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Segmenting Clustered Nuclei Using H-minima
Transform-Based Marker Extraction and

Contour Parameterization
Chanho Jung and Changick Kim*

Abstract—In this letter, we present a novel watershed-based
method for segmentation of cervical and breast cell images. We
formulate the segmentation of clustered nuclei as an optimization
problem. A hypothesis concerning the nuclei, which involves a pri-
ori knowledge with respect to the shape of nuclei, is tested to solve
the optimization problem. We first apply the distance transform
to the clustered nuclei. A marker extraction scheme based on the
H-minima transform is introduced to obtain the optimal segmenta-
tion result from the distance map. In order to estimate the optimal
h-value, a size-invariant segmentation distortion evaluation func-
tion is defined based on the fitting residuals between the segmented
region boundaries and fitted models. Ellipsoidal modeling of con-
tours is introduced to adjust nuclei contours for more effective
analysis. Experiments on a variety of real microscopic cell images
show that the proposed method yields more accurate segmentation
results than the state-of-the-art watershed-based methods.

Index Terms—Cell image segmentation, contour parameteriza-
tion, H-minima transform, marker extraction, watershed-based
segmentation.

I. INTRODUCTION

IN RECENT years, a number of automated microscopic cel-
lular image analysis techniques has been introduced [1]–[4].

Especially, there have been several approaches to segmenting
the nuclei in the literature and most of them have been per-
formed manually or in a semiautomatic manner to obtain more
accurate segmentation results [5]. However, the user-interaction
hinders the automated cell image analysis [5], [6]. Therefore,
developing a sophisticated and unsupervised nuclei segmenta-
tion method is necessary to assure the success of the automatic
cell image analysis.

One of the main factors, which makes it hard to accurately
segment the nuclei, is the existence of clustered nuclei in the
cell images [5]–[7]. The watershed algorithm is one of the most
widely used segmentation techniques for nuclei extraction [6].
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Fig. 1. Regional minima marked in red (upper row) and watershed segmenta-
tion results with several h-values: (a) h = 0, (b) h = 1, (c) h = 2, (d) h = 5,
and (e) h = 47.

However, watershed usually yields oversegmentation since re-
gional minima or ultimate eroded points are employed for seg-
menting nuclei directly. This is because it is difficult to have
one-to-one correspondence between regional minima and nu-
clei. In addition, it becomes worse when the nuclei are clus-
tered. To handle the oversegmentation problem, region merging
and marker-controlled watershed techniques have been reported
in the literature [5], [6]. The region merging techniques are
highly sensitive to the sizes of nuclei. The marker-controlled
watershed schemes formulate the segmentation as a marker ex-
traction problem. In the marker-controlled watershed methods,
nuclei should be initially represented by the markers appropri-
ately [5], [6]. Thus, the step for elimination of spurious mark-
ers that result in oversegmentation of nuclei needs to be em-
ployed in the marker-controlled watershed. Meanwhile, math-
ematical morphology has been involved to obtain the markers
accurately [6]. In [6], a maker detection technique based on con-
dition erosion has been introduced. However, the segmentation
results tend to rely on incorporated morphological structuring
elements and erosion thresholds.

The H-minima or H-maxima transform is a powerful math-
ematical tool to suppress undesired minima or maxima [5],
[8]–[10]. Performing the H-minima transform on the inverse
distance image can effectively decrease oversegmentation. On
the other hand, the H-maxima transform is applied to the dis-
tance image. Let g denote the inverse distance map of clustered
nuclei. The H-minima transform [10] is performed by

Hh(g) = Rε
g (g + h) (1)

where h represents the given depth. In (1), R and ε represent the
reconstruction and erosion operators, respectively. By using the
H-minima transform, all minima whose depth is lower than or
equal to the given h-value are suppressed. Fig. 1 shows regional
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minima and corresponding watershed segmentation results from
a synthetic clustered nuclei with different h-values adopted.
As shown in Fig. 1, the h-value has a direct influence on the
number of segmented regions. The larger the h-value is, the
fewer the numbers of the segmented regions. In [8] and [9], the
H-maxima transform has been employed to segment clustered
nuclei. However, empirical selection of the h-value often makes
robust segmentation difficult [8], [9]. Cheng and Rajapakse [5]
proposed a marker-controlled watershed technique using the H-
minima transform. Since the parameters directly related to the h-
value are applied identically to all clustered nuclei regardless of
the nuclei size in [5], the number of nuclei cannot be determined
adaptively to the clustered nuclei.

