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Abstract—We present a fully automatic method for articular
cartilage segmentation from magnetic resonance imaging (MRI)
which we use as the foundation of a quantitative cartilage as-
sessment. We evaluate our method by comparisons to manual
segmentations by a radiologist and by examining the interscan
reproducibility of the volume and area estimates. Training and
evaluation of the method is performed on a data set consisting of
139 scans of knees with a status ranging from healthy to severely
osteoarthritic. This is, to our knowledge, the only fully automatic
cartilage segmentation method that has good agreement with
manual segmentations, an interscan reproducibility as good as
that of a human expert, and enables the separation between
healthy and osteoarthritic populations. While high-field scanners
offer high-quality imaging from which the articular cartilage have
been evaluated extensively using manual and automated image
analysis techniques, low-field scanners on the other hand produce
lower quality images but to a fraction of the cost of their high-field
counterpart. For low-field MRI, there is no well-established accu-
racy validation for quantitative cartilage estimates, but we show
that differences between healthy and osteoarthritic populations
are statistically significant using our cartilage volume and surface
area estimates, which suggests that low-field MRI analysis can
become a useful, affordable tool in clinical studies.

Index Terms—Articular cartilage, image segmentation, os-
teoarthritis, magnetic resonance imaging (MRI), pattern classifi-
cation.

I. INTRODUCTION

O
STEOARTHRITIS (OA) is one of the major health issues

among the elderly population, it is second to heart disease

in causing work disability and is associated with a large socioe-

conomic impact on health care systems [1]. One of the main ef-

fects of OA is the degradation of the articular cartilage, causing

pain and loss of mobility of the joints. Currently, the treatment

of OA is mainly restricted to symptom control [2], and in the

search for disease modifying drugs, much research is dedicated

to analysis of articular cartilage and its relation to disease pro-

gression.

Magnetic resonance imaging (MRI) is the leading imaging

modality for direct, noninvasive assessment of the articular

cartilage [3], and cartilage deterioration can be detected using

quantitative MRI analysis [4]. Among MRI sequences, the
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most established are fat-suppressed gradient-echo T1 se-

quences using a 1.5T or a 3T magnet. The standard sequences

in literature for these scanners have high in-plane resolution but

usually have a larger interslice distance, and many assessment

methods developed for such sequences are on a slice-by-slice

basis. For a thorough review of MRI scan protocols for knee

OA assessment, see [5].

A recent study shows that low-field dedicated extremity MRI

can provide similar information on bone erosions and synovitis

as expensive high-field MRI units [6]. There have been several

comparisons of diagnostic performance of diagnosing meniscal

tears, cruciate ligaments, and cartilage lesions between low-field

and high-field MRI data [7]–[9] reporting everything from com-

patible performance to the high-field unit outperforming the

low-field unit. There has also been a comparison between low-

field MRI and arthroscopy [10] finding a good correspondence

between the two for cruciate ligament and lesion detection in

the knee.

The use of a dedicated low-field MRI has its advantages

and disadvantages. The drawbacks are related to image quality

with lower resolution and more difficulties in incorporating

features such as fat suppression, however fat suppression has

been successfully implemented lately for low-field MRI [11].

The main advantages are cost-effectiveness with much lower

cost per scan, lower installation and maintenance costs, and

higher patient comfort without claustrophobic feelings and

minimal noise level. So far there has not been any validation

of quantitative cartilage measures from a low-field scanner

compared to ground truth, but if a low-field scanner can be used

for quantitative articular cartilage assessment, costs for making

clinical studies would be reduced significantly. If manual labor

is connected with the analysis and quantification of MRI data

in clinical studies, one more cost factor is introduced. In this

work, we present a fully automatic segmentation based cartilage

assessment framework, and we evaluate it on low-field MRI by

comparison to manual delineations by a radiologist, we eval-

uate the robustness in terms of interscan reproducibility, and

the ability to detect changes between healthy and osteoarthritic

groups using the cartilage volume and area estimates.

A. Related Work

As in most quantitative assessment studies in medical

imaging, the first and most crucial step in our articular cartilage

assessment is segmentation. The cartilage can be manually

segmented slice-by-slice by experts, but for routine clinical use

manual methods are too time consuming and they are prone

to inter- and intraobserver variability. It is thus advantageous

to automate the segmentation method and the main challenges
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in developing an automatic method are the thin structure of

the cartilage and the low contrast between the cartilage and

surrounding soft tissues.

