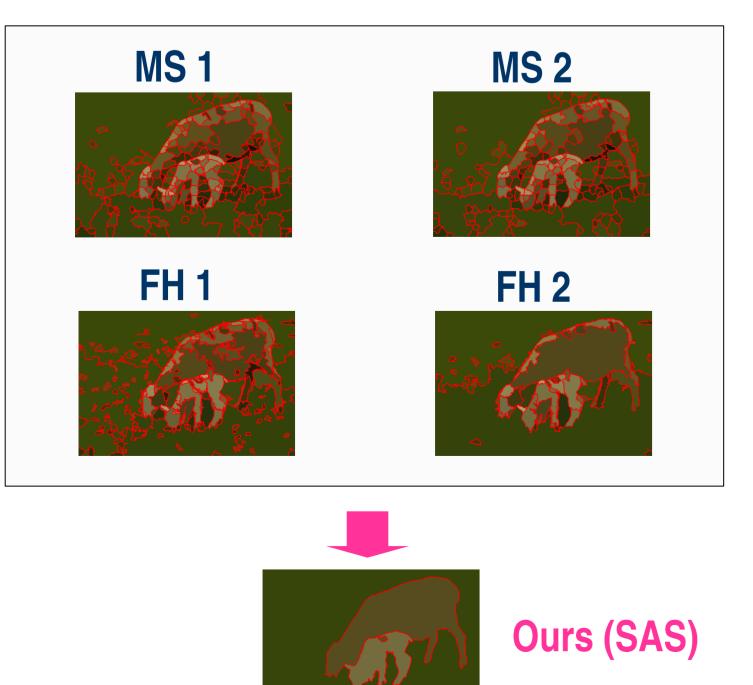


MS [Comaniciu and Meer'02] FH [Felzenszwalb and Huttenlocher'04]

How to capture and model a variety of visual patterns simultaneously?

Motivations

Combine complementary information to improve performance. Capture visual patterns using superpixels generated by different methods with varying parameters.

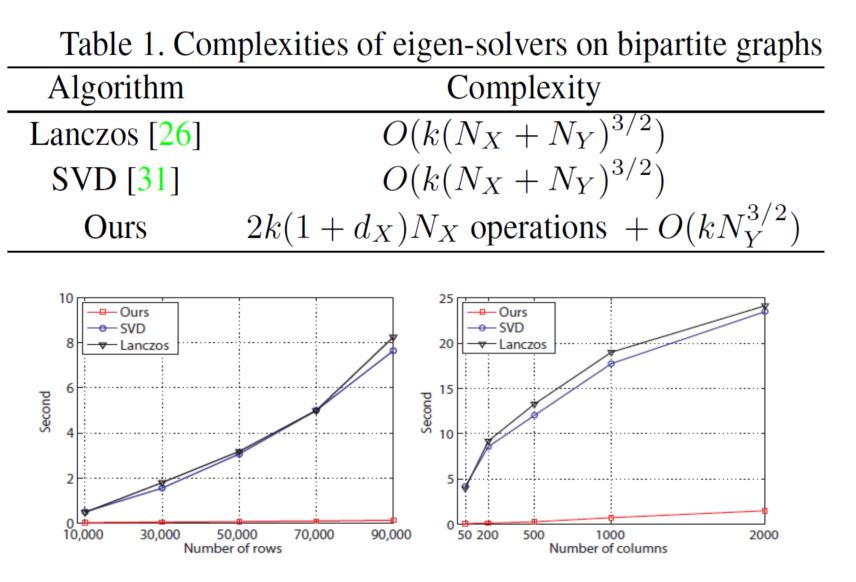


SAS takes 6.44s per image of size 481×321 , where 4.11s for generating superpixels and 0.65s for Tcut. MNcut, MLSS, Ncut and TBES take more than 30s, 40s, 150s, and 500s, respectively. Codes of SAS are available at: www.ee.columbia.edu/dvmm.

Combine pixels and multiple/multi-scale segmentations by a bipartite structure. Using superpixels as grouping cues: Pixels in a superpixel tend to belong together. Similar neighboring superpixels tend to belong together.

