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Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-

guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is

more important than capturing interpatient variation. However, using the traditional deformable-

model-based segmentation methods, it is difficult to capture intrapatient variation when the number

of samples from the same patient is limited. This article presents a new deformable model, designed

specifically for segmenting sequential CT images of the prostate, which leverages both population

and patient-specific statistics to accurately capture the intrapatient variation of the patient under

therapy.

Methods: The novelty of the proposed method is twofold: First, a weighted combination of gra-

dient and probability distribution function �PDF� features is used to build the appearance model to

guide model deformation. The strengths of each feature type are emphasized by dynamically ad-

justing the weight between the profile-based gradient features and the local-region-based PDF

features during the optimization process. An additional novel aspect of the gradient-based features

is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the

prostate, the optimal profile length at each landmark is calculated by statistically investigating the

intensity profile in the training set. The resulting gradient-PDF combined feature produces more

accurate and robust segmentations than general gradient features. Second, an online learning

mechanism is used to build shape and appearance statistics for accurately capturing intrapatient

variation.

Results: The performance of the proposed method was evaluated on 306 images of the 24 patients.

Compared to traditional gradient features, the proposed gradient-PDF combination features brought

5.2% increment in the success ratio of segmentation �from 94.1% to 99.3%�. To evaluate the

effectiveness of online learning mechanism, the authors carried out a comparison between partial

online update strategy and full online update strategy. Using the full online update strategy, the

mean DSC was improved from 86.6% to 89.3% with 2.8% gain. On the basis of full online update

strategy, the manual modification before online update strategy was introduced and tested, the best

performance was obtained; here, the mean DSC and the mean ASD achieved 92.4% and 1.47 mm,

respectively.

Conclusions: The proposed prostate segmentation method provided accurate and robust segmen-

tation results for CT images even under the situation where the samples of patient under radio-

therapy were limited. A conclusion that the proposed method is suitable for clinical application can

be drawn. © 2010 American Association of Physicists in Medicine. �DOI: 10.1118/1.3464799�
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I. INTRODUCTION

Segmentation of the prostate from CT images is an important

and challenging task for prostate cancer radiotherapy. The

treatment is usually planned on a planning CT on which the

prostate and nearby critical structures are manually con-

toured. The treatment is delivered in daily fractions over a

period of several weeks. In image-guided radiotherapy

�IGRT�, a new CT image is acquired before each individual

treatment to enable adjustment of the patient setup. Segmen-

tations of these images are useful for a number of reasons,

such as for calculating daily dose to the prostate to judge the

progress of the treatment. However, repeated manual
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segmentation of images from the same patient is unaccept-

ably burdensome. The purpose of this article is to eliminate

the need for multiple manual segmentations by using both

shape and appearance information learned from previous

days to guide automatic segmentation of new treatment im-

ages.

Deformable-model-based segmentation methods, which

combine statistical information about organ shape and image

appearance, have been proven effective for segmenting the

prostate from CT,
1–5

MRI,
6–8

or ultrasound images.
9–13

An

extensive review of statistical-shape-model-based medical

object segmentation can be found in Ref. 14. Specifically,

research efforts on deformable-model-based methods have

focused on the following.

I.A. Improving the statistical modeling of shape

A shape model is highly desirable to be as informative as

possible by capturing as tightly as possible the amount of

variation that might actually occur. If the intrapatient varia-

tion for the image being segmented is known, then it is likely

to make a better prior because it will generally be a tighter

distribution than interpatient variation. To illustrate this, we

have investigated 24 anonymous patients in our training set

and found that the shape variation within a same patient is

generally much less than that between patients. This is evi-

dent after glancing at the prostate shapes of different patients

shown in Fig. 1�a� and comparing the inter- and intrapatient

average shape distances �see Fig. 1�b��. Both active shape

models �ASMs� �Ref. 15� and medial models �termed

m-reps�16
can capture intra- as well as interpatient variation,

but it is not a trivial task to do this from population training

samples. Obviously, the larger interpatient variation will

dominate the outputs of principal component analysis �PCA�
in ASMs or principal geodesic analysis �PGA� �Ref. 17� in

m-reps and thus cause loss of information of intrapatient

shape variation. To eliminate the effect of interpatient varia-

tion, the most common approach is to build a solely intrapa-

tient model
1,3

using patient-specific samples; that is, training

samples and images to be segmented would come from the

same patient. This approach is useful to demonstrate proper-

ties of an appearance or a shape model, but it is impractical

for clinical radiotherapy because of the difficulty of collect-

ing enough training samples for a patient under therapy. In

particular, for a patient’s first daily treatment, only one plan-

ning image is available for training. Thus, it is uncertain

whether or not these approaches will work well.

I.B. Identification of optimal image features for
appearance modeling

Numerous features have been proposed to build an ap-

pearance model. One class of features that have been tested

for prostate segmentation are the profile-based features,

which consist of sequences of intensities or derivatives ac-

quired along the normal to the object boundary.
9,10

These

schemes are effective in situations where objects have dis-

tinctive patterns along the boundary normal, such as a high-

contrast edge, and when the statistics of the profiles accords

with a specific parametric distribution, e.g., a Gaussian dis-

tribution. Heavy variations in soft tissue surrounding the

prostate are difficult to capture by these approaches. To avoid

this problem, probability distribution functions �PDFs� of

some chosen photometric variables taken over some regions

of interest have been exploited for prostate segmentation.
1–6

These approaches are capable of detecting objects whose

boundaries are not well-represented in terms of gradients,

perhaps lacking sharp edges. Nonparametric probability dis-

tribution functions can be used to capture the prostate ap-

pearance variations. Being based on regional information,

these features exhibit robustness to noise and to poor initial-

ization. However, region-based features sacrifice some seg-

mentation precision because they depend on the statistics of

the whole region, without regard to local image patterns.

