
Segmented Min-Min: A Static Mapping Algorithm for Meta-tasks on
Heterogeneous Computing Systems

Min-You Wu and Wei Shu
Department of Electrical and Computer Engineering

University of New Mexico

Hong Zhang
Department of Electrical and Computer Engineering

University of Central Florida

Abstract

The Min-min algorithm is a simple algorithm. It runs
fast and delivers good performance. However, the Min-min
algorithm schedules small tasks first, resulting in some load
imbalance. In this paper, we present an algorithm which
improves the Min-min algorithm by scheduling large tasks
first. The new algorithm, Segmented min-min, balances the
load well and demonstrates even better performance in both
makespan and running time.

1. Introduction

A heterogeneous computing environment utilizes a suite
of different machines interconnected by high-speed net-
works to execute different computationally intensive appli-
cations that have diverse computational requirements [8, 12,
13]. The general problem of mapping tasks to machines has
been shown to be NP-complete [10]. Many useful heuris-
tics to perform this mapping function have been developed.
Among many sophisticated algorithms, the Min-min algo-
rithm [10] is a simple algorithm which runs fast and delivers
satisfactory performance. It selects from all tasks the task
that minimizes the completion time on a machine. In most
situations, it maps as many tasks as possible to their first
choice of machine. However, the Min-min algorithm is un-
able to balance the load well since it usually schedules small
tasks first. In this paper, we propose a simple alternative of
the Min-min algorithm by scheduling large tasks first. The
proposed algorithm retains the advantage of the Min-min
algorithm and achieves good load balance at the same time.

This paper presents the new algorithm, named theSeg-
mented min-minalgorithm. In section 2, previous heuristic
algorithms are reviewed. Section 3 presents the new algo-

rithm. Section 4 exhibits the simulation model and experi-
mental results. Section 5 concludes the paper.

2. Previous Heuristics

In this section, we review a set of heuristic algorithms
which schedule meta-tasks to heterogeneous computing
systems. A meta-task is defined as a collection of inde-
pendent tasks with no data dependences. Meta-tasks are
mapped onto machines statically; each machine executes a
single task at a time. For static mapping, it is assumed that
the number of tasks,t, and the number of machines,m, are
known a priori.

A large number of heuristic algorithms have been de-
signed to schedule tasks to machines on heterogeneous
computing systems. In [2], eleven commonly used algo-
rithms have been evaluated, listed as follows.

OLB : Opportunistic Load Balancing (OLB) assigns each
task, in arbitrary order, to the next available ma-
chine [1, 7, 8].

UDA : User-Directed Assignment (UDA) assigns each
task, in arbitrary order, to the machine with thebest
expected execution timefor the task [1, 7].

Fast Greedy : Fast Greedy assigns each task, in arbitrary
order, to the machine with theminimum completion
time for that task [1].

Min-min : In Min-min, the minimum completion time for
each task is computed respect to all machines. The task
with theoverall minimum completion timeis selected
and assigned to the corresponding machine. The newly
mapped task is removed, and the process repeats until
all tasks are mapped [1, 7, 10].

0-7695-0556-2/00 $10.00 � 2000 IEEE

Max-min : The Max-min heuristic is very similar to the
Min-min algorithm. The set of minimum completion
times is calculated for every task. The task withoverall
maximum completion timefrom the set is selected and
assigned to the corresponding machine [1, 7, 10].

Greedy : The Greedy heuristic is literally a combination
of the Min-min and Max-min heuristics by using the
better solution [1, 7].

GA : The Genetic algorithm (GA) is used for searching
large solution space. It operates on a population of
chromosomes for a given problem. The initial popula-
tion is generated randomly. A chromosome could be
generated by any other heuristic algorithm. When it is
generated by Min-min, it is called “seeding” the popu-
lation with Min-min [15, 14].

SA : Simulated Annealing (SA) is an iterative technique
that considers only one possible solution for each
meta-task at a time. SA uses a procedure that prob-
abilistically allows solution to be accepted to attempt
to obtain a better search of the solution space based on
a system temperature [5, 11].

GSA : The Genetic Simulated Annealing (GSA) heuristic
is a combination of the GA and SA techniques [3].