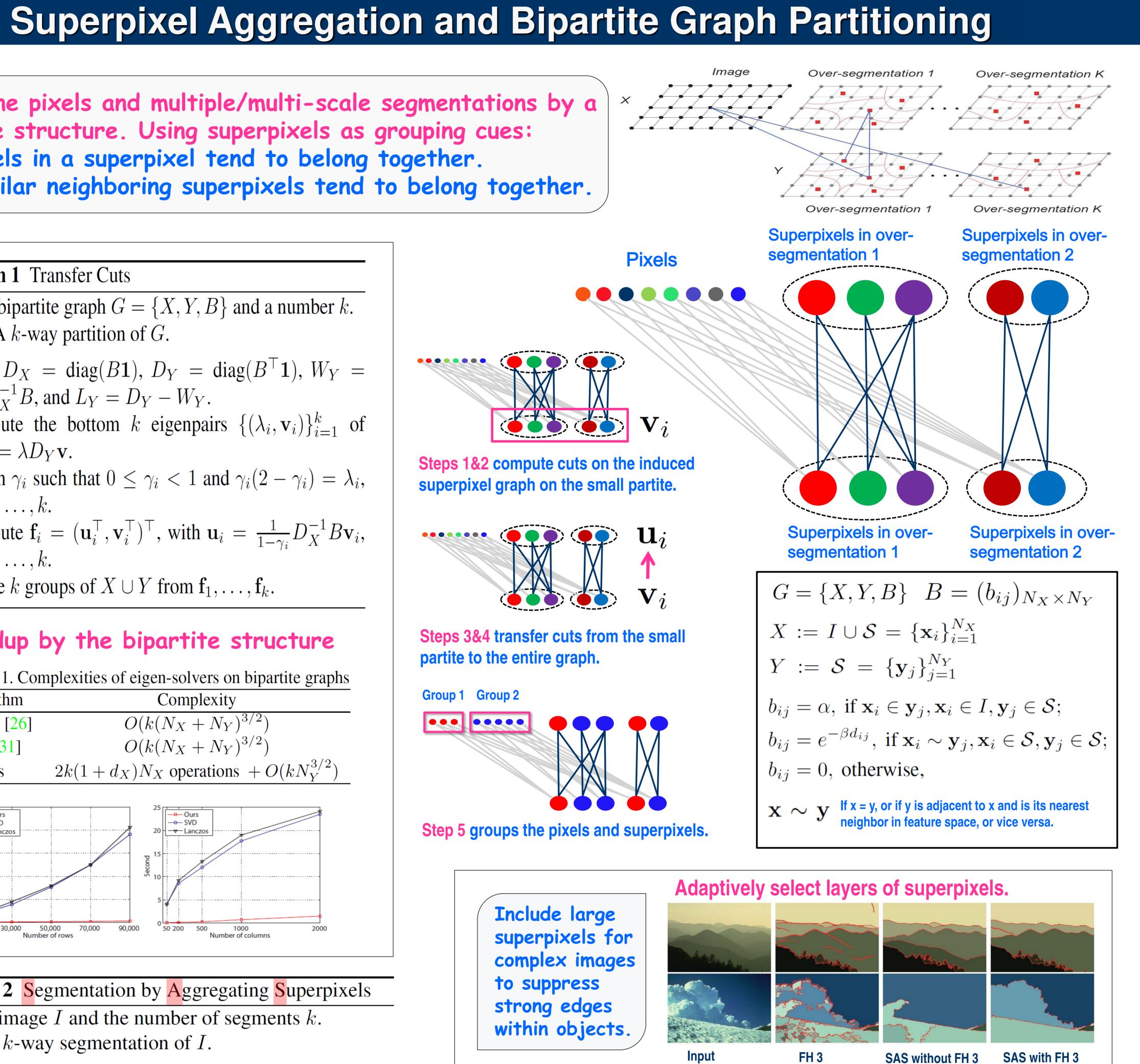
Algorithm 1 Transfer Cuts **Input**: A bipartite graph $G = \{X, Y, B\}$ and a number k. **Output**: A k-way partition of G. 1: Form $D_X = \operatorname{diag}(B\mathbf{1}), D_Y = \operatorname{diag}(B^{\top}\mathbf{1}), W_Y =$ $B^{\top}D_X^{-1}B$, and $L_Y = D_Y - W_Y$. 2: Compute the bottom k eigenpairs $\{(\lambda_i, \mathbf{v}_i)\}_{i=1}^k$ of $L_Y \mathbf{v} = \lambda D_Y \mathbf{v}.$ 3: Obtain γ_i such that $0 \leq \gamma_i < 1$ and $\gamma_i(2 - \gamma_i) = \lambda_i$, $i=1,\ldots,k.$ 4: Compute $\mathbf{f}_i = (\mathbf{u}_i^{\top}, \mathbf{v}_i^{\top})^{\top}$, with $\mathbf{u}_i = \frac{1}{1-\gamma_i} D_X^{-1} B \mathbf{v}_i$, $i=1,\ldots,k$. 5: Derive k groups of $X \cup Y$ from $\mathbf{f}_1, \ldots, \mathbf{f}_k$.

