
 Open access  Posted Content  DOI:10.1101/2020.06.27.175505

Segmenting luminance-defined texture boundaries — Source link 

Christopher DiMattina, Curtis L. Baker

Institutions: Florida Gulf Coast University, McGill University

Published on: 09 Nov 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Luminance

Related papers:

 Segmenting surface boundaries using luminance cues: Underlying mechanisms

 Interactions between luminance steps and luminance textures for boundary segmentation

 Luminance texture boundaries and luminance step boundaries are segmented using different mechanisms.

 Spatial dependencies between local luminance and contrast in natural images.

 Novel theory on mach-bands and gradient formation in early vision

Share this paper:    

View more about this paper here: https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-
59ccl2pcel

https://typeset.io/
https://www.doi.org/10.1101/2020.06.27.175505
https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel
https://typeset.io/authors/christopher-dimattina-4ki6c6qo5w
https://typeset.io/authors/curtis-l-baker-op0mrjxud6
https://typeset.io/institutions/florida-gulf-coast-university-6g4049c1
https://typeset.io/institutions/mcgill-university-2kp72n3l
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/luminance-2ks7rnal
https://typeset.io/papers/segmenting-surface-boundaries-using-luminance-cues-fxbkzgpe8k
https://typeset.io/papers/interactions-between-luminance-steps-and-luminance-textures-2c5zoqvhe6
https://typeset.io/papers/luminance-texture-boundaries-and-luminance-step-boundaries-56d9lx2uka
https://typeset.io/papers/spatial-dependencies-between-local-luminance-and-contrast-in-38rxj9mjj0
https://typeset.io/papers/novel-theory-on-mach-bands-and-gradient-formation-in-early-wg37763lu2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel
https://twitter.com/intent/tweet?text=Segmenting%20luminance-defined%20texture%20boundaries&url=https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel
https://typeset.io/papers/segmenting-luminance-defined-texture-boundaries-59ccl2pcel


bioRxiv.org Pre-print  2.1 – DO NOT CIRCULATE 

1 

 

 1 

 2 

 3 

Segmenting surface boundaries using luminance cues: 4 

Underlying mechanisms 5 

 6 

 7 

Abbreviated Title:    Luminance texture boundary segmentation 8 

 9 

Christopher DiMattina 1,* & Curtis L. Baker, Jr.2 10 
 11 
1Computational Perception Laboratory & Department of Psychology  12 

Florida Gulf Coast University, Fort Myers, FL, USA 33965-6565 13 

 14 
2McGill Vision Research Unit, Department of Ophthalmology,  15 

McGill University, Montreal, QC, Canada H3G1A4 16 

 17 

*Corresponding Author: 18 

 Christopher DiMattina 19 

 Whitaker Hall Room 215 20 

 Florida Gulf Coast University 21 

 10501 FGCU Blvd S. 22 

 Fort Myers, FL 33965-6565 23 

 24 

 Email: cdimattina@fgcu.edu 25 

 Web:  http://itech.fgcu.edu/faculty/cdimattina/ 26 

 Tel: (239)-590-1513 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.06.27.175505doi: bioRxiv preprint 

mailto:cdimattina@fgcu.edu
http://itech.fgcu.edu/faculty/cdimattina/
https://doi.org/10.1101/2020.06.27.175505
http://creativecommons.org/licenses/by-nc-nd/4.0/


bioRxiv.org Pre-print  2.1 – DO NOT CIRCULATE 

2 

 