Combining multiple candidate features
11,18

is another

popular approach for appearance modeling. For these meth-

ods, additional complicated feature selection strategies, such

as support vector machines �SVMs�, usually are adopted to

get optimal combination features for a specific segmentation

task. Finally, some other image descriptors have been tested

for medical object segmentation. The scale invariant feature

transform �SIFT�, Gabor features, and wavelet features have

been employed for prostate segmentation from CT,
19

ultrasound,
12

and MRI images,
7

respectively.

(a)

(b)

FIG. 1. Comparison between intra- and interpatient variations. �a� Prostate

shapes of three patients at four time points. Shapes in each row are from the

same patient; shapes in different columns are from different time points. �b�
The ASDs among 24 patients. For one patient, the intrapatient ASD is the

mean of distances between each shape and the mean shape of that patient,

and the interpatient ASD is the distance between the mean shape of that

patient and the total mean shape of all patients.
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In this article, we propose a novel deformable-model-

based segmentation approach for CT prostate segmentation.

There are two main contributions of our method. First, it

combines cross-patient information with patient-specific in-

formation in a weighted fashion that depends on how much

patient-specific information is available. To create the initial

model used for the first daily treatment, the shape and ap-

pearance from the planning image are combined with the

statistics of intrapatient variation learned from the popula-

tion. As more subsequent images are segmented, the shape

and appearance statistics are updated in an online learning

process, and the patient-specific information takes an in-

creasing role in capturing the variation in the specific patient

more accurately. In our second main contribution, to address

limitations of region- and profile-based features, we intro-

duce a combination feature, called the gradient-PDF combi-

nation feature, which produces more accurate and robust seg-

mentations than general profile-based features. This also

extends our prior work.
19

Here we replace the SIFT features

adopted in Ref. 19 with the proposed gradient-PDF combi-

nation features to save computational cost.

II. METHOD

Our method has three main components. First, there is a

statistical model of prostate shape, represented implicitly as a

collection of the corresponding surfaces for a range of pros-

tate shapes. Second, there is a model of image appearance,

embodied in the objective function that is optimized during

segmentation. Finally, there is an online learning mechanism

that incorporates patient-specific information as additional

images are segmented.

The shape model is developed by a procedure we refer to

as “surface construction,” in which a surface deformation

algorithm is used to generate the individual surface of each

prostate in the training dataset. A template-based framework

is used to ensure that all created surfaces have good point-

to-point correspondence. In the appearance model, we aim to

improve the accuracy and robustness of our method by in-

troducing local intensity PDFs, combined with gradient fea-

tures, to guide the segmentation. In the online learning

mechanism, information from each just-completed segmen-

tation is incorporated into the patient’s appearance and shape

statistics so that the weight of patient-specific information

can be enlarged gradually from day to day, better corre-

sponding to that patient’s images. The following sections de-

scribe each part in detail. In Sec. II A, we describe the sur-

face construction method for generating the shape model. In

Sec. II B, we describe the method for segmenting an indi-

vidual image, focusing on the appearance model. Finally, in

Sec. II C, we discuss how the statistical-shape model can be

modified to reflect the within-patient statistics gathered over

the course of treatment.

II.A. Surface construction

Clearly, the accuracy of the shape model is largely depen-

dent on the performance of shape correspondence, and thus

developing more accurate and efficient shape correspondence

algorithms for use in statistical-shape analysis has been

widely investigated over the past several years.
20–23

In this

study, we developed a deformable-model-based algorithm to

fit a surface to each segmented prostate image in the training

set. Also, a template-based framework is employed to ensure

all the generated surfaces have good point-to-point corre-

spondence. At the time of segmentation, each surface will be

registered to the existing planning surface for the patient and

the modes of variation will be calculated as described in Sec.

II C 1.

II.A.1. Deformable-model-based algorithm for

surface construction

A shape is represented by a triangle mesh s= �V ,T�, where

V= �vi�R
3�i=1

N is the set of N mesh vertices and T

= �ti�Z+
3�i=1

M is the set of M triangles, with each triangle rep-

resented as a triple of vertex indices. The cost function of the

proposed surface deformation algorithm is as follows:

s� = arg min
s

�EDistance�s,Iseg� + �ESmooth�s�� , �1�

where EDistance=�i=1
N �vi−ci� and ci is the point of intersection

between the surface normal at vi and the prostate boundary

in the segmented image Iseg. Obviously, by minimizing

EDistance, all surface vertices should move to the prostate

boundary. ESmooth is a smooth regularization term. Equation

�1� is iteratively optimized by alternately minimizing

EDistance and smoothing the new generated surface to mini-

mize ESmooth. The smooth regularization term is crucial to the

robustness of the algorithm, especially for the initial iteration

steps, where the surface deformation is generally large. How-

ever, a simple surface smoothing algorithm will lead to an

additional erroneous shrinking of the surface. To address this

issue, the smoothing method proposed by Taubin
24

is em-

ployed here. This method is capable of smoothing the surface

while preventing additional surface shrinkage. The parameter

� is used to weigh the smoothness constraint dynamically,

e.g., � is designed to be large initially and decreases later

during the progression of the algorithm. In our experiment,

we find that dynamically adjusting the parameter � from 1 to

0.2 according to an exponential function during iterative op-

timization leads to robust and accurate results. More details

on this weighing can be found in Sec. II.D.