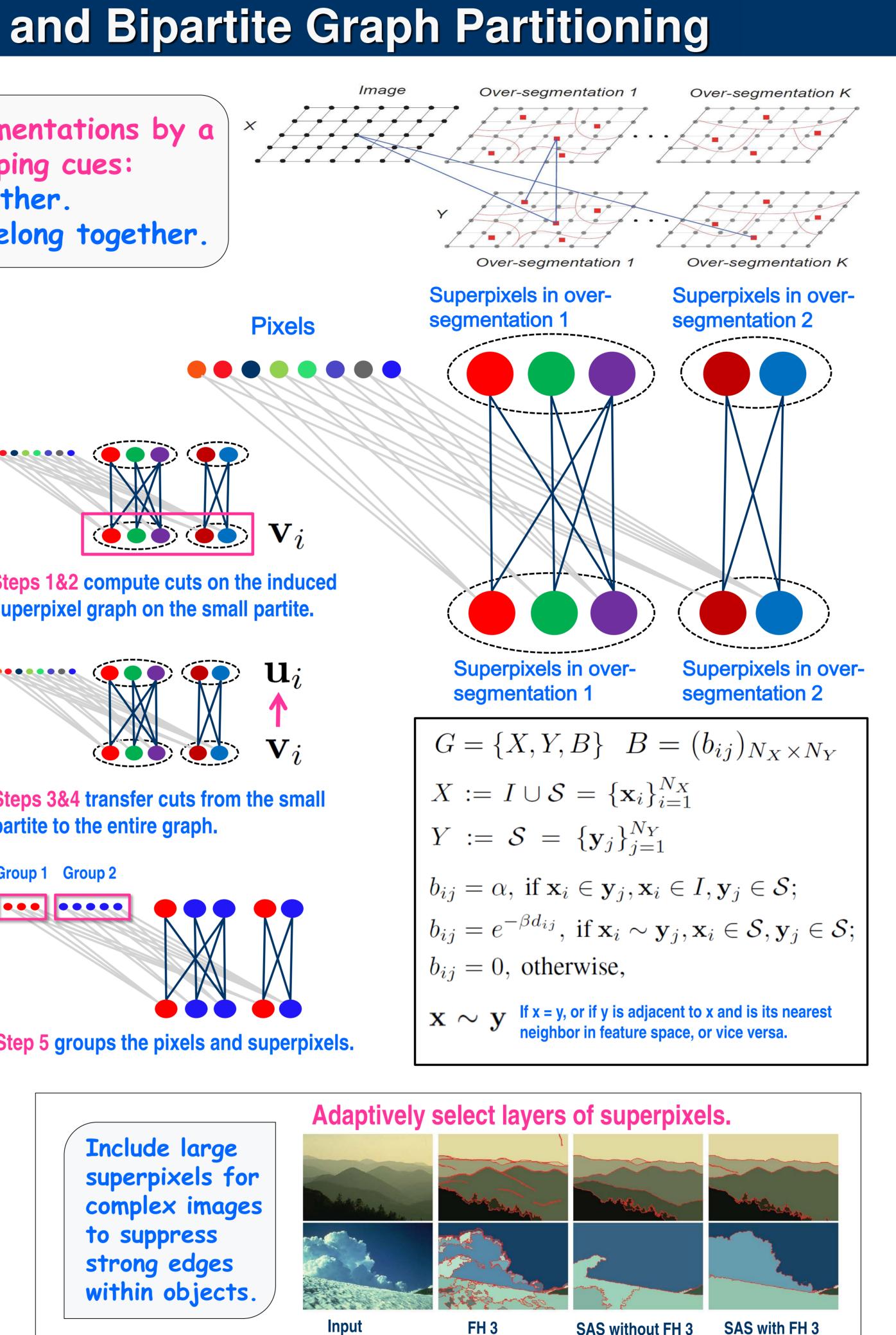
Speedup by the bipartite structure

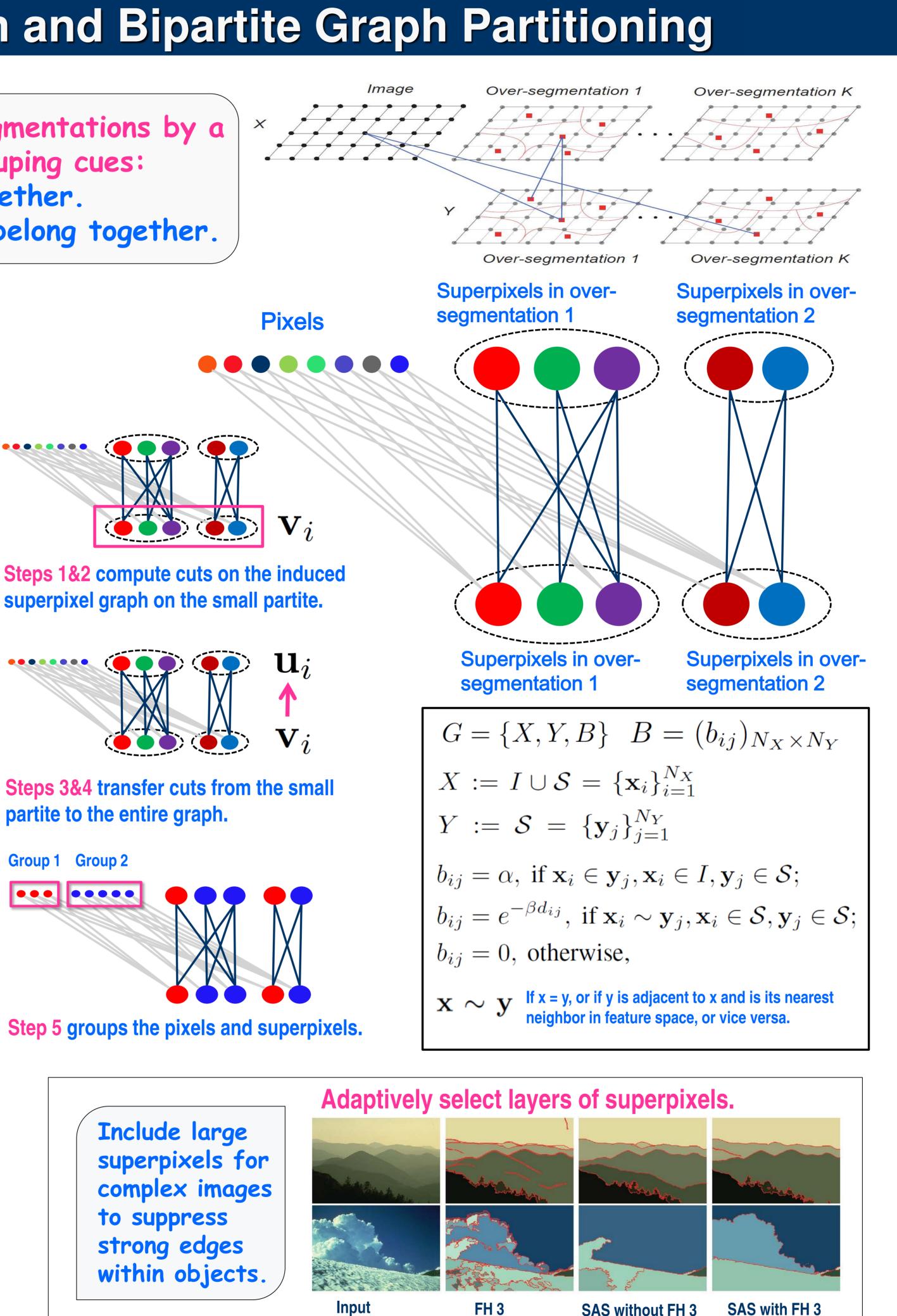