ABSTRACT 36 

Segmenting scenes into distinct surfaces is a basic visual perception task, and luminance 37 

differences between adjacent surfaces often provide an important segmentation cue. However, 38 

mean luminance differences between two surfaces may exist without any sharp change in albedo 39 

at their boundary, but rather from differences in the proportion of small light and dark areas within 40 

each surface, e.g. texture elements, which we refer to as a luminance texture boundary. Here we 41 

investigate the performance of human observers segmenting luminance texture boundaries. We 42 

demonstrate that a simple model involving a single stage of filtering cannot explain observer 43 

performance, unless it incorporates contrast normalization. Performing additional experiments in 44 

which observers segment luminance texture boundaries while ignoring super-imposed luminance 45 

step boundaries, we demonstrate that the one-stage model, even with contrast normalization, 46 

cannot explain performance. We then present a Filter-Rectify-Filter (FRF) model positing two 47 

cascaded stages of filtering, which fits our data well, and explains observers' ability to segment 48 

luminance texture boundary stimuli in the presence of interfering luminance step boundaries. We 49 

propose that such computations may be useful for boundary segmentation in natural scenes, where 50 

shadows often give rise to luminance step edges which do not correspond to surface boundaries.  51 

 52 
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INTRODUCTION 61 

 62 

Detecting boundaries separating distinct surfaces is a crucial first step for segmenting the visual 63 

scene into regions. Since different surfaces generally reflect different proportions of the illuminant, 64 

luminance differences provide a highly informative cue for boundary detection in natural images 65 

(Mely, Kim, McGill, Guo, & Serre, 2016; DiMattina, Fox, & Lewicki, 2012; Martin, Fowlkes, & 66 

Malik, 2004; Marr, 1982). Inspired by physiological findings (Hubel & Wiesel, 1962; Parker & 67 

Hawken, 1988), a commonly assumed computational model of luminance boundary detection is a 68 

Gabor-shaped linear spatial filter of appropriate spatial scale and orientation (or a multi-scale 69 

population of filters) detecting a localized change in luminance near the boundary (Fig. 1a, b) 70 

(Elder & Sachs, 2004; Marr, 1982). However, in many natural scenes, two distinct surfaces may 71 

visibly differ in their mean regional luminance without giving rise to any sharp change in 72 

luminance at their boundary. This situation is illustrated in Fig. 1d, which shows two juxtaposed 73 

textures from the Brodatz database (Brodatz, 1966). Clearly, a large-scale Gabor filter defined on 74 

the scale of the whole image as in Fig. 1a can certainly provide some information about a 75 

difference in average luminance between the two surfaces. However, it is unknown whether other 76 

mechanisms may be better suited to detect regional luminance differences at such boundaries.  77 

 In order to address this question, we propose a basic taxonomy of two different ways that 78 

luminance cues can define region boundaries. Luminance step boundaries (LSBs) are defined by 79 

uniform regional differences in luminance, as in Fig. 1a. Luminance texture boundaries (LTBs) 80 

are defined by differing proportions of dark and light texture elements or micro-patterns on two 81 

adjacent surfaces (Fig. 1c). Note that for the artificial LTB shown in Fig. 1c there are no textural 82 

cues present other than the proportions of dark and light elements on each side of the boundary. 83 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.06.27.175505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175505
http://creativecommons.org/licenses/by-nc-nd/4.0/


bioRxiv.org Pre-print  2.1 – DO NOT CIRCULATE 

4 

 

Given that regional luminance differences can arise from either LSBs or LTBs, it is of interest to 84 

understand whether or not similar mechanisms are employed when segmenting these boundaries, 85 

and how LTBs and LSBs interact when both are present, as for example when a cast shadow falls 86 

upon a scene region containing one or more surface boundaries.  87 

A number of studies have investigated detection of “first-order” luminance step boundaries 88 

(Elder & Sachs, 2004; McIlhagga & May, 2012; McIlhagga, 2018; McIlhagga & Mullen, 2018), 89 

as well as detection and segmentation of “second-order” texture boundaries having no luminance 90 

difference but differences in texture contrast (Dakin & Mareschal, 2000; DiMattina & Baker, 91 

2019), density (Zavitz & Baker, 2014), orientation (Wolfson & Landy, 1995), polarity (Motoyoshi 92 

& Kingdom, 2007) or phase (Hansen & Hess, 2006). However, the segmentation of first-order 93 

luminance texture boundaries, and the underlying computations, are poorly understood. 94 