Tabu : Tabu search is a solution space search that keeps
track of the regions of the solution space which have
already been searched so as not to repeat a search near
these areas [6, 9].

A* : A* is a tree search beginning at a root node that is
usually a null solution. As the tree grows, intermediate
nodes represent partial solutions and leaf nodes repre-
sent final solutions. Each node has a cost function, and
the node with the minimum cost function is replaced
by its children. Any time a node is added, the tree is
pruned by deleting the node with the largest cost func-
tion. This process continues until a complete mapping
(a leaf node) is reached [4].

The experimental results from [2] show that OLB, UDA,
Max-min, SA, GSA, and Tabu do not produce good sched-
ules in general. Min-min, GA, and A* are able to deliver
good performance. The difference between the completion
times of the schedules (makespans) generated by these three
algorithms is within 10%. GA is consistently better than
Min-min by a few percents, since it is seeding the popula-
tion with a Min-min chromosome. A*, on the other hand,
produces better or worse schedules than Min-min and GA
in different situations. Among the three algorithms, Min-
min is the fastest algorithm, GA is much slower, and A* is
very slow. For 512 tasks and 16 machines, the running time

of Min-min is about 1 second, GA 30 seconds, and A* 1200
seconds [2].

Min-min is a simple algorithm, fast, and able to deliver
good performance. Even GA has to be “seeding” the popu-
lation with a Min-min chromosome to obtain its good per-
formance. Min-min schedules the “best case” tasks first and
generates relatively good schedules. The drawback of Min-
min is that it assigns the small task first. Thus, the smaller
tasks would execute first and then a few larger tasks execute
while several machines sit idle, resulting in poor machine
utilization. We propose a simple method to enforce large
tasks to be scheduled first. Tasks are partitioned into seg-
ments according to their execution times. The segment with
larger tasks is scheduled first with the Min-min algorithm
being applied within the segment. This is calledSegmented
min-min (Smm).

3. The Segmented Min-Min Algorithm

Every task has aETC (expected time to compute)on a
specific machine. If there aret tasks andm machines, we
can obtain at�m ETC matrix. ETC(i; j) is the estimated
execution time for taski on machinej.

TheSegmented min-minalgorithm sorts the tasks accord-
ing to ETCs. The tasks can be sorted into an ordered list by
the average ETC, the minimum ETC, or the maximum ETC.
Then, the task list is partitioned into segments with the equal
size. The segment of larger tasks is scheduled first and the
segment of smaller tasks last. For each segment, Min-min
is applied to assign tasks to machines. The algorithm is de-
scribed as follows.

Segmented min-min (Smm)
1. Compute the sorting key for each task:

SUB-POLICY 1 —Smm-avg: Compute the average
value of each row in ETC matrix

keyi =
X

j

ETC(i; j)=m:

SUB-POLICY 2 — Smm-min: Compute the mini-
mum value of each row in ETC matrix

keyi = min
j

ETC(i; j):

SUB-POLICY 3 — Smm-max: Compute the maxi-
mum value of each row in ETC matrix

keyi = max
j

ETC(i; j):

2. Sort the tasks into a task list in decreasing order of
their keys.

3. Partition the tasks evenly intoN segments.
4. Schedule each segment in order by applying Min-min.

Different from the Min-min algorithm, Segmented min-
min performs task sorting before scheduling. Sorting im-
plies that larger tasks are promoted to be scheduled earlier.
Then, Min-min is applied locally within each segment. The
problem here is how to define the sorting key. Tasks with
long execution time deserve promotion to early scheduling.
However, in a heterogeneous system, the execution time of
a task varies in different machines. Therefore, we test three
sub-policies by defining the execution time of a task as the
average, the minimum, or the maximum of its ETCs.

The third step of the Segmented min-min algorithm par-
titions tasks intoN segments. Determining the optimal
value ofN is a trade-off. More segments result in better
load balance. On the other hand, too many segments will
lose advantages of the Min-min algorithm. Intuitively, as
long as we partition the tasks into a few segments, such as
large, medium, and small tasks, the load can be balanced
fairly well. Experimental results confirm this as shown in
Figure 1 where the curves show the improvement ofSmm-
avgover Min-min for different values ofN . Each point in
these curves is the average of five runs. In general, the op-
timal value ofN is relevant to the ratioc = t

m
. Whenc

is large, Min-min performs well. For smallc, which means
the number of tasks per machine is not large, the optimal
value ofN is about 4 or 5. Therefore, we fix the value of
N to 4, which means that we always partition the tasks into
four segments.