The aim of this letter is to present a fully automated method
for segmenting human cervical and breast cell images. In this
letter, the segmentation of clustered nuclei is treated as an op-
timization problem in the watershed-based framework. Typi-
cally, the segmentation performance can be extremely improved
when a priori knowledge of the nuclei is employed [11], [12].
In our study, a hypothesis concerning the nuclei is taken into
account within the framework. Since clustered nuclei often con-
tain occlusions, it is reasonable to exploit the occlusion char-
acteristics of the clustered nuclei for solving the optimization
problem. We introduce a size-invariant segmentation distortion
evaluation function to estimate the optimal h-value. Before the
optimal h-value is estimated, opening-by-reconstruction and
closing-by-reconstruction are consecutively applied to elimi-
nate noise without changing the shape of clustered nuclei. In
order to compute the distance transform, adaptive threshold-
ing [13] is carried out on the sequentially filtered image. Af-
ter the distance image is inverted, the inverse distance map
is normalized to reduce the influence of the size of clustered
nuclei.

II. PROPOSED METHOD

In order to estimate the optimal h-value in the watershed-
based framework, the hypothesis that a nucleus can be de-
scribed as an ellipsoidal model is tested since the cervical
and breast cells usually have ellipse-like shaped boundaries
[11], [12]. However, it is noted that the whole boundaries of
each nucleus may not be obtained when nuclei are clustered.
In other words, what we can observe are the partial bound-
aries due to occlusion caused by nuclei clustering. Note that
this also happens when the nuclei are oversegmented. Thus,
we can categorize the nuclei boundaries into two groups:
partial original boundaries and boundaries due to cluster-
ing or oversegmentation. Fig. 2 describes the occlusion char-
acteristics of clustered nuclei and categorization of nucleus
boundaries.

By employing the occlusion characteristics of clustered nu-
clei, the marker extraction scheme based on the H-minima trans-
form learns the optimal h-value by repeatedly evaluating seg-
mentation quality since the watershed transform is controlled
by the h-value. Specifically, while increasing the depth until the
number of regional minima equals one starting from a quite
large number, we assess the segmentation quality by using a

Fig. 2. Occlusion characteristic of clustered nuclei and categorization of nu-
cleus boundaries: synthetic segmentation results and boundaries, which touch
background, of (a) clustered and (b) oversegmented nuclei. (c) partial origi-
nal boundaries, which touch background (solid lines) and boundaries due to
clustering or oversegmentation, which do not touch background (dotted lines),
and (d) nucleus modeling results marked in red, obtained from partial original
boundaries.

distortion evaluation function

S(wh) =
1
m

m∑

i=1

AFR(wh,i) (2)

where wh and wh,i denote the segmentation result controlled by
h and the ith nucleus of wh , respectively. m denotes the total
number of nuclei in wh . As we can see in (2), we assume that
each nucleus has its own segmentation distortion value, which
we call the averaged fitting residual (AFR) and is defined in (4),
and the values from all nuclei are averaged to obtain S(wh).
Since we know the partial original boundaries of each nucleus,
it is possible to mathematically represent each nucleus using
the corresponding elliptical model. Let (u, v) be a point on the
partial original boundary. An ellipsoid can be described as an
implicit second-order polynomial

F (u, v) = au2 + buv + cv2 + du + ev + f = 0 (3)

where a, b, c, d, e, and f denote the ellipse coefficients. By using
the direct least square fitting algorithm [14], the optimal ellipse
parameters are estimated. Fig. 2(d) shows ellipsoidal modeling
of nucleus computed from the partial original boundaries. Let
Fh,i denote the ellipsoidal model obtained from wh,i by using
(3). AFR(wh,i) is defined as an average of fitting residuals as
follows:

AFR(wh,i) =
1

nh,i

nh , i∑

j=1

r(bh,i,j , Fh,i) (4)

where nh,i and bh,i,j represent the number of boundary points
and jth boundary point on wh,i , respectively, and r(bh,i,j , Fh,i)
represents the distance from bh,i,j to the closest point on Fh,i .
Meanwhile, the direct use of r(bh,i,j , Fh,i) is not appropriate as
a measure of fitting residual, since nuclei have different sizes.
Therefore, to make fair evaluations of the residual, the affine
transform is employed to convert the ellipsoidal models to the
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Fig. 3. Affine transform of ellipsoidal model to unit circle.