II.A.2. Template-based framework for surface

construction

To obtain point correspondences of the surfaces, a

template-based framework similar to the method proposed in

Ref. 22 is adopted �see Fig. 2�. In this framework, all seg-

mented prostate images in the training dataset are first af-

finely aligned to a uniform space, after which the aligned

images are averaged, and the resulting mean image is thresh-

olded to get a template image. In this uniform space, a pre-

defined cylinder surface is deformed to match this template

image using the method described in Sec. II A 1, yielding a

model surface. Next, this model surface is transformed back

to each segmented prostate image’s space using the inverse
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of the transform matrix created in the previous alignment

step. Finally, these warped model surfaces are respectively

refined according to their corresponding segmented images

using the method described in Sec. II A 1, and thus the

boundary surfaces of individual prostates are obtained. Be-

cause each prostate boundary model is derived from a com-

mon model that is based on an average of all aligned pros-

tates, the corresponding vertices can be expected to

approximately reflect geometrically corresponding locations

in the different prostate images.

II.B. Deformable-model-based segmentation

In this section, we describe how a new image is seg-

mented once a statistical-shape model has been trained, fo-

cusing on the appearance features that are incorporated into

the objective function. Before being segmented, the new im-

age I is normalized to a common reference frame, as de-

scribed below in Sec. II B 4, and it will be referred to as

Inorm.

In order to get robust and accurate segmentation, we build

the appearance model using image features based on inten-

sity PDFs over local regions, as well as profile-based gradi-

ent features. Each feature, whether it is based on profiles or

PDFs, is tied to a particular vertex of the surface model,

which we will often refer to as a landmark. A profile feature

consists of an ordered sequence of samples along a normal to

the surface at a landmark, and a PDF-based feature consists

of a probability distribution of values taken over a region

surrounding the landmark. The challenge is how best to com-

bine these features. As discussed in Sec. I, the region-based

feature is more robust to noise and poor initialization, but

somewhat less precise, while the profile-based feature is ef-

fective for landmarks that have consistent, distinctive pat-

terns along the surface normal. Accordingly, two motivations

need to be considered. First, each landmark should be as-

signed an optimal feature which can be determined by the

image pattern of its immediate surroundings. Second, region-

based features should take a more important role at the ini-

tialization and beginning stages of the optimization process

to obtain a good initialization, while the profile-based fea-

tures should gradually begin to dominate later in the process

to get a more accurate segmentation. In other words, we need

a mechanism to adjust the weight between profile- and

region-based features during the optimization.

Some classifiers such as SVMs are commonly used to

select appropriate subfeatures to compose optimal features.

However, for these methods, the feature selection processes

are implicit and it is impossible to dynamically adjust the

weights of subfeatures during segmentation. The most intui-

tive approach would be to integrate profile- and region-based

features through a linear combination. However, since the

value ranges of different subfeatures are so different, deter-

mining the coefficients of each subfeature is not a trivial

task.

Based on the above analyses, we propose a novel ap-

proach to integrate the profile-based gradient feature and

local-region-based PDF feature. For each specific vertex of

the surface, only one subfeature is selected according to a

predefined rule �described in Sec. II B 1�. This essentially is

the simplest case of linear combination of these two kinds of

features, i.e., the values of the coefficients of the two subfea-

tures are limited to 0 or 1. From the view of the whole

appearance model, these two kinds of features are integrated

together since they separately are used at different landmarks

simultaneously. Here the set of vertices V= �vi�R
3�i=1

N is di-

vided into two subsets denoted as VPDF and VGRA, which

represent the vertex subsets that use PDF features and gradi-

ent features, respectively. In this scheme, the weight between

subfeatures can be adjusted easily by reassigning vertices

from one set to another.

II.B.1. Cost function

We use the following cost function based on gradient-

PDF combination features:

s� = arg min
s

�EGradient�VGRA� + EPDF�VPDF�

+ �ESmooth�s��, s � D. �2�

There are three terms in this function. The first two terms are

image-based terms using gradient and PDF features, respec-

tively. Bear in mind that EGradient and EPDF are separately

defined over VGRA and VPDF, so these two terms only act on

the vertices in their corresponding subset. The third term is a

smooth regularization term. D is the shape space learned

from the training data. Deformed surfaces generated accord-

ing to this function are constrained to this space.

The EGradient term: The energy term EGradient represents the

differences in the corresponding gradient features between

the model and the current image Inorm. Minimizing it requires

that the gradient features learned in image training match

with the gradient features found in the image.

The profile-based gradient feature is similar to that de-

scribed in Ref. 15. Each profile is a vector of gradient mag-

nitudes of image intensities, sampled at locations separated

by a fixed step size along the surface normal. The length of

each profile varies for different landmark points according to

FIG. 2. Flow diagram of template-based surface construction framework.

The arrows with light color �blue in online version� represent the surface

deformation procedures using the method proposed in Sec. II A 1.
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a model described in Sec. II B 3 below, with the goal of

minimizing the inclusion of gas or bone intensities. Based on

gradient features, EGradient is defined by

EGradient�VGRA� = �
vi�VGRA

1

M
vi

�
i=1

M
vi 	 �g

vi
�l� − g

vi
�l��

�
vi

�l�

 , �3�

where M
vi

is the length �number of entries� of the profile at

vertex vi, g
vi

�l� represents the lth entry of the average profile

at vertex vi from the model space, and g
vi

�l� is the lth entry

of the corresponding profile from the image Inorm. The quo-

tient value �
vi

�l� is the standard deviation of the lth entry of

the profiles at vertex vi.