Several groups have developed semiautomated/automated

methods for cartilage segmentation. Among two-dimensional

(2-D) techniques, Stammberger and colleagues [12] segments

the cartilage by fitting a -spline snake to each slice. A 2-D

method combining user interaction with active contours is

described by Lynch et al. [13]. They combine the segmentation

technique with three-dimensional (3-D) image registration to

detect changes in cartilage volume [14]. Solloway et al. [15] use

active shape models for slice-by-slice cartilage segmentation,

and estimate cartilage thickness in the direction perpendicular

to the medial axis in each slice.

When working with a 2-D technique, continuation between

slices is lost and some regularization between the slices is re-

quired. Also, since the series of 2-D segmentations have to be

converted into a 3-D segmentation when finding for example

thickness maps, it is advantageous to perform segmentation in

3-D directly.

Looking at the 3-D techniques that have been developed,

Grau et al. [16] use a watershed based approach, where the

watershed is extended to examining difference in class prob-

ability of neighboring pixels. The sensitivity, specificity and

Dice volume overlap of the segmentation are 90.03%, 99.86%,

and 0.90, respectively. The method is evaluated on seven scans

from four healthy knees and requires 5–10 min of manual labor

for selecting markers before initializing the watershed.

Pakin et al. [17] has developed a region growing scheme that

is followed by a two-class clustering for segmenting the carti-

lage. However, the method assumes that the bones are already

segmented. The sensitivity and specificity of the method are

66.22% and 99.56%, respectively, and it is evaluated on one

scan. The method has been further developed to incorporate

a trained user for correcting misclassifications [18], and this

semiautomatic method is evaluated in terms of intrauser repro-

ducibility.

Another classification approach to segmentation is presented

by Warfield et al. [19], [20], where a user performs interactive

registration of a knee template to a test scan. The method then

iterates between a classification step and a template registration

step to produce a segmentation. The method has a lower in-

trascan variability of the volume compared to repeated manual

segmentations on the scan it is evaluated on.

A semiautomatic method based on a graph searching segmen-

tation algorithm [21] followed by mean thickness quantification

is evaluated on ankle joints in [22]. The method requires only a

small amount of manual initialization and shows accurate thick-

ness measurements on eight cadaveric ankles. Presumably, the

method could also be adapted to knees.

B. Overview of the Work Presented

The segmentation techniques described in Section I-A all re-

quire some amount of manual interaction except for the method

of Pakin et al. [17], the 3-D techniques are evaluated only on

relatively small data sets and neither Grau et al. nor Pakin et al.

evaluate their methods on scans from OA test subjects.

In this paper, we propose a method that can fully automati-

cally segment cartilage in both healthy and osteoarthritic knee

scans. The segmentation method is the first step in a quantitative,

fully automatic cartilage assessment and is primarily intended

for clinical studies using low-field MR scanners. The segmen-

tation algorithm is based on a one versus all approach of com-

bining binary approximate NN classifiers which is described

in Sections III-A and III-B, followed by an iterative position

adjustment method that is intended to correct for the variations

of the placement of the test subject in the scanner, something

that is bound to occur in any clinical study and is described in

Section III-G. Since NN classification is a slow process we

propose to use an efficient voxel classification algorithm which

is described in Section III-F.

Since we cannot obtain ground truth for an in vivo study

with both healthy and OA test subjects and ground truth ac-

curacy of low-field MRI analysis is yet to be established, we

evaluate our method not only compared to manual tracings of a

radiologist, but also in terms of precision. We evaluate the in-

terscan reproducibility using the volume and surface area esti-

mate, and the ability to detect changes between healthy and os-

teoarthritic populations by performing unpaired -tests between

the groups using the volume and area estimates and the Kell-

gren–Lawrence index. OA is more frequently observed in the

medial compartment [23], therefore, we focus on the medial car-

tilage compartment in this study. The evaluation of the segmen-

tation framework is described in Section IV followed by discus-

sion in Section V.

II. IMAGE ACQUISITION

A. Magnetic Resonance Image Acquisition

MRI was performed with an Esaote C-Span lowfield 0.18T

scanner dedicated to imaging of extremities yielding a sagittal

Turbo 3-D T1 sequence (40 flip angle, 50 ms, 16 ms).