In this study, we characterize perceptual segmentation of LTBs (Experiment 1) and 95 

demonstrate that simple regional luminance difference computation cannot readily explain their 96 

segmentation (Experiments 2, 3). We demonstrate the robustness of LTB segmentation to 97 

variations in contrast of texture elements, and demonstrate an excellent fit to the data with a 98 

psychometric function incorporating divisive contrast normalization (Experiment 3). We show 99 

that when both cues are present, observers can ignore masking LSBs having orthogonal 100 

orientations when segmenting LTBs using proportion of imbalanced patterns as a segmentation 101 

cue (Experiment 4). However, the presence of a masking LSB having a congruent orientation 102 

with the target LTB can in some cases enhance or impair performance (depending on relative 103 

phase), suggesting some degree of pre-attentive interaction between cues. An additional 104 

experiment further demonstrated the robustness of LTB segmentation to masking LSBs 105 

(Experiment 5).  106 
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We test the ability of a simple model positing a single stage of filtering which fit the data 107 

well in Experiments 2, 3 but it fails to fully explain the results of Experiment 4, suggesting that 108 

LTBs and LSBs are segmented by distinct underlying mechanisms. We define and fit a “filter-109 

rectify-filter” (FRF) model positing two stages of filtering to data from Experiment 4, and show 110 

that this model successfully accounts for observer performance in the task. Previous studies of 111 

second-order vision have fit psychophysical data with FRF models (DiMattina & Baker, 2019; 112 

Zavitz & Baker, 2013, 2014), but here we show that the FRF model can also account for the ability 113 

of observers to extract first-order (luminance) information in the presence of masking LSB stimuli. 114 

We propose that such mechanisms may be useful for performing boundary segmentation in natural 115 

vision, where extraneous stimuli such as shadows often give rise to LSB stimuli which do not 116 

correspond to surface boundaries.  117 

 118 
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METHODS 133 

Stimuli  134 

Luminance texture boundaries 135 

Luminance texture boundary (LTB) stimuli were created by placing different proportions of non-136 

overlapping black (B) and white (W) micropatterns on opposite halves of a circular disc, with the 137 

boundary separating the two regions oriented left-oblique (-45 degrees w.r.t. vertical) or right-138 

oblique (+45 deg. w.r.t. vertical), as shown in Fig. 2a. The proportions of black and white micro-139 

patterns on each side of the LTB was parameterized by the proportion 𝜋𝑈 of "unbalanced" micro-140 

patterns on each side of the disc (i.e., those not having a counterpart of opposite luminance 141 

polarity).  Note that 𝜋𝑈 can range from 0 (indicating an equal number of black and white 142 

micropatterns on both sides) to +1 (opposite colors on opposite sides).  143 

 For the experiments described here, we employed a 256 x 256 pixel stimulus subtending 4 144 

deg. visual angle (dva). An equal number (16, 32 or 64) of non-overlapping micro-patterns were 145 

randomly placed on each side of the boundary, with each micro-pattern being an 8 pixel Gaussian 146 

(σ = 2 pixels). Unless otherwise specified, the micro-pattern maximum amplitude 𝐴 was set to +/- 147 

0.25 (W/B) dimensionless luminance units with respect to the gray mid-point (0.5), so these 148 

micropatterns were clearly visible.  Michealson contrast 𝑐𝑀 =  (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) (𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛)⁄  of 149 

the LTB stimuli is related to the maximum micro-pattern amplitude 𝐴 by 𝑐𝑀 = 2𝐴.  In some 150 

experiments, we set 𝐴 = +/−0.1 (roughly 3-4 times LTB contrast detection threshold) to create a 151 

more difficult task due to reduced visibility of the micro-patterns. Stimuli were designed to have 152 

zero luminance difference across the diagonal perpendicular to the region boundary (anti-153 

diagonal), so that the only available luminance cue was that across the boundary defining the 154 
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stimulus.  For each stimulus we randomized the modulation envelope phase to either ϕ = 0 degrees 155 