1%

3%

4%

2%

5%

6%

2 3 4 5 6

c = 16

c = 32

c = 256

c = 64

c = 128

c = 8

Improve-
ment

N

Figure 1. The N Value.

4. Experiments

4.1. Performance Comparison

For the experimental studies, we use the same method
in [2] to generate the test set. The parameters includeCon-
sistant, Inconsistant,or Semi-Consistant; High or Low Task
Heterogeneity; and High or Low Machine Heterogeneity.
For details, see [2]. All experiment results are based on 512
tasks, 16 or 32 machines, 100 trails and N = 4. The results
for 16 machines are shown in Tables I to XII and that for 32
machines are shown in Tables XIII to XXIV. In these tables,
the second column shows the utilization of machines which

is defined as1 �
P

idle time

m�makespan
. The third column is the

makespan (the completion time) of schedules. The fourth
column is the improvement of each Segmented min-min al-
gorithm over the Max-min algorithm and the fifth column
is that over the Min-min algorithm. The last column shows
the running time of each algorithm.

4.2. Discussion

From these results, we found that the Segmented min-
min algorithm is able to balance the load very well com-
pared to the Max-min and the Min-min algorithms. The
system utilization of Min-min is relatively low while that
of Segmented min-min is very high. This is because Seg-
mented min-min schedules larger tasks first and smaller
tasks can run in parallel with large tasks. Although the
Max-min algorithm produces very good load balancing, it
does not schedule tasks to their “best case.” Thus, its perfor-
mance is far worse than that of the Segmented min-min al-
gorithm. Higher system utilization makes three Segmented
min-min algorithms better than Min-min in almost all cases.
Smm-avgenhances the performance of Min-min from 2% to
12%.Smm-minshows better performance thanSmm-avgin
some cases but is worse thanSmm-avgin most cases.Smm-
maxis worse than Smm-avg in almost all cases. Thus, we
useSmm-avgfor the Segmented min-min algorithm, which
improves the Min-min algorithm by 6.1% in average.

In addition, the running time of the Segmented min-min
algorithm is much less than Min-min. This is not difficult to
explain because Min-min spends the large amount of time
to search entire matrix to map one task each time, while
Segmented min-min, taking advantage of the divide-and-
conquer strategy, only searches the minimum value within
a single partition. In summary, this partitioning method im-
proves the makespan and running time simultaneously.

Table I. 16 Machines, Inconsistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 5.425 – – 1.19
Min-min 91.0% 2.915 – – 1.06
Smm-avg 98.1% 2.767 96.0% 5.3% 0.33
Smm-min 98.4% 2.746 96.3% 6.1% 0.33
Smm-max 97.8% 2.784 94.9% 4.7% 0.33

Table II. 16 Machines, Inconsistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 2.513 – – 1.19
Min-min 83.3% 1.214 – – 1.06
Smm-avg 96.9% 1.113 125.8% 9.1% 0.33
Smm-min 98.2% 1.064 136.2% 14.2% 0.33
Smm-max 95.9% 1.135 121.4% 7.0% 0.33

Table III. 16 Machines, Inconsistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 15.943 – – 1.20
Min-min 91.0% 8.588 – – 1.07
Smm-avg 98.2% 8.139 95.9% 5.5% 0.33
Smm-min 98.5% 8.087 97.1% 6.2% 0.33
Smm-max 97.9% 8.190 94.7% 4.8% 0.33

Table IV. 16 Machines, Inconsistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 7.375 – – 1.20
Min-min 83.4% 3.573 – – 1.07
Smm-avg 96.8% 3.279 124.9% 8.9% 0.33
Smm-min 98.3% 3.131 135.5% 14.1% 0.33
Smm-max 95.9% 3.344 125.5% 6.9% 0.33