The EPDF term: Similar to the EGradient term, EPDF denotes

the differences in the local intensity PDF features at the ver-

tices in VPDF between the model and the image. The local

neighborhood of a given vertex vi was split into inside �pros-

tate� and outside �background� subregions using the surface

mesh, then the local interior PDF P
vi

in and local exterior PDF

P
vi

out can be estimated easily by using intensities from these

two subregions, respectively.

In this article, the Bhattacharyya distance
25,26

is used to

measure the difference between two distributions for its sim-

plicity. The Bhattacharyya distance is a measure of similarity

between two PDFs, P and P�, defined as

B�P,P�� =� �P�x�P��x�dx , �4�

where x�X is an intensity variable living in some intensity

space X. This measure varies between 0 and 1, where 0 in-

dicates a complete mismatch and 1 indicates a complete

agreement between two PDFs. Thus �1−B� can be used to

measure the dissimilarity �or difference� between two PDFs.

Based on the Bhattacharyya distance, EPDF�VPDF� is defined

by

EPDF�VPDF� = �
vi�VPDF��1 − B�P

vi

in, P̄
vi

in�� + B�P
vi

in, P̄
vi

out�

+ �1 − B�P
vi

out, P̄
vi

out�� + B�P
vi

out, P̄
vi

in�� . �5�

Here, P̄
vi

in is the interior PDF attached to vi from the model

estimated over the training dataset and P
vi

in is its correspond-

ing interior PDF estimated from the current image Inorm. P̄
vi

out

and P
vi

out are defined in the same way for the exterior. Mini-

mizing EPDF essentially aims to find new locations of vi,

where P
vi

in is more like P̄
vi

in and less like P̄
vi

out, while P
vi

out is

more like P̄
vi

out and less like P̄
vi

in.

II.B.2. Feature selection

As described earlier in Sec. II B, how to choose the sets

VPDF and VGRA is a key point for building the gradient-PDF

combination features. We use the following principle: For

landmarks whose gradient features are consistent over the

training dataset, gradient features are selected. Otherwise,

PDF features are used. Here we define a measure C
vi

of the

consistency of gradient features at a given vertex vi by

C
vi

= M
vi

/�
l

M
vi�

vi
�l� , �6�

where �
vi

�l� is the standard deviation of the lth entry of the

gradient feature defined in Sec. II B 1. In other words, C
vi

is

the reciprocal average of the standard deviations so that a

profile with a large C
vi

will have smaller standard deviations

for its entries, and thus be more consistent across images and

thus more prone to be selected for the appearance modeling.

Figure 3 illustrates how C
vi

varies across a prostate bound-

ary. In order to adjust the relative weights of the gradient

features and PDF features dynamically, all the vertices are

ranked according to the C
vi

of their gradient features, after

which a certain proportion of vertices with smaller C
vi

is

selected to compose the subset VPDF, and the remaining ones

make up VGRA. A parameter � is defined to control the sizes

of VGRA and VPDF as follows:

� = NGRA
/N , �7�

where NGRA is the number of vertices in VGRA and N is the

number of vertices in V. Thus, the number of vertices in VPDF

is equal to �N−NGRA�. In the iterative optimization stage, the

parameter � is increased from 0 to 1 according to an expo-

nential function, aiming to dynamically weigh the gradient

features and PDF features.

II.B.3. Rectum gas and bone

The presence of rectum gas and bony structures near the

prostate boundary is troublesome for segmentation. Regions

of gas appear as black blobs surrounded by gray tissues, and

there is no consistency from image to image in which, or

even whether, gas can be expected to appear, thus making

profile features inconsistent. In the same way, bone has much

higher voxel intensities which create strong edges near the

true boundary of the prostate, and there is enough variability

in the relative positions of the prostate and bony structures

where the strong edges of bone often lead to large errors of

segmentation. Because of these problems, samples from re-

gions of gas and bone should be regarded as outliers in fea-

ture extraction for prostate segmentation. Other work has

been done to address these issues. Broadhurst et al.
27

sepa-

rately modeled the probability of gas and bone tissue inten-

sities, and Davis et al.,
28

in the context of deformable regis-

tration, introduced a “deflation approach” to deal specifically

with the problem of gas. In our method, since two classes of

features are employed to build the appearance model, two

FIG. 3. Demonstration of the map of the prostate. In this figure, a prostate

surface was color coded according to the value at each vertex.
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different strategies are proposed to alleviate the effect of gas

and bone: One for the profile-based gradient features and one

for the local PDF features.

For the profile-based features, the profile length at each

landmark is determined by statistically investigating the in-

tensity profile of all training images. The goal is to choose a

profile length for each vertex vi so that, across all training

images, no entry in vi’s profile has a greater than 50% prob-

ability of being in bone or gas. Making this choice is a three-

step process. First, the intensity profiles of all training

samples are calculated, and then the samples located in gas

and bone regions are detected according to their value in

Hounsfield units �HU� by using two predefined thresholds

��150 HU for gas and +100 HU for bone�. Second, in the

model space, for each entry of each profile, the probability of

being an outlier is estimated by using the proportion of out-

liers at this location in the training dataset. Then a threshold

for probability is selected to determine whether this sample

is an outlier. In this article, the threshold is 0.5. In the last

step, each profile is truncated from the outlier location clos-

est to the surface to the outside end point. The resulting

length is taken as the optimal length for each profile �Fig. 4�.
The optimal length profiles avoid capturing the voxel inten-

sities of gas and bone regions, and thus the segmentation

results should suffer less from the inconsistency in image

appearance across the training samples in those parts of the

image. Figure 5 shows some examples to illustrate the effec-

tiveness of the optimal length profile.