Fig. 4. Estimation of segmentation distortion evaluation functions by mea-
suring fitting residual: (a) S(w2 ) = 0.0122, (b) S(w5 ) = 0.0321, and (c)
S(w47 ) = 0.1409. Note that the segmentation distortion in (a) is lowest com-
pared to those in (b) and (c). Thus, three nuclei are estimated to exist. (a) case 1:
three nuclei segmented with h = 2 (min(θ2 , i ) = 242◦). (b) case 2: two nuclei
segmented with h = 5 (min(θ5 , i ) = 261◦). (c) case 3: a nucleus segmented
with h = 47 (min(θ47 , i ) = 360◦).

unit circle. Fig. 3 shows the process of the affine transform
to the unit circle. By transforming all ellipsoidal models to
identical unit circle, r becomes independent of the ellipsoidal
parameters. Let Th,i denotes the transform operator. Then, in (4),
r(bh,i,j , Fh,i) should be replaced by r(Th,i(bh,i,j ), Th,i(Fh,i)).
Finally, the optimal h-value can be learned by minimizing the
segmentation distortion evaluation function. Fig. 4 shows the
segmentation distortion evaluation results with several h-values
for the synthetic clustered nuclei used in Fig. 1. As shown in
the figure, the segmentation distortion evaluation function is
minimized when m equals three (i.e., c = 3, where c denotes the
estimated total number of nuclei). The overall marker extraction
procedure based on the H-minima transform can be summarized
as follows:

In the marker extraction procedure based on the H-minima
transform, we obtain the initial number of regional minima from

the normalized inverse distance image of clustered nuclei. Note
that line 12 is added to identify oversegmentation before esti-
mating the segmentation distortion evaluation function S(wh).
The h-value increases until the criterion in line 12 is satisfied.
Once no oversegmentation is detected, the segmentation distor-
tion evaluation function is computed. Fig. 5 shows the proposed
scheme to identify oversegmentation. In the scheme, the char-
acteristics of transformed partial original boundaries, obtained
from the boundary categorization, provide important clues on
how to identify oversegmentation. In Fig. 5, the transformed
partial original boundaries of clustered and oversegmented nu-
clei are compared. Let θh,i be the outer angle between vectors
−−−−−−−−−−−−−−→
Th,i(ch,i)Th,i(bh,i,1) and

−−−−−−−−−−−−−−−−→
Th,i(ch,i)Th,i(bh,i,nh , i

), where ch,i

represents the center of Fh,i . When a nucleus is not overlapped
to other nuclei nor oversegmented, θ of the nucleus is 2π. How-
ever, as shown in Fig. 5(a), the outer angles of clustered nuclei
are in the range (π, 2π) due to occlusion [see also Figs. 4(a) and
6(c)]. In other words, this is because the center c of a nucleus
does not belong with the other regions in the clustered nuclei,
as shown in Fig. 5(a), even though the occlusion is extremely
severe. On the other hand, at least one outer angle of overseg-
mented nuclei cannot be larger than π, since the sum of outer
angles for the oversegmented nuclei becomes 2π, as shown in
Fig. 5(b) (i.e., θh,1 + θh,2 = 2π). In addition, it is noted that
the tiny regions, which are fully or mostly surrounded by other
regions due to oversegmentation, have the outer angles much
less than π [see Fig. 6(b)]. Therefore, the criterion to exclude
the oversegmented cases is defined as follows:

min(θh,i) > π + 2ω, 1 ≤ i ≤ m (5)

where ω represents an angular margin, which is to take the fitting
error into account. If the condition in (5) is not satisfied, the h-
value is increased and new segmentation results are obtained
until (5) is satisfied. For example, the minimum outer angle of
synthetic clustered nuclei in Fig. 1 is zero when the h-value
is 0 or 1, as shown in Fig. 1(a) and (b) (i.e., min(θ0,i) = 0◦
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Fig. 5. Finding oversegmentation by using the outer angle θh ,i : (a) θh ,i of
clustered nuclei and (b) θh ,i of oversegmented nuclei. Note that ch ,1 and ch ,2
are marked in green.

Fig. 6. Estimation of outer angles: (a) watershed segmentation results with
h = 0 (top) and h = 2 (bottom), (b) partial original boundaries (marked in
red) and boundaries due to oversegmentation (marked in green) of regions
result from oversegmentation in (a), and (c) watershed segmentation results
when h-values are increased to h = 1 (top) and h = 3 (bottom), so that the
condition in (5) is satisfied. Note that minimum outer angle of (top) clustered
nuclei in (b) is zero since they have a region without partial original boundary.