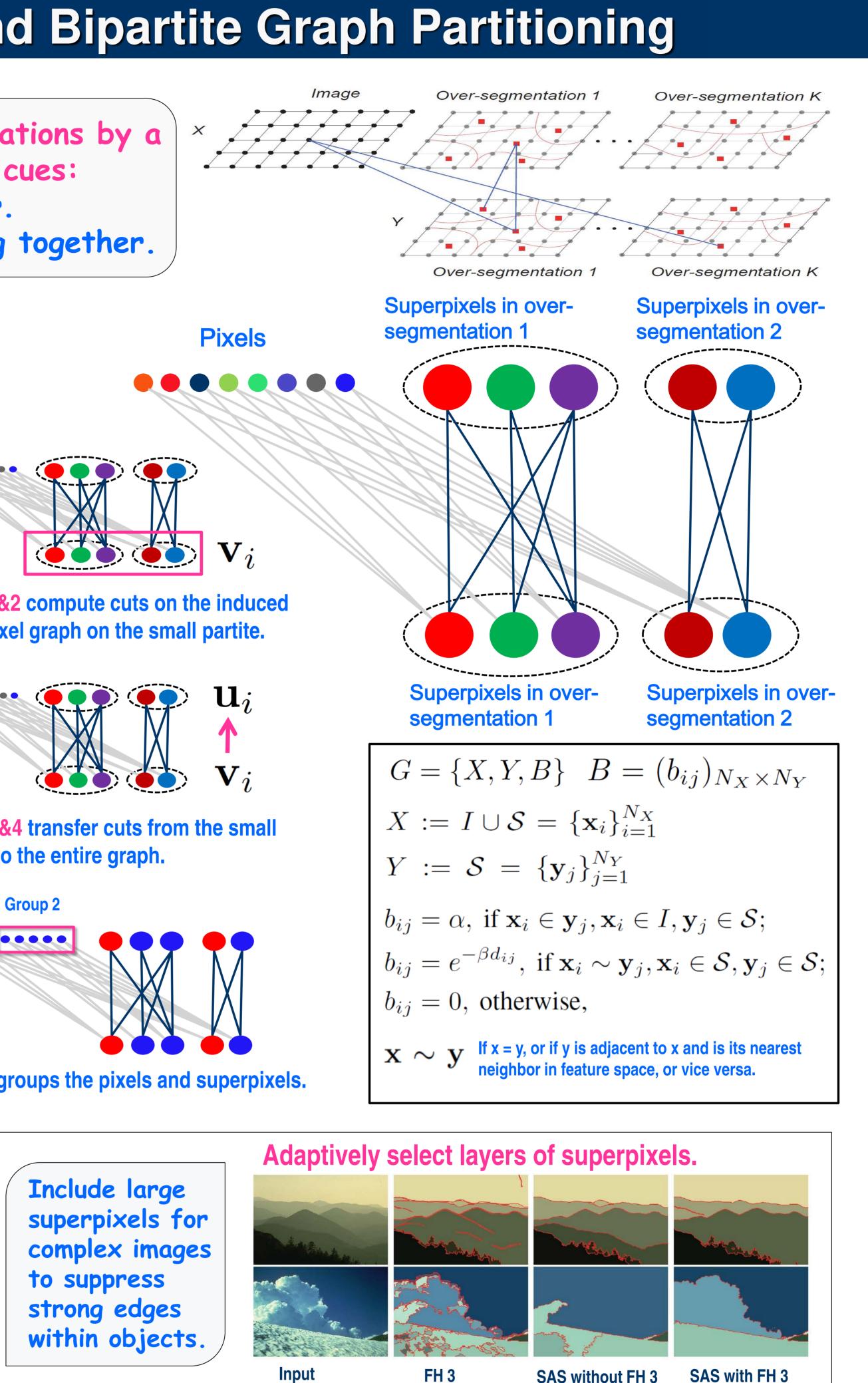
Algorithm 2 Segmentation by Aggregating Superpixels **Input**: An image I and the number of segments k. **Output**: A k-way segmentation of I.