Approximate acquisition time is 10 min and the scan size, after

automatically removing boundaries that contain no information,

is voxels. The spatial in-plane resolution of

the scans are 0.70 0.70 mm , with a distance between slices

ranging between 0.70 mm–0.94 mm, where the most common

distance is 0.78 mm.

Assessing the cartilage directly in 3-D eliminates the problem

of limited continuation between slices that is present in 2-D

techniques. We use a 3-D sequence consisting of near isotropic

voxels since this is well suited for cartilage quantification [24]

and for 3-D analysis in general.

B. Test Subject Population

We examine 139 knee joints in vivo, of which 59% are from

female test subjects. The ages of the test subjects varies be-

tween 22–79 years with an average age of 56 years. The status

of the knees range from healthy to osteoarthritic according to

the Kellgren–Lawrence index [25], a radiographic score

established by X-rays between 0–4 where is healthy,

is considered borderline or mild OA, and

is severe OA. In our data set, 51 knees have , 28 have

have and the remaining 22 knees have

. In the X-rays the width of the tibial plateau has also
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Fig. 1. Scan most improved by the position correction scheme, where the DSC increases from 0.61 to 0.77. First column shows the manual segmentation, the
second column shows the original segmentation, and the third column shows the segmentation after position correction. 2-D images in the top row are a sagittal
slice of the segmentation and the 3-D views on the second row are of the same segmentation seen from above.

Fig. 2. Worst case scenario of applying position correction. Knee is severely osteoarthritic (KLi = 3). For this scan, there is no improvement in DSC. Manual
segmentation is in the first column, the second column shows initial segmentation, and the third column shows the segmentation after position correction. 2-D
images in the top row are a sagittal slice of the segmentation and the 3-D views on the second row are of the same segmentation seen from above.

been measured, which we use for normalization of the cartilage

volume and surface area so that measures of subjects of different

sizes can be compared. The scans are from both left and right

knees, and in order to treat all scans analogously with the same

methods, all the right knees are reflected about the center of the

sagittal axis.

The images are transmitted from the MRI unit to a worksta-

tion, where they are processed using a medical imaging display

and analysis system designed for the task. The software allows

for manual segmentation on a slice-by-slice basis. A user marks

points on the object boundary, and linear interpolation between

the points delineates the boundary. The MR scans have all been

manually segmented by a radiologist using this software, and

31 scans are segmented twice with the purpose of examining

the intrarater variability of the manual delineations.

Of the 139 knees, the same 31 knees that were segmented

twice were rescanned after approximately one week in order to

examine the segmentation precision, giving a total of 164 MR

scans. An example of how a MRI slice and the manual delin-

eation looks like can be seen in the first column of Figs. 1 and 2.

III. CARTILAGE SEGMENTATION

A. Voxel Classification

We implement our classifier in an approximate nearest

neighbor framework developed by Mount and colleagues [26].

The classifier is in principle a NN-classifier, but allows for

faster computations if an error in the distance calculations is tol-

erated. The approximate search algorithm returns points
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such that the ratio of the distance between the th reported point

and the true th nearest neighbor is at most .

Given a set of data points in , the nearest neighbors

of a point in can be computed in time,

where , thus the computational complexity

increases exponentially with the dimensions. One difficulty

in classification tasks is the tradeoff between computational

complexity and accuracy. We found empirically that and

give a reasonable such tradeoff.

B. Multiclass Classification by Combining Binary Classifiers

There are three classes we wish to separate, tibial medial car-

tilage, femoral medial cartilage and background. We combine

one binary classifier trained to separate tibial cartilage from

the rest and one trained to separate femoral cartilage from the

rest with a rejection threshold [27], [28]. The outcome of

a one vs. rest classifier can be seen as the posterior probabil-

ities that, for all the voxels in the image, a voxel with fea-

ture vector belongs to class , where is the

number of classes. We denote it or for short.

In one-versus-all classification, which is commonly used for

multi-class classification [29], one builds one vs. rest clas-

sifiers and perform a winner-takes-all vote between them, as-

signing to the class with the highest posterior probability.