Fig. 7. Contour parameterization: (a) contours by the watershed and (b) con-
tours adjusted by the contour parameterization.

and min(θ1,i) = 0◦). On the other hand, the condition in (5) is
satisfied when the h-value is larger than 1, as shown in Fig. 4.

The ellipsoidal modeling of the nucleus employed to find the
optimal h-value in this section is also useful in that the model-
ing or the contour parameterization facilitates the quantitative
analysis of cell images. Note that the watershed segmentation
technique usually yields jagged contours [5]. The jagged con-
tour problem by the watershed can be alleviated since the nuclei
are described by the parameterized ellipsoidal models. In the
framework, we assume that all of the parameterized ellipsoidal
models are mutually independent. Thus, the regions of param-
eterized ellipsoidal models can be overlapped. Fig. 7 shows
the comparison of extracted contours. As shown in the figure,
our contour parameterization effectively adjusts nuclei contours
without the jaggedness.

TABLE 1
COMPARISON OF SEGMENTATION PERFORMANCE FOR CLUSTERED NUCLEI ON

SPECIMENS OF CERVICAL CELLS AND MAMMARY INVASIVE DUCTAL

CARCINOMAS

III. RESULTS AND CONCLUSION

In order to evaluate the performance of the proposed method,
real microscopic cell images are used. A number of specimens
containing cervical cells and mammary invasive ductal carcino-
mas taken by a light microscope with 40X objective are demon-
strated. The Papanicolaou technique is used to stain the spec-
imens of cervical cells. The specimens of mammary invasive
ductal carcinomas are stained by immunohistochemistry for the
p53 protein and estrogen receptor. The segmentation results by
the proposed method are compared with ones from the state-of-
the-art watershed-based segmentation techniques, such as the
classical watershed, condition erosion [6], and shape marker [5].
The effectiveness of ellipsoidal modeling of nucleus contours
is demonstrated on several clustered nuclei. In our study, the
angular margin ω is empirically set to π/12, which provides the
best segmentation performance throughout tests.

Table I shows the comparison of segmentation performance
for 932 clustered nuclei on 87 microscopic cell images of size
1392×1040. The segmentation results are categorized into three
groups: 1) correctly segmented, 2) oversegmented, and 3) un-
dersegmented [5], [6]. To study the sensitivity of the proposed
segmentation method to the angular margin, the segmentation is
performed by varying the angular margin. As shown in Table I,
the proposed algorithm provides the best segmentation perfor-
mance when the angular margin is set to π/12. It is also shown
that the proposed method is robust and not very sensitive to the
variation of angular margins. Meanwhile, in Table I, the compar-
ison of segmentation performance for 5762 nuclei including the
aforementioned 932 clustered nuclei on the dataset, which are
specimens of cervical cells and mammary invasive ductal car-
cinomas, is illustrated in bottom parentheses. As shown in the
table, the proposed method achieves improvements by 45.41%,
35.21%, and 23.98% with respect to the classical watershed,
condition erosion, and shape marker schemes in terms of sepa-
ration accuracy on 932 clustered nuclei, respectively, when the
angular margin is π/12. It should be noted that, as shown in Ta-
ble I, the success of nuclei segmentation is highly dependent on
the segmentation accuracy on the clustered nuclei. Figs. 8 and
9 show several segmentation results by the proposed scheme
and the state-of-the-art watershed-based segmentation methods
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Fig. 8. (a) Original image, segmentation results by (b) classical watershed,
(c) condition erosion [6], (d) shape marker [5], (e) proposed method, and (f)
contour adjustment by the proposed parameterization method.

Fig. 9. (a) Original image, segmentation results by (b) classical watershed,
(c) condition erosion [6], (d) shape marker [5], (e) proposed method, and (f)
contour adjustment by the proposed parameterization method.

on specimens of cervical cells and mammary invasive ductal
carcinomas. As we can see in the figures, the proposed method
outperforms the conventional approaches. Moreover, it is further
turned out that the jaggedness problem is efficiently resolved by
the proposed contour adjustment.

In this letter, we have proposed a fully automated watershed-
based nuclei segmentation technique. The proposed method can
be directly extended to a cell image segmentation system for

human body cells, since most cells, such as hypothyroid and
intestine cells as well as cervical and breast cells, in the human
body usually have ellipse-like boundaries [11]. Experimental
results presented in this section prove that the proposed scheme
performs better than the state-of-the-art watershed-based meth-
ods. Currently, our implementation on Intel Core2 Duo 3 GHz
PC takes 1.34 s/image, on average.
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