For the local PDF features, it is easy to alleviate the effect

of gas or bone. The appearance model and fitting algorithm

are applied to the images using values ��150 HU,

+100 HU� to build 125-bin histograms, and the extremely

low and high CT values corresponding to gas and bone are

naturally thresholded out to remove the effects of these out-

liers.

II.B.4. Initialization and optimization strategy

In our method, for both training and deformable segmen-

tation steps, all calculations are done in a specified bench-

mark frame of reference, which we define to be the space of

the planning image for the patient being treated. All images

and surfaces are transformed to this benchmark space before

any further operations. When a new treatment image is ac-

quired, it is rigidly transformed into the benchmark space

according to the pelvic bone. Thus, we obtain a pose-

normalized image, denoted as Inorm. It is worth noting that

the model shape smdl, i.e., the mean shape smean of the current

patient �defined in Sec. II C 1�, is in the same space as Inorm.

Thus, smdl will be close to the prostate in Inorm. For a more

accurate initialization, smdl is shifted and rotated over a lim-

ited range while the cost function defined by Eq. �2� is evalu-

ated. When this function reaches its minimum, a good ini-

tialization is obtained. Here, we are not guaranteed to find

the global minimum of the cost function, but we can get a

local optimum that is a good solution for the initial position

of the model, and the experimental results have shown it was

good enough to ensure the robustness and accuracy of the

final segmentation. At this initialization stage, the parameter

� defined by Eq. �7� is set to 0, i.e., only the local PDF

features are used to guide the initialization, for greater ro-

bustness.

To solve Eq. �2�, an iterative optimization strategy is used

to compute the deformed surface by alternately minimizing

the energy term �without regard to the shape space� and then

correcting the new surface into the learned shape space D. At

the tth iteration step, we perform the following: First, the

deformable surface st is updated via a local search around its

current location so that the newly updated surface ŝt has a

better match to the gradient and PDF features of the testing

image, which yields a smaller EGradient�ŝt�+EPDF�ŝt�.
Second, the newly updated surface ŝt is smoothed using

the Taubin method
24

and a smooth surface is obtained, de-

noted as ŝsmo
t . To dynamically adjust the strength of the

smoothness constraint, the surface ŝt and ŝsmo
t are combined

using ŝ̂smo
t = ŝt+��ŝsmo

t − ŝt� to get a partially smoothed version

of ŝt, denoted as ŝ̂smo
t . This is the same way as the smooth-

ness constraint is applied during surface construction �Sec.

II A 1�, with the parameter � here adjusted the same as � in

Eq. �1�.
Third, the population-based and patient-specific shape sta-

tistics are used to constrain the newly created smooth surface

ŝ̂smo
t . A reasonable surface sD

t is obtained by finding the near-

est surface to ŝ̂smo
t in the learned shape space D.

FIG. 4. Demonstration of profile truncation. The profiles which lie across the

regions associated with gas or bone are truncated. In this figure, there are

two profiles truncated to an appropriate length.

(a) (b)

FIG. 5. Typical results illustrate the effectiveness of the optimal length pro-

file. The dark �red in online version� contours show the hand-drawn ground-

truth contours, and the light �green in online version� and gray �blue in

online version� contours represent the results using the fixed length profiles

and the proposed optimal length profiles, respectively. It is clear that the

segmentation accuracy is significantly improved for the boundary segment

adjacent to the rectum in �a� and �b�, as well as for the boundary segment

adjacent to the bone in �b� by using the proposed optimal length profiles.
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Last, the surface ŝ̂smo
t and the surface sD

t from the shape

space are combined by a weighted average using st+1= ŝ̂smo
t

+��sD
t − ŝ̂smo

t � to get the final surface st+1 of this iteration step.

The parameter � is used to adjust the strength of the shape

constraint. In our implementation, � was decreased from 1 to

0.2 according to an exponential function to relax the shape

constraint gradually during iterative optimization. The ratio-

nale is that the latter iteration steps are trying to improve a

segmentation that is already somewhat accurate, so image

information is more trustworthy and should be given more

weight relative to the shape prior. It is reasonable and experi-

mental results have justified its robustness.

II.C. Online learning mechanism

We propose an online learning mechanism with the aim of

accurately capturing shape and appearance statistics of the

patient under treatment. At the beginning, we use the shape

and appearance of the planning image as the mean shape and

the mean appearance, with the residue derived from the train-

ing set as our residue model. As more images are segmented,

the shape and appearance statistics are updated online, and

the patient-specific information takes a larger and larger role.

There are two major advantages of this approach. First, it

becomes tractable to establish a shape and appearance

model, even if the samples of the current patient are very

limited, by using the residue information from the popula-

tion. Second, by increasing the weight of patient-specific in-

formation as more samples of the current patient are pro-

cessed, the models will more accurately capture the shape

and appearance variation of the current patient’s prostate,

leading to improved segmentation.

II.C.1. Shape model online learning

As mentioned in Sec. II B 4, for the training step, all the

calculations are performed in the space of the planning im-

age for the patient being treated. All surfaces are affinely

aligned to the known surface already provided in the plan-

ning image by a least-squares fit before further operations.

Figure 6 demonstrates the main procedures of shape model

online training.