In the scans, roughly 0.2% of the voxels belong to tibial cartilage

and 0.5% to the femoral cartilage, making the background the

by far largest class. Our approach is similar to one-versus all,

but due to the dominance of the background class we replace

the background versus rest classifier by a rejection threshold,

which states that the posterior probability should be higher than

the threshold before it can be assigned to a cartilage class. The

decision rule is

otherwise

(1)

where and the subscripts and stands for

tibial medial, femoral medial and background, respectively.

The rejection threshold is optimized on the training set to max-

imize the dice similarity coefficient (DSC) which is considered

a useful statistical measure for studying agreement between

different segmentations [30]. It measures the spatial volume

overlap between two segmentations and and is defined as

.

C. Feature Selection

Feature selection can provide a suitable feature set for the

classification task at hand. The features of the classifiers are

selected by sequential forward selection followed by sequen-

tial backward selection from a large bank of features described

below in Section III-D, [27]. In the forward selection, we start

with an empty feature set and expand the search space by adding

one feature at the time according to the outcome of a crite-

rion function, the area under the receiver operator characteristics

(ROC) curve [31]. The backward selection starts with the fea-

tures found by the sequential forward selection and iteratively

excludes the least significant feature according to the criterion

function.

All features are examined in every iteration which means that

the same feature can be selected several times, allowing us to es-

tablish an indirect weighting of important features. We use 25

scans for the training of the classifier, the same 25 scans are used

in the feature selection, threshold selection and for the training

data set for the final classifier. Using 25 scans gives us a large

enough training set to not be sensitive to the curse of dimen-

sionality—the outcome of the criterion function evaluation is

improved after every iteration and we stop iterating when the

feature space is 60 dimensional, which is at a point when the im-

provement is not significant anymore and the search becomes in-

effective due to the exponential increase in computational com-

plexity with the number of dimensions. We do backward selec-

tion until there are 39 features remaining in the set, and we ob-

served that for these iterations there is no significant decrease in

the classifier performance. This feature selection scheme does

not guarantee a global optimum, but by doing forward selection

followed by backward selection we search a larger part of the

tree consisting of all possible combinations of features (given

the number of features one wishes to use, something that is more

or less determined by computational complexity) than by only

using forward selection.

We combine binary classifiers even though NN is inherently

a multiclass classifier. The reason for so doing is that for feature

selection, the area under the ROC curve evaluates the classifier

performance for all operating points for a two-class task. But

there is no obvious extension of ROC analysis for multiclass

classification tasks and we have found better results by training

and combining binary classifier than we have with direct multi-

class classifiers [27].

D. Features

We here introduce the set of candidate features from which

the feature selection scheme selects a subset.

The intensity and the position in the image are both fea-

tures that are highly relevant for a radiologist when visually

inspecting a scan, and that is the main motivation for including

them as candidate features. Both the raw image intensities

and intensities from the image convolved with a Gaussian

according to the scale space framework [32] on different scales

are considered. Three scales are chosen (0.65, 1.1, and 2.5 mm)

to cover the range of different cartilage thicknesses. Though

the location and the shape of the cartilage varies from scan to

scan, the coordinates are still an indicator of where cartilage is

more likely to be situated.

Other features of interest are those related to the geometry

of the object in question. The three-jet, which consists of all

first, second, and third-order derivatives with respect to ,

forms a basis which describes all geometric features up to third-

order [33] and are thus considered as candidate features. The

-, -, and -axes are here defined as the sagittal-, coronal-, and

axial-axes.

It is well known that numerical differentiation enhances

higher spatial frequencies and that the effect increases with the

order of the differentiation, meaning that noise may limit the

practical use of higher order derivatives. Blom [34] shows that
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the spatial averaging in scale-space causes a noise reduction

that more than counteracts the noise amplification caused by

differentiation. Hence, all the derivatives mentioned in this

section are achieved by convolution with Gaussian derivatives,

defined as , where is a Gaussian,

a differential operator, and is the scale. All features where

derivatives or smoothing are involved are examined at the three

different scales mentioned above. Though the lowest scale we

use (0.65 mm) is lower than the resolutions of the scans, there

is still some spatial averaging and Gaussian derivatives allow

for robust differentiation at that scale.