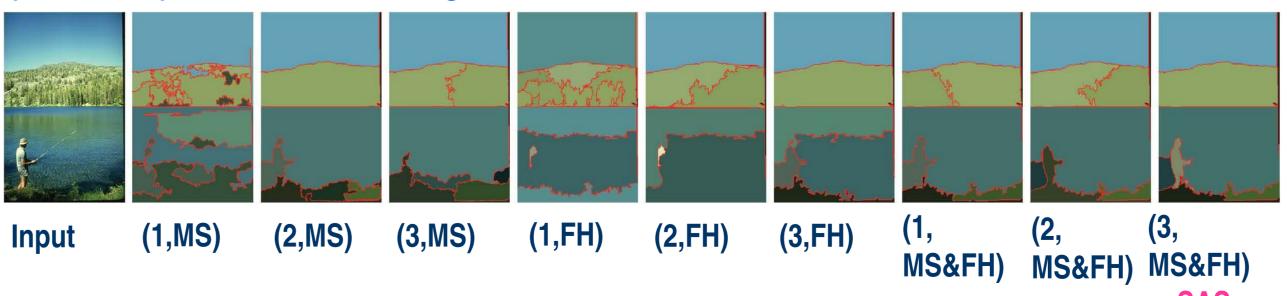
- 1: Collect a bag of superpixels S for I.
- 2: Construct a bipartite graph $G = \{X, Y, B\}$ with X = $I \cup S, Y = S$, and B defined in (1-3).
- 3: Apply Tcut in Algorithm 1 to derive k groups of G.
- 4: Treat pixels from the same group as a segment.











Segmentations with different combinations of layers of superpixels. (3, MS&FH): use three over-segmentations from each method.

Segmentation Results

Results on Berkeley segmentation database (BSDS) Methods GCE PRI BDE VoI 0.2232 17.15 0.7242 2.9061 Ncut .9725 Mean Shift 0.7958 0.1888 14.41 0.1746 0.7139 3.3949 FH 16.67 0.7756 2.3217 JSEG 0.1989 14.40 2.4701 0.1925 0.7559 15.10 **MNcut** J.237 NTP 0.7521 2.4954 16.30 SDTV 0.1768 0.7758 .8165 16.24 TBES 0.80 1.76 N/A N/A 1.68 N/A UCM N/A 0.81 12.21 1.8545 0.1809 MLSS 0.8146 0.1779 1.6849 11.29 0.8319 SAS 0.7991 1.9320 0.2222 15.37 SAS(MS) 0.8070 0.2167 14.28 SAS(FH1) 1.8690 0.8007 .7998 17.17 SAS(FH2) 0.2105 SAS(MS+FH1) 0.8266 .7396 0.1868 11.83 0.8246 1.7144 0.1904 12.63 SAS(MS+FH2)UCM SAS Methods \mathbf{FH} Ncut Mean Shift 0.71 BFM 0.58 0.64 0.62 0.63 RSC 0.58 0.51 0.44 0.54 0.62

PRI: Probabilistic Rand Index; VOI: Variation of Information; GCE: Global Consistency Error; BDE: Boundary Displacement Error; **BFM:** Boundary-based F measure; RSC: Region-wise segmentation covering.

Sensitivity of SAS w.r.t. the parameters.

α	$\{10^{-1}\}$	$^{-9}, 10^{-5}$	$, 10^{-1}, 1$	10^3	10^{-3}			
eta		2	0		$2 \times \{10^{-5}, 10^{-1}, 10^3, 10^7\}$			
PRI	0.806	0.813	0.818	0.818	0.821	0.821	0.814	0.815
VoI	1.867	1.810	1.836	1.840	1.811	1.811	1.836	1.831
GCE	0.209	0.203	0.201	0.202	0.194	0.194	0.210	0.209
BDE	13.76	13.33	13.27	13.31	12.40	12.35	13.70	13.70

	and the second	Las	x	X	montion	nez	4m. 143
a A A A A A A A A A A A A A A A A A A A	son i						R
							- C -
						- mark	

Figure 5. Segmentation examples on Berkeley Segmentation Database. (a) Input images. (b) Mean Shift. (c) FH. (d) TBES. (e) Ncut. (f) MNcut. (g) MLSS. (h) SAS.