First, for each treatment image of a given patient sample,

its surface is mapped to the benchmark space of the current

patient, yielding a surface that we denote by salign. The mean

shape smean of each patient is calculated by averaging the

corresponding vertex coordinates of the salign surfaces, and

residual shapes sres are obtained by subtracting the mean

shape smean from the aligned shape salign. This process is per-

formed for all patient samples and also for the prior images

of the patient under treatment.

Second, a weighted PCA is done to all sres, with weight

factors �s for the current patient and 1−�s for the training

set. By adjusting the parameter �s, we can flexibly control

the relative weights between the patient-specific and popula-

tion information.

Last, after performing weighted PCA, a reasonable re-

sidual shape space is obtained. Then, by just shifting this

space using smean of the current testing patient, we can get a

reasonable shape space D for the current patient. Thus, D is

available to guide the deformable model to segment the later

time images of the current patient. In the segmentation step,

we use the mean shape of the current patient as the model

shape, denoted smdl.

It should be noted that the training is dynamic: Along with

each new treatment image that is segmented, smean and sres of

the current patient are changed. At the same time, we in-

crease �s according a sigmoid function �see Fig. 7�. Thus, as

more subsequent images of the current patient are acquired,

the patient-specific shape statistics derived from those im-

ages gain more influence. In this framework, the mean

shapes of other patients are replaced by the mean shape of

the current patient by doing the PCA on the residual shape

space and adding the mean shape of the current patient to the

resulting residual shape subspace. This process reduces the

effect of interpatient shape variation.

FIG. 6. Flow diagram of shape model online training. In this figure, the

blocks with dark color �green in online version� represent the population

information, and the light �yellow in online version� one represents the

patient-specific information.

FIG. 7. Illustration of the values of parameter �s at different time points. In

this figure, after the number of captured images of the current patient

reaches 9, it approximately equals 1. That implies that patient-specific in-

formation totally controls the shape model after that time.
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II.C.2. Appearance model online learning

For the gradient feature, similar to the use of the shape

statistics, the average feature vectors g come from the cur-

rent patient, while the standard deviation � is a weighted

combination of the standard deviation from the current pa-

tient and that from the population. The weight factor �s is

dependent on the number of images we have captured and

processed from the current patient. This is consistent with the

use of the patient-specific shape statistical model.

For the PDF feature, the interior PDFs and exterior PDFs

are estimated only using the intensities sampled from images

of the current patient. Here the population information is not

employed for the estimation of the PDF features. The reason

we abandon the population information is that we do not

require statistical information about the day-to-day variabil-

ity of these PDF features from other patient samples.

III. EXPERIMENTAL RESULTS

III.A. Testing data and quantitative measures

Our data consist of 24 patient image sets, each with more

than nine daily CT scans of the male pelvic area taken during

a course of radiotherapy, with a total image count of 330.

The images have an in-plane resolution of 512�512 with

voxel dimensions of 0.98�0.98 mm2 and an interslice dis-

tance of 3 mm. We are also provided with expert manual

segmentations of the prostate in every image. Considerable

efforts were made to minimize the intraoperator variability.

A careful protocol was established by a radiologist and a

radiation oncologist working together. Earlier segmentations

were reviewed in comparison with later ones to make sure

that consistency was maintained. For each patient, manual

contouring was done after rigidly registering all of that pa-

tient’s images together. Successive images could be viewed

overlaid on one another so that consistency could be main-

tained in how each day was segmented.

We consider the patients separately, i.e., segmenting the

images from one patient in a leave-one-patient-out strategy.

For one patient whom we want to test, the first treatment

image is regarded as the planning image and the remaining

images are segmented for evaluation. At same time, the

patient-specific and population training datasets are built by

using processed images of this patient and all images of

other patients, respectively. So, leaving out the planning im-

age of each patient, there are a total of 330−24=306 test

images for evaluating the performance of segmentation. Two

quantitative measures are used to evaluate the performance

of the algorithms, i.e., the Dice similarity coefficient �DSC�
�Ref. 29� and the average surface distance �ASD� between

the automated and the manual segmentation results.

Our method was performed on an Intel Core 2 2.33 GHz

processor. The initialization required 15.0 s. For the gradient

feature, the surface deformation step required 42.8 s; if the

gradient-PDF combination feature was used, the time in-

creased to 66.2 s. In the online learning step, the shape

model and the appearance model have to be updated, requir-

ing 14.6 s. The total computing time is 95.8 s.

III.B. Experiments

A series of experiments was performed to evaluate the

effectiveness of the proposed segmentation algorithm as out-

lined next.

Evaluation of gradient-PDF combination features: In or-

der to evaluate the effectiveness of the gradient-PDF combi-

nation features, we carried out a comparison between gradi-

ent features taken alone and gradient-PDF combination

features in our algorithm.

Evaluation of the online learning mechanism: In this ex-

periment, we tested the performance under three different

update strategies, labeled as follows: �1� Partial online up-

date, �2� full online update, and �3� manual modification be-

fore online update.

Under the partial online update strategy, for the shape

model, the mean shape of the current patient is recalculated

after each new image is segmented, while the residual shape

subspace calculated from the population training dataset re-

mained unchanged. For the appearance model, the average

model gradient profiles g and model PDFs Pin and Pout are

recalculated and updated online, but the standard deviations

� of the gradient profiles are those of the population and not

updated. Under the full online update strategy, all parameters

were updated online according to the procedure described in

Sec. II C.