(left side brighter) or ϕ = 180 degrees (right side brighter). 156 

Luminance step boundaries 157 

We also characterized performance on our identification task with luminance step boundary (LSB) 158 

stimuli, like that shown in Fig. 2b. LSB stimuli, produced by multiplying an obliquely oriented 159 

step edge by a cosine-tapered circular disc, were also 256 x 256 pixels and scaled to subtend 4 dva. 160 

The detectability of this edge was varied by manipulating its Michealson contrast 𝑐𝑀, and again 161 

envelope phase was randomized.  162 

Observers 163 

Two groups of observers participated as psychophysical observers in these experiments. The first 164 

group consisted of N = 3 observers who were highly experienced with the segmentation tasks. One 165 

of these observers was author CJD, and the other two (KNB, ERM) were undergraduate members 166 

of the Computational Perception Laboratory who were naïve to the purpose of the experiments. 167 

The second group was comprised of N = 17 naïve, inexperienced observers recruited from 168 

undergraduate FGCU Psychology classes, as well as N = 1 student from the Computational 169 

Perception Lab. All observers had normal or corrected-to-normal visual acuity. All observers gave 170 

informed consent, and all experimental procedures were approved by the FGCU IRB (Protocol 171 

number 2014-01), in accordance with the Declaration of Helsinki.  172 

Visual Displays 173 

Stimuli were presented in a dark room on a 1920x1080, 120 Hz gamma-corrected Display++ LCD 174 

Monitor (Cambridge Research Systems LTD®) with mid-point luminance of 100 cd/m2. This 175 

monitor was driven by an NVIDA GeForce® GTX-645 graphics card, and experiments were 176 

controlled by a Dell Optiplex® 9020 running custom-authored software written in MATLAB® 177 
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making use of Psychtoolbox-3 routines (Brainard, 1997; Pelli, 1997). Observers were situated 133 178 

cm from the monitor using a HeadSpot® chin-rest, so that the 256x256 stimuli subtended 179 

approximately 4 deg. of visual angle. 180 

Experimental Protocols 181 

Experiment 1: Segmentation thresholds for LTBs and LSBs 182 

Towards the larger goal of determining whether the two kinds of luminance boundaries (LTB) are 183 

segmented using the same mechanisms, we started by characterizing observers' segmentation 184 

thresholds for both kinds of stimulus. In this and subsequent experiments, the psychophysical task 185 

was a single-interval classification task, in which the observer classifies a single displayed stimulus 186 

as belonging to one of two categories (L/R oblique).  187 

 To study the effects of the number of unbalanced micro-patterns on segmentation 188 

(Experiment 1a), luminance texture boundaries with 32 micro-patterns on each side were 189 

presented at 9 evenly spaced values of  𝜋𝑈 from 0 to 1 in steps of 0.125 - example stimulus images 190 

are shown in Fig. 2a. Observers performed 250 psychophysical trials starting at the highest level, 191 

with the stimulus level being adjusted using a standard 1-up, 2-down staircase procedure, focusing 192 

trials near stimulus levels yielding 70.71% correct responses (Leek, 2001). Pilot studies with N = 193 

3 experienced observers (CJD, ERM, KNB) showed similar thresholds for 32 and 64 micro-194 

patterns, and somewhat higher thresholds for 16 micro-patterns (Supplementary Fig. S1), 195 

justifying the use of 32 micro-patterns as our default micro-pattern density.   196 

 Luminance step boundaries (LSBs, Fig. 2b) were defined by a luminance step oriented 197 

either left- or right-oblique, multiplied by a circular window with cosine tapering (Zavitz & Baker, 198 