Table V. 16 Machines, Consistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 7.415 – – 1.22
Min-min 94.0% 5.857 – – 1.07
Smm-avg 98.6% 5.705 30.0% 2.7% 0.33
Smm-min 98.2% 5.813 27.6% 0.7% 0.33
Smm-max 98.4% 5.749 29.0% 1.9% 0.33

Table VI. 16 Machines, Consistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 4.125 – – 1.23
Min-min 89.0% 2.866 – – 1.07
Smm-avg 97.7% 2.805 47.1% 2.1% 0.33
Smm-min 96.7% 2.910 42.3% -2.0% 0.33
Smm-max 97.2% 2.867 43.9% 0.0% 0.33

Table VII. 16 Machines, Consistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 100.0% 2.181 – – 1.24
Min-min 93.9% 1.725 – – 1.08
Smm-avg 98.6% 1.679 29.9% 2.8% 0.33
Smm-min 98.2% 1.710 27.5% 0.9% 0.33
Smm-max 98.4% 1.693 28.8% 1.9% 0.33

Table VIII. 16 Machines, Consistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 12.152 – – 1.24
Min-min 88.9% 8.437 – – 1.07
Smm-avg 97.7% 8.258 47.2% 2.2% 0.33
Smm-min 96.7% 8.564 41.9% -1.5% 0.33
Smm-max 97.4% 8.430 44.2% 0.0% 0.33

Table IX. 16 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 6.339 – – 1.21
Min-min 91.8% 3.745 – – 1.07
Smm-avg 98.2% 3.595 76.3% 4.2% 0.33
Smm-min 98.1% 3.624 74.9% 3.3% 0.33
Smm-max 98.0% 3.624 74.9% 3.3% 0.33

Table X. 16 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 3.199 – – 1.21
Min-min 84.4% 1.664 – – 1.07
Smm-avg 96.8% 1.569 103.9% 6.1% 0.33
Smm-min 96.5% 1.593 100.8% 4.5% 0.33
Smm-max 96.3% 1.590 101.2% 4.6% 0.33

Table XI. 16 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 1.862 – – 1.21
Min-min 91.7% 1.104 – – 1.07
Smm-avg 98.2% 1.058 76.0% 4.4% 0.33
Smm-min 98.1% 1.066 74.7% 3.5% 0.33
Smm-max 98.0% 1.067 74.5% 3.4% 0.33

Table XII. 16 Machines, Semi-Consistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 9.370 – – 1.21
Min-min 84.6% 4.882 – – 1.07
Smm-avg 96.9% 4.619 102.9% 5.7% 0.33
Smm-min 96.6% 4.693 99.7% 4.0% 0.33
Smm-max 96.5% 4.673 100.5% 4.7% 0.33

Table XIII. 32 Machines, Inconsistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.5% 1.954 – – 2.23
Min-min 85.1% 1.294 – – 2.16
Smm-avg 93.1% 1.199 63.0% 7.9% 1.16
Smm-min 93.9% 1.188 64.5% 8.9% 1.10
Smm-max 92.6% 1.206 62.0% 7.3% 1.10

Table XIV. 32 Machines, Inconsistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 98.8% 6.395 – – 2.24
Min-min 68.0% 3.959 – – 2.16
Smm-avg 81.8% 3.523 81.5% 12.4% 1.16
Smm-min 79.3% 3.678 73.9% 7.6% 1.10
Smm-max 82.1% 3.502 82.6% 13.0% 1.10

Table XV. 32 Machines, Inconsistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.5% 5.755 – – 2.23
Min-min 85.2% 3.804 – – 2.16
Smm-avg 93.2% 3.525 63.3% 7.9% 1.16
Smm-min 93.9% 3.498 64.5% 8.7% 1.10
Smm-max 92.4% 3.556 61.8% 7.0% 1.10

Table XVI. 32 Machines, Inconsistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 1.882 – – 2.21
Min-min 67.9% 1.167 – – 2.16
Smm-avg 81.7% 1.038 74.3% 12.4% 1.16
Smm-min 79.5% 1.079 74.4% 8.2% 1.09
Smm-max 81.2% 1.044 80.3% 11.8% 1.09