Under the manual modification before online update strat-

egy, the previous automatic segmentation results are refined

manually before the next online update. The reasons that we

employ this strategy are as follows: �1� We aim to get more

accurate appearance and shape statistics to improve the seg-

mentation performance and �2� this strategy is clinically fea-

sible. That is, checking and repairing segmentations for the

first few days may be faster than manually segmenting them

from scratch, and once good patient-specific training data is

achieved, additional manual corrections may not be neces-

sary. Also, it may be possible to run this algorithm without

corrections with the patient on the table, so that the results

can be used to adjust the treatment after they are deemed

acceptable by the therapist. Then the physician can refine the

model to improve the training at their convenience.

Evaluation of the comparison with the existing methods:

In order to evaluate the effectiveness of our method, we car-

ried out comparison with two deformable-model-based

methods proposed in Refs. 1 and 3.

III.B.1. Effectiveness of gradient-PDF combination

features

The performance of the gradient-PDF combination fea-

tures is evaluated by way of a comparison between the seg-

mentation results for the gradient-PDF combination features

and gradient features. We segmented 306 images of 24 pa-

tients �except the planning image of each patient� using these

two kinds of features, respectively.

Table I shows the average DSC and the average ASD of

all 306 segmentation results. It can be seen that when the

gradient-PDF combination features are used, the average

DSC �89.3%� is much higher than that of gradient features
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�86.8%�. Also, the average ASD is reduced from 2.47 to 2.08

mm. We performed a paired t-test on the DSC values, a

one-tailed test shows that the DSCs for the gradient-PDF

combination feature comparisons are significantly �p
	0.001� greater than the DSCs for the gradient-only feature

comparisons. These results indicate that the segmentation ac-

curacy is improved appreciably by using gradient-PDF com-

bination features against using gradient features.

In addition, when we investigate all results of these 306

images �see Fig. 8�, it is clear that the resulting curves using

only gradient features have more spikes than those using

gradient-PDF features. These spikes correspond to the bad

segmentation results. As a DSC value of 0.7 or greater is

generally considered to be a high level of coincidence be-

tween segmentations,
30

we call the segmentation a failure if

its DSC value is less than 0.7. Under this measure, we find

that the 304 results are successful and the success ratio is

99.3% for using gradient-PDF combination features, while

for the gradient features case, the number of successful seg-

mentation is 288 with a success ratio of 94.1% only. In short,

by using gradient-PDF combination features, the success ra-

tio increases by 5.2%. These results indicate that the pro-

posed method using combination features is more robust.

The above results can be justified as follows. First, the

profile-based gradient features use only a few samples along

the boundary normal and are thus sensitive to noise. Further,

the Gaussian model assumption of their distribution limits

their capability to capture heavy variations in soft tissue sur-

rounding the prostate. Second, on the other hand, PDFs

based on statistical information of the regions exhibit robust-

ness to noise and poor initialization. Additionally, without

imposing a specific parametrization, e.g., a Gaussian distri-

bution used for the profile-based features, region-based fea-

tures are beneficial to capture large variations in the prostate

appearance. Therefore, the gradient-PDF combination fea-

tures can use the advantage of both types of features and thus

provide better segmentation results, as shown above.

III.B.2. Effectiveness of the online learning

mechanism

Table II shows the average DSC and average ASD of all

306 segmentation results. Compared to the partial online up-

date strategy, when we explore the full online update strat-

egy, the average DSC is improved from 86.6% to 89.3% with

2.8% increase, and the average ASD decreased from 2.34 to

2.08 mm. It is clear that the full online update strategy pro-

duces more accurate segmentation results. In addition, when

the third strategy—manual modification before online

update—is adopted, we get the best segmentation perfor-

mance, with the average DSC and average ASD reaching

92.4% and 1.47 mm, respectively. Compared to the partial

online update, the average DSC is improved for 4.8% from

86.6% to 92.4%, and the average ASD is decreased for 0.87

mm from 2.34 to 1.47 mm. Figure 9 shows a typical result

with the DSC 92.2%. From this figure, we can see the pros-

tate boundary created by the proposed method is very close

to that of expert manual segmentations when the DSC is

about 92%.

To justify the validity of the proposed method, we further

investigate whether the use of the online learning mechanism

can improve the segmentation for the initial treatment im-

ages, or whether the segmentation accuracy can be improved

TABLE I. Average DSC and average ASD between the manual and the automated segmentations of all 306

images using gradient features and gradient-PDF combination features, respectively.

Mean
std Min Max Median

DSC �%� Gradient 86.8
11.3 19.1 96.9 90.2

Gradient+PDF 89.3
5.0 42.4 96.7 90.6

ASD �mm� Gradient 2.47
1.57 0.72 10.48 1.98

Gradient+PDF 2.08
0.79 0.69 7.89 1.87
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FIG. 8. DSCs �a� and ASDs �b� of all 306 images by using gradient and

gradient-PDF combination features, respectively. The image order is ranked

according to the DSC values of segmentation results using gradient-PDF

combination features for better illustration.
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by collecting more treatment images. Figure 10 shows our

obtained average DSCs of 24 patients at each treatment day.

It can be observed that the use of the online learning mecha-

nism improves segmentation even for the initial treatment

images, and segmentation keeps improving until a sufficient

number of treatment images have been collected for training

patient-specific models. We calculated the average DSC and

average ASD of 24 patients over the last 9 �9–17� treatment

days, finding that the average DSC and average ASD reach

93.0% and 1.38 mm, respectively. Compared to the partial

online update, the average DSC is improved from 86.2% to

93.0% with a 5.8% increase, and the average ASD is de-

creased from 2.40 to 1.38 mm with an error reduction of 1.02

mm.