In vessel segmentation, the eigenvalues of the Hessian (H)

have proven to be useful when looking for central locations in-

side a tubelike structure [35]. The Hessian is the symmetric ma-

trix containing second-order derivatives with respect to the co-

ordinates

and it describes the second-order structure of local inten-

sity variations. The largest eigenvalue gives the highest

second-order derivative value and its corresponding eigen-

vector is in the direction of the maximum second-order

derivative. Cartilage can locally be described as a thin disc,

which corresponds to finding positions with one large and two

small eigenvalues of the Hessian. The eigenvalues and the three

eigenvectors are candidate features.

One feature that has been shown to be significant in the detec-

tion of thin structures such as fingerprints is the structure tensor

( ) [36]. The structure tensor is a symmetric matrix containing

products of the first-order derivatives convolved with a Gaussian

where the outer scale is not necessarily the same scale as

the one used for obtaining the derivatives . The structure

tensor examines the local gradient distribution at each location

. The directions of the eigenvectors depend on the vari-

ation in the neighborhood. The structure tensor eigenvalues and

eigenvectors combining three different scales on and are

candidate features.

We have features that examine the local first and second-order

structure in relevant directions. We wish to include a similar fea-

ture for the local third-order structure as well. The third-order

derivatives with respect to can be conveniently repre-

sented in the third-order tensor . Examining the third-order

structure in the local gradient direction can be de-

scribed using Einstein summation as

The third-order tensor examined in the gradient direction on

three different scales are candidate features.

In summary, our candidate features are the intensity, the po-

sition, the three-jet, eigenvalues, and eigenvectors of both the

Hessian and the structure tensor and the third-order tensor in

the gradient direction. All features except the position are cal-

culated at three different scales (0.65, 1.1, and 2.5 mm), and the

scales are in mm instead of number of voxels for handling scans

with different resolutions.

All features except the intensity are coupled three by three to

allow them the same odds of getting picked. The three by three

grouping comes natural because we have 3-D images, so the co-

ordinates, first-order derivatives and the eigenvalues and eigen-

vectors of the Hessian and the structure tensor have a natural

grouping. The other features are grouped using the three scales.

E. Selected Features

After feature selection, the resulting features for the clas-

sifier are (in order of decreasing significance): the position in the

image, the intensities smoothed on the three scales, on the

three scales, the first-order derivatives on the three scales,

on the three scales, the eigenvalues of (1.1 mm), on all

three scales, the eigenvalues of (2.5 mm), and the eigenvalues

of (2.5 mm, 0.65 mm).

The versus. rest classifier contains the following fea-

tures after feature selection: the position, the eigenvector cor-

responding to the largest eigenvalue of (1.1 mm, 0.65 mm),

the first-order derivatives on scales 1.1 mm and 2.5 mm, the in-

tensity smoothed on three scales, on the three scales,

on all three scales, the eigenvalues of the Hessian on all three

scales, and the eigenvalues of (2.5 mm, 0.65 mm).

It can be noted that the position is selected as the most sig-

nificant feature by both classifiers. The intensity smoothed on

three scales is also ranked high by both classifiers, followed by

eigenvalues of both the Hessian and the structure tensor on var-

ious scales and second- and third-order derivatives in the direc-

tion of the coronal and axial axes.

F. Efficient Voxel Classification

Our segmentation method is fully automatic, but due to the

high computational complexity of the NN classification it

takes approximately 60 min to classify all voxels in a scan

consisting of around two million voxels by the two binary

classifiers. Even though computation power is relatively in-

expensive, such long computation times are inconvenient in

clinical studies using large numbers of scans.

We have, therefore, developed an efficient voxel classification

algorithm [37], and the basic idea behind it is to not classify all

voxels but to focus mainly on the cartilage voxels. The algo-

rithm is conceptually very simple: starting from a set of ran-

domly sampled voxels, we classify them as either cartilage or

background. If a voxel is classified as cartilage, we continue

with classification of the neighboring voxels and this expansion

process continues until no more cartilage voxels are found.

This results in a number of connected regions of cartilage.