Table XVII. 32 Machines, Consistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 3.502 – – 2.26
Min-min 88.4% 3.129 – – 2.18
Smm-avg 94.8% 2.982 17.4% 4.9% 1.17
Smm-min 93.4% 3.025 15.8% 3.4% 1.09
Smm-max 94.1% 3.005 16.5% 4.1% 1.09

Table XVIII. 32 Machines, Consistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�105 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.7% 1.707 – – 2.27
Min-min 76.4% 1.296 – – 2.18
Smm-avg 89.3% 1.245 37.1% 4.1% 1.17
Smm-min 87.0% 1.279 33.5% 1.3% 1.10
Smm-max 87.9% 1.260 35.5% 2.9% 1.09

Table XIX. 32 Machines, Consistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.9% 10.305 – – 2.27
Min-min 88.5% 9.196 – – 2.19
Smm-avg 94.8% 8.775 17.4% 4.8% 1.18
Smm-min 93.6% 8.887 16.6% 3.5% 1.10
Smm-max 94.1% 8.849 16.5% 3.9% 1.09

Table XX. 32 Machines, Consistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.8% 5.016 – – 2.26
Min-min 76.5% 3.814 – – 2.18
Smm-avg 89.3% 3.668 36.8% 4.0% 1.18
Smm-min 87.0% 3.768 33.1% 1.2% 1.09
Smm-max 87.9% 3.717 34.9% 2.6% 1.09

Table XXI. 32 Machines, Semi-Consistent, Low Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�103 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.6% 2.586 – – 2.23
Min-min 85.1% 1.773 – – 2.19
Smm-avg 92.8% 1.674 54.5% 5.9% 1.17
Smm-min 92.2% 1.679 54.0% 5.6% 1.09
Smm-max 92.3% 1.683 53.7% 5.3% 1.09

Table XXII. 32 Machines, Semi-Consistent, Low Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.3% 10.230 – – 2.22
Min-min 66.4% 6.121 – – 2.20
Smm-avg 84.3% 5.604 82.5% 9.2% 1.19
Smm-min 84.6% 5.714 79.0% 7.1% 1.09
Smm-max 82.6% 5.682 80.0% 7.7% 1.09

Table XXIII. 32 Machines, Semi-Consistent, High Task, Low Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�104 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.7% 7.603 – – 2.23
Min-min 85.1% 5.226 – – 2.20
Smm-avg 92.8% 4.925 54.3% 6.1% 1.19
Smm-min 92.4% 4.937 54.2% 5.9% 1.10
Smm-max 92.1% 4.967 53.1% 5.2% 1.10

Table XXIV. 32 Machines, Semi-Consistent, High Task, High Machine Heterogeneity

System Makespan Improvement Improvement Running
Algorithm Utilization (�106 Sec.) over Max-min over Min-min Time (Sec.)

Max-min 99.3% 3.012 – – 2.22
Min-min 66.3% 1.797 – – 2.19
Smm-avg 84.1% 1.645 83.1% 9.2% 1.18
Smm-min 84.5% 1.682 79.0% 6.8% 1.09
Smm-max 82.8% 1.674 80.0% 7.3% 1.10

5. Concluding Remarks

The Segmented min-min algorithm starts from a set of
large tasks while Min-min starting from small tasks.Smm
can balance the load very well and runs faster. We will com-
pare it in the near future to the Genetic algorithm that de-
livered the best performance among eleven selected algo-
rithms.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their thorough comments which caused us to im-
prove the presentation and level of detail. This research
was partially supported by NSF grantsCCR-9505300 and
CCR-9625784.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd. The relative per-
formance of various mapping algorithms is independent of
sizable variances in run-time predictions. In7th IEEE Het-
erogeneous Computing Workshop (HCW ’98), pages 79–87,
Mar. 1998.

[2] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, B.Yao, D. Hensgen, and
R. Freund. A comparison study of static mapping heuris-
tics for a class of meta-tasks on heterogeneous computing
systems. In8th IEEE Heterogeneous Computing Workshop
(HCW ’99), pages 15–29, Apr. 1999.

[3] H. Chen, N. S. Flann, and D. W. Watson. Parallel genetic
simulated annealing: a massively parallel SIMD approach.
IEEE Transactions on Parallel and Distributed Computing,
9(2):126–136, Feb. 1998.