III.B.3. Comparison with the other methods

To compare to the method proposed in Ref. 3, which has

the best segmentation accuracy in literature to the best of our

knowledge, our method was further evaluated on the same

dataset as used in Ref. 3. This dataset consists of 80 images

from five patients, each having 13–18 images from multiple

treatment days. For our method, due to the fact that require-

ment of a planning image is required for training, there are

80−5=75 test images for evaluation in our experiment, in-

stead of 80 test images in Ref. 3. Ignoring this negligible

difference, our results were compared to those reported in

Ref. 3. We find that our results are comparable, if with a

slight decrease in accuracy. The average DSC of five patients

is decreased from 93.0% to 92.1% with a 0.9% decrease, and

the average ASD is increased from 0.99 to 1.43 mm with an

error increase of 0.44 mm. It is worth noting the difference

of the training strategies used in the two methods, with our

training strategy more suitable for clinical application. In

Ref. 3, for each patient, the authors successively left each

day image out, trained on all remaining days, and segmented

the left-out day image using the trained shape and appear-

ance statistics. Namely, even for the patient with the fewest

daily images �13�, there are 12 patient-specific images avail-

able for training for the method described in Ref. 3. In our

method, to segment a given day’s image, only the preceding

daily images of the same patient are used for gathering the

patient-specific information, i.e., if you want to segment the

second day image, only the first day image is available and

used for training. Obviously, our segmentation framework

more coincides with the actual clinical condition of radio-

therapy.

In addition, each registration in Ref. 3 was begun with an

initialization by means of manually placed landmarks. Our

method is fully automatic for successive patient images, re-

quiring no human intervention.

To compare our method to that in Ref. 1, we quantified

our results using two measures vd and V fa, which are used in

Ref. 1. The measure vd is calculated as the fraction of the

ground-truth organ that was contained by the estimated or-

gan, while V fa is calculated as the fraction of the estimated

organ that lies outside the ground-truth organ. For a good

segmentation, vd and V fa should be close to 1 and 0, respec-

tively. The average median vd and average median V fa of 24

patients of our method are 91.1% and 7.0%, as compared to

slice 18 slice 20 slice 22 slice 24

slice 26 slice 28 slice 30 slice 32

FIG. 9. Segmentation results for evenly spaced slices of image 8 of patient

24 �DSC of 92.2%�. The light �yellow in online version� contours show the

result of the proposed method. The dark �red in online version� contours

show the hand-drawn �ground-truth� contours supplied by a radiation

oncologist.
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FIG. 10. Average DSCs of 24 patients at each treatment day �1–9�. Dotted

lines show the trends of segmentation performance.

TABLE II. Average DSC and average ASD between the manual and the automated segmentations of all 306

images under three different update strategies, respectively.

Mean
Std Min Max Median

DSC �%� Partial online update 86.6
5.8 32.1 96.7 87.7

Full online update 89.3
5.0 42.4 96.7 90.6

Manual modification 92.4
3.4 64.2 96.7 93.3

ASD �mm� Partial online update 2.34
1.0 1.88 14.99 2.15

Full online update 2.08
0.79 0.72 7.89 1.87

Manual modification 1.47
0.57 0.71 6.16 1.33
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85.45% and 13.4% of the three patients reported in Ref. 1. It

is clear that our results indicate a significant improvement of

the accuracy of segmentation, although the respective results

were obtained with different datasets. Also, like the method

in Ref. 3, the method in Ref. 1 is also based on intrapatient

models. In their experiment, at least 13 patient-specific

samples were used to train the intrapatient models for a test

patient. This method will face the same problem as that in

Ref. 3 when applied to clinical radiotherapy.

Based on the above analysis, we can draw a conclusion

that the proposed method produces a competitive accurate

result for prostate segmentation. More importantly, unlike

methods requiring clinically infeasible numbers of patient-

specific samples for intrapatient shape and appearance mod-

eling, our method is more suitable for clinical application.

Even in the situation where only one plan image is available

for training, our method is capable of producing a reasonable

segmentation. Furthermore, as more sequent treatment im-

ages are acquired, the models are updated dynamically and

more accurate results can be obtained, as reported in Sec.

III B 2. This point is very important for designing and evalu-

ating a segmentation method for clinical application.

IV. CONCLUSION

We have presented a new deformable model for segment-

ing the prostate in serial CT images by using both

population- and patient-specific statistics. The patient-

specific statistics are learned online and incrementally from

the segmentation results of previous treatment images of the

same patient. In particular, for initial treatment images, the

population-based shape statistics plays the primary role for

statistically constraining the deformable surface. As more

and more segmentation results are obtained, the patient-

specific statistics start to constrain the segmentation and

gradually take the major role for statistical constraining. In

order to improve the robustness and accuracy of the segmen-

tation, the gradient-PDF combination feature is also used to

dynamically characterize the image information around each

surface point. Experimental results show that the proposed

method is robust and accurate and is suitable for clinical

application.

In the future, we will speed up our segmentation algo-

rithm using GPU. In our method, the most time-consuming

procedure is the surface deformation step, which includes an

iterative process. In each iteration, for each landmark on the

surface, a local search is needed to find an optimal location

to minimize the cost function. Fortunately, because the local

search step �applied to each landmark� is almost indepen-

dent, it is straightforward to align one computation thread of

the GPU to one landmark for its corresponding calculation so

that computation of hundreds of landmarks can be run in

parallel. In this way, the overall computation time of our

method could be reduced significantly.
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