Provided that our initial sampling of starting voxels hits each

cartilage sheet in at least a single voxel, the resulting segmen-

tation will be exactly like the one resulting from a full voxel

classification after extraction of the largest connected compo-

nent. This is ensured by not making the initial random sampling
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TABLE I
RESULTS FROM OUR AUTOMATIC SEGMENTATION METHOD BEFORE AND AFTER POSITION ADJUSTMENT (PA) FOR MEDIAL TIBIAL, MEDIAL FEMORAL, AND THE

MEDIAL COMPARTMENTS TOGETHER. SENSITIVITY, SPECIFICITY, AND DSC ARE FOUND FROM COMPARISON WITH MANUAL SEGMENTATIONS ON THE 114 SCANS

IN THE TEST SET. STANDARD DEVIATIONS ARE DENOTED SD AND 95% CONFIDENCE INTERVALS ARE DENOTED CI

too sparse. Since some parts of the cartilage compartments will

be fairly centered in scan we sample fairly densely at the center,

with a sampling probability of 5% for each voxel, and gradually

more sparsely towards the periphery.

G. Position Adjustment

Besides a large anatomical variation, the placement of the

knee in the scanner in clinical studies is a source of variation.

Still the position in the scan is a strong cue to the location of car-

tilage, which is evident in our segmentation method where the

position is selected as one of the most significant features. Even

though the global location is a strong cue the minor variation in

placement is a source of errors. Segmentation methods that rely

on manual interaction are usually less sensitive to knee place-

ment since a user can define where in the scan the cartilage is.

We, however, have a segmentation technique that is completely

independent of user interaction thus the placement variations

that occur in scans in clinical studies is an issue that needs at-

tention.

One way of correcting for knee placement is to manually de-

termine where in the scan the cartilage is, but this can take time

with 3-D images since a human expert typically search through

the scans on a slice-by-slice basis. And when the segmentation

method itself is automatic, an automatic adjustment is advanta-

geous.

In order to adjust the segmentation method to become more

robust to variations in knee placement we have developed an

iterative scheme which consists of two steps that are repeated

until convergence [38]. The first step consists of shifting the co-

ordinates of the scan so that the cartilage center of mass found

from the segmentation is positioned at the location for the center

of mass for the cartilage points in the training set. Then in the

second step the scan is classified using the sample expand algo-

rithm with the other features unchanged. The outcome is com-

bined according to (1) and the largest connected component is

selected as the cartilage segmentation.

The position of the tibial and femoral compartments are

shifted individually for the two binary classifiers because the

classification depends on the training set, and there the different

cartilage compartments have different relative position with

respect to each other due to different positions of the test

subjects.

IV. RESULTS

The average computation time for automatic segmentation

of a scan is approximately 10 minutes on a standard desktop

2.8-Ghz PC. For a trained radiologist it takes around two hours

to segment the tibial and femoral medial cartilage in a scan with

slice by slice delineation of the contour by manual selection of

boundary points and automatic linear interpolation.

A. Comparison Between Automatic and Manual Segmentations

The methods are trained on 25 scans and evaluated on 114

scans. Of the 114, 31 knees have been rescanned and the repro-

ducibility is evaluated by comparing the volume and area esti-

mates from the first and second scanning.

Before applying the position adjustment scheme described

in Section III-G, the automatic segmentation method yields an

average sensitivity, specificity and DSC of 81.1%, 99.9%, and

0.79, respectively, for the total medial cartilage segmentation,

in comparison with manual segmentations.

After applying the automatic position normalization, the av-

erage sensitivity, specificity, and DSC are 83.9%, 99.9%, and

0.80, respectively. The scheme converges in only one iteration.

Compared to the initial segmentation there is a significant in-

crease in sensitivity and in DSC

according to a paired -test. In order to illustrate how the

segmentations are affected, the best and worst cases from the

position correction scheme are shown in Figs. 1 and 2. In the

best case, the DSC increases with 0.17 and for the worst scan

it decreases with 0.017. The scan with the worst result is from

a severely osteoarthritic knee which can be difficult even for a

highly trained expert to segment. The results for each compart-

ment is listed in Table I.

When comparing between manual and automatic estimates

for the 114 scans, the average pairwise differences for medial

volume and area are 8.7% and 0.05%, respectively. The volume

from the automatic method overestimates the manual with 10%

with significant difference between group means

and the area is underestimated by 0.7% with no significant

difference . Some of the overestimation of the

volume most likely originates from false positives from lateral

and patellar cartilage that is adjacent to the medial compart-

ments. Visual inspection supports this, for instance in Fig. 1 it

can be seen that the manual segmentation ends more abruptly

at the medial/lateral border than the automatic segmentation.