[4] K. Chow and B. Liu. On mapping signal processing al-
gorithms to a heterogeneous multiprocessor system. In
ICASSP 91, pages 1585–1588, May 1991.

[5] M. Coli and P. Palazzari. Real time pipelined system design
through simulated annealing.Journal of Systems Architec-
ture, 42(6-7):465–475, Dec. 1996.

[6] I. D. Falco, R. D. Balio, E.Tarantino, and R. Vaccaro. Im-
proving search by incorporating evolution principles in par-
allel tabu search. InIEEE Conference on Evolutionary Com-
putation, pages 823–828, 1994.

[7] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell,
M. Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kus-
sow, J. Lima, F. Mirabile, L. Moore, B. Rust, and H. Siegel.
Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In7th IEEE Heteroge-
neous Computing Workshop (HCW ’98), pages 184–199,
Mar. 1998.

[8] R. F. Freund and H. J. Siegel. Heterogeneous processing.
IEEE Computer, 26(6):13–17, June 1993.

[9] F. Glover and M. Laguna.Tabu Search. Kluwer Academic
Publishers, 1997.

[10] O. Ibarra and C. Kim. Heuristic algorithms for scheduling
independent tasks on nonidentical processors.Journal of the
ACM, 77(2):280–289, Apr. 1977.

[11] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing.Science, 220(4598):671–680,
May 1983.

[12] M. Maheswaran, T. D. Braun, and H. J. Siegel.Encyclope-
dia of Electrical and Electronics Engineering, chapter Het-
erogeneous Distributed Computing. John wiley & sons,
1999.

[13] H. J. Siegel, H. G. Dietz, and J. K. Antonio.The Computer
Science and Engineering Handbook, chapter Software sup-
port for heterogeneous computing, pages 1886–1909. CRC
Press, 1997.

[14] H. Singh and A. Youssef. Mapping and scheduling hetero-
geneous task graphs using genetic algorithms. In5th IEEE
Heterogeneous Computing Workshop (HCW ’96), pages 86–
97, Apr. 1996.

[15] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Ma-
ciejewski. Task matching and scheduling in heterogeneous
computing environments using a genetic-algorithm-based
approach.Journal of Parallel and Distributed Computing,
47(1):1–15, Nov. 1997.

Biographies

Min-You Wu is an Associate Professor in the Depart-
ment of Electrical and Computer Engineering at the Uni-
versity of New Mexico. He received the M.S. degree from
the Graduate School of Academia Sinica, Beijing, China,
and the Ph.D. degree from Santa Clara University, Califor-
nia. He has held various positions at University of Illinois at
Urbana-Champaign, University of California at Irvine, Yale
University, Syracuse University, State University of New
York at Buffalo, and University of Central Florida. His
research interests include parallel and distributed systems,
compilers for parallel computers, programming tools, VLSI
design, and multimedia systems. He has published over 80
journal and conference papers in the above areas and edited
two special issues on parallel operating systems. He is a se-
nior member of IEEE and a member of ACM. He is listed
in International Who’s Who of Information Technology and
Who’s Who in America.

Wei Shu received the Ph.D. degree from the University
of Illinois at Urbana-Champaign in 1990. Since then, she
worked at Yale University, the State University of New York
at Buffalo, and University of Central Florida. She is cur-
rently an Associate Professor in the Department of Electri-
cal and Computer Engineering, University of New Mexico.
Her current interests include dynamic scheduling, resource
management, runtime support systems for parallel and dis-
tributed processing, multimedia networking, and operating
system support for large-scale distributed simulation. She

is a senior member of IEEE and a member of ACM.

Hong Zhang is a graduate student and Teaching Assis-
tant in the Department of Electrical and Computer Engi-
neering at the University of Central Florida. She received
her Bachelor of Science degree in Electrical Engineering
from Zhejiang University, Hangzhou, P.R. China, in 1986.
She worked as a software engineer in the Computer Cen-
ter of the Institute of High Energy Physics from 1987-1997,
mainly engaged in design and maintenance of the computer
system. Her research interests include distributed algo-
rithms, computer networks and database management. She
will get her master degree in May, 2000.