Still this remains to be verified statistically in a future study

including all compartments. Also, there is an uncertainty in the

segmentation close to the boundary particularly along the crest,

and the scans used in this study have low contrast between

tissues which may also contribute to false positives compared

to manual segmentations.
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TABLE II
INTERSCAN REPRODUCIBILITY OF OUR AUTOMATIC SEGMENTATION METHOD

BEFORE AND AFTER POSITION ADJUSTMENT (PA) AND OF THE MANUAL

SEGMENTATIONS (M), FOR MEDIAL TIBIAL, MEDIAL FEMORAL, AND THE

MEDIAL COMPARTMENTS TOGETHER. LINEAR CORRELATION COEFFICIENT

(CORR.) AND AVERAGE ABSOLUTE PAIRWISE DIFFERENCES (DIFF.) FOR THE

31 KNEES SCANNED TWICE

Fig. 3. Bland–Altman plot of the interscan reproducibility of the tibial volume
from automatic (position adjusted) segmentations. Lines are the mean �2 SD
of the difference between measurements.

As to interscan reproducibility of the medial cartilage volume

from the automatic segmentations, we examine the 31 knees

that were scanned twice. Before position adjustment there is an

average absolute volume and area difference of 10% and 6.0%

for the total medial cartilage, and after position adjustment the

reproducibility of the method is improved, with a decrease of

the average absolute volume and area differences to 6.5% and

4.5% respectively. These values can be compared to the repro-

ducibility of the manual segmentation which has an average ab-

solute volume and area difference of 6.5% and 5.5% respec-

tively for the same data set. The reproducibility for the auto-

matic method and human expert for both volume and area for

all compartments are listed in Table II, where it can be seen

that the tibial volume and area estimates are the most repro-

ducible for the automatic method, possibly because the tibial

cartilage has a less complex shape compared to the femoral car-

tilage. In Figs. 3 and 4, the Bland–Altman plots of interscan

reproducibility for the automatically obtained tibial volume and

area estimates are displayed.

The radiologist has a fairly poor precision on volume both

tibial and femoral separately, but it improves when the two

compartments are combined. This shows that the radiologist is

mainly in doubt on the part of the cartilage sheets where tibial

Fig. 4. Bland–Altman plot of the interscan reproducibility of the tibial area
from automatic (position adjusted) segmentations. Lines are the mean �2 SD
of the difference between measurements.

and femoral are touching. These volume precision numbers are

lower than what is reported in other studies, something which

could be a consequence of the low-field low resolution scans

used in this study.

The radiologist redelineated the tibial medial and femoral car-

tilage in 31 scans in order to determine intrarater variability for

the manual segmentations. The average DSC between the two

manual segmentations are 0.87 for the medial cartilage, which

explains the fairly low values of the DSC in our evaluation be-

cause the method is trained on manual segmentations by the ex-

pert and therefore attempts to mimic the expert. Also, assuming

most misclassifications occur at boundaries, thin structures will

typically have relatively low DSC. The corresponding DSC of

the automatic segmentation versus expert for the medial carti-

lage of the 31 scans is 0.80.

For all the scans the in-plane resolution is 0.70 0.70 mm ,

but the slice distance is either 0.78, 0.70, 0.94, or 0.86 mm with

the first being the most predominant. Of the 25 scans in the

training set, 13 scans have slice distance 0.78 mm and of the

114 scans in the test set, 72 have that same slice distance. For

these 72 scans, the DSC of the medial cartilage compartments

is SD. For the other resolutions in the test set the

average DSC is SD. Of these remaining scans, 32

have 0.86 mm slice distance, seven have 0.94 mm and three have

0.70 mm.

B. Correlation Between the Volume and Area Estimate and

Disease

Typical quantitative disease markers for OA is the articular

cartilage volume, thickness and surface area, and several studies

have been dedicated to evaluation of them [39]–[41]. In this

study, we evaluate the volume and surface area estimates ob-

tained directly from the automatic segmentation. The volume

estimate is directly obtainable by summing all voxels classified

as cartilage, and an estimate for the surface area is obtained by

creating an isosurface using a smoothed version of the binary

segmentation. But a voxel based method alone does not allow

for morphometric quantification, and for measuring the thick-

ness, we fit a deformable shape model to the cartilage so that
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TABLE III
P-VALUES FOR T-TESTS OF SEPARATING GROUPS USING THE VOLUME

ESTIMATES. P1 IS THE P-VALUE FOR SEPARATION OF HEALTHY (KLi = 0)
FROM BORDERLINE TO OA (KLi > 0), AND P2 IS SEPARATION OF HEALTHY

AND BORDERLINE (KLi � 1) FROM CLEAR OA CASES (KLi > 1).
M STANDS FOR MANUAL SEGMENTATIONS AND PA ARE VALUES FROM

AUTOMATIC SEGMENTATION AFTER POSITION ADJUSTMENT

TABLE IV
P-VALUES FOR T-TESTS OF SEPARATING GROUPS USING THE AREA ESTIMATES.

P1 IS THE P-VALUE FOR SEPARATION OF HEALTHY (KL = 0) FROM

BORDERLINE TO OA (KL > 0), AND P2 IS SEPARATION OF HEALTHY AND

BORDERLINE (KL � 1) FROM CLEAR OA CASES (KL > 1). M STANDS

FOR MANUAL SEGMENTATIONS AND PA ARE VALUES FROM AUTOMATIC

SEGMENTATION AFTER POSITION ADJUSTMENT

thickness can be measured through the normal direction of the

cartilage surface at anatomical well-defined locations. This is

however not within the scope of this paper, for thickness mea-

surements of the data set, see [42].

We examine the ability to separate healthy from osteoarthritic

populations of the volume and area estimates using an unpaired

students -test. The results are displayed in Tables III and IV,

and since knees with are borderline cases we eval-

uate populations both by including these cases to the healthy

population and to the OA population. It can be seen that for the

volume estimate the most confident separations occurs for tibial

cartilage, and for the area estimate statistical significant separa-

tion is obtainable only from tibial cartilage.

Since our test subjects come in all shapes and sizes, we

normalize the volume by the width of the tibial plateau cubed

and the surface area by the tibial plateau width squared. In

Figs. 5 and 6, the normalized volume and surface area estimates

for medial tibial and femoral cartilage together are plotted

against .

V. DISCUSSION

In this paper, we have presented a fully automatic framework

for segmentation and quantitative assessment of the articular

cartilage in the knee. This is, to our knowledge, the only fully

automatic cartilage segmentation method that has high precision

and agreement with manual segmentations and is evaluated on

a fairly large data set (139 scans) consisting of both healthy and

osteoarthritic test subjects.

Fig. 5. Separation between different OA populations using the KLi and the
normalized tibial medial cartilage volume from automatic (position adjusted)
segmentations.

Fig. 6. Separation between different OA populations using the KLi and the nor-
malized tibial medial cartilage surface area from automatic (position adjusted)
segmentations.

Robustness against the inevitable problem of changes in test

subject placement in the scanners is obtained with an iterative

scheme, which facilitates low interscan variability of the carti-

lage estimates.

The medial tibial cartilage gives the best inter-scan repro-

ducibility with mean absolute difference of 5.8% and 4.3% for

the volume and area estimates, and separation between popu-

lation with -values of 0.003 and 0.005 for separation between

healthy/borderline OA and clear OA populations for volume and

area, respectively.

Fat suppression and high-field magnets significantly improve

image quality with better contrast between tissues and higher

resolution. Since our method compares well to manual segmen-

tations using the lower quality images from a low-field scanner,

we can hope that the method will perform at least as well on

high-field fat suppressed MRI, assuming we would have ac-

cess to a similar amount of training data. Future work will in-

volve evaluating the method on high-field data. Our segmenta-

tion method can handle images with somewhat different reso-

lution, however, it is possible and remains to be investigated if

features present at higher resolutions can advance the results.
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By using binary classifiers we not only avoid the problem of

finding a criterion function for multiclass classification, we have

also established a framework for multi-class classification that

in the future can be extended to incorporate all cartilage com-

partments by incorporating binary classifiers trained separately

for the remaining compartments.

Our method is trained and evaluated on low-field MRI, and

even though there is no well established accuracy validation for

low-field MRI, we show that statistically significant differences

between healthy and osteoarthritic populations are detectable

using our cartilage volume and area estimates. This suggests that

our method combined with low-field MRI data may be useful

in clinical studies, particularly multicenter clinical studies since

the method is completely automatic, has high reproducibility,

and is robust to changes in knee placement in scanner.
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