2013). LSBs were defined by their Michaelson contrast 𝑐𝑀 with respect to the luminance midpoint. 199 
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LSBs were presented at Michealson contrasts in 11 logarithmic steps from 𝑐𝑀= 10-2.7 to 10-1.7, 200 

using the same staircase procedure (Experiment 1b) for 250 trials.  201 

 Naïve and inexperienced observers tested in Experiment 1 first obtained experience with 202 

segmenting both kinds of boundaries over two training sessions prior to the experiment. During 203 

the first training session, they ran two full threshold series for segmenting both LTBs (𝜋𝑈 cue)  204 

and LSBs  (𝑐𝑀 cue). During the second training session, they ran one more series for both cues. 205 

Immediately after the second training session, they ran a final (4th) threshold series to estimate 206 

stimulus levels for each cue leading to JND (75% correct) performance.  207 

Experiment 2: LTBs with constant luminance difference 208 

In order to test the hypothesis that the key variable determining LTB segmentation performance is 209 

luminance difference, we generated a series of LTB stimuli having constant luminance difference 210 

arising from a fixed number (N = 8) of unbalanced (opposite color) micropatterns on opposite 211 

sides of the boundary. By adding an equal number of luminance-balanced micropatterns (i.e. 212 

having the same color) to both sides of the boundary (N = 0, 8, 16, 24, 32), we decreased the 213 

proportion of unbalanced micro-patterns, making the boundary more difficult to segment, while 214 

maintaining constant luminance difference across the boundary. Examples of such stimulus images 215 

with 0, 16 or 32 additional balanced pairs of micro-patterns are illustrated in Fig. 5a. 216 

Experiment 3: Segmenting LTBs with varying RMS contrasts 217 

In order to test further whether total luminance difference was a strong predictor of LTB 218 

segmentation performance, we repeated Experiment 1 for a single density (32 micro-patterns per 219 

side) while varying the maximum luminance 𝐴 of each micro-pattern with respect to the screen 220 

mid-point luminance (0.5). This was accomplished by setting the maximum amplitude of each 221 

micro-pattern to three different levels with respect to the mid-point. W/B micro-pattern amplitudes 222 
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were set at 𝐴 = +/- 0.1, +/- 0.25, +/- 0.4 with respect to the luminance mid-point of 0.5 (𝑐𝑀 = 2𝐴 =223  0.2, 0.5, 0.8). This had the effect of creating a large range of luminance differences across the 224 

LTB, for the same micro-pattern density. Examples of such stimuli are shown in Fig. 6a. 225 

Experiment 4: Segmenting LTBs while ignoring masking LSBs  226 

Of particular interest for the current study is investigating the relationship between the mechanisms 227 

used to segment LTBs and those used to segment LSBs. If the mechanisms are fully distinct, an 228 

observer should have little difficulty in segmenting a superimposition of an LTB and an LSB 229 

(either of the same or different orientations), when instructed to segment using only the LTB cue. 230 

Conversely, identical or highly overlapping mechanisms would lead to profound impairment of 231 

performance. 232 

 To investigate this question, we ran an experiment (Experiment 4) using author CJD, two 233 

naïve experienced observers (EMR, KNB), and N = 6 naïve inexperienced observers. Observers 234 

were instructed to segment an LTB target using proportion of unbalanced patterns 𝜋𝑈 as the 235 

segmentation cue, where 𝜋𝑈 was presented at JND (75% correct) as measured for that observer 236 

(determined from Experiment 1a). For some trials, a masking LSB (also presented at that 237 

observer’s JND), which observers were instructed to ignore, was added to the LTB. There were 238 

three kinds of trials in this experiment: 200 neutral trials where the LTB was presented in isolation, 239 

200 congruent trials with the LTB target and masking LSB having congruent boundary orientation 240 

(both cues left or right-oblique: see Fig. 2c), and 200 incongruent trials with the LTB target and 241 

masking LSB having incongruent orientations (one cue left-oblique, the other right-oblique: see 242 

Fig. 2d). For the (200) congruent stimuli, in half of trials (100) the two stimuli were phase-aligned 243 

(Fig. 2c, left), and for the other half (100) they had opposite phases (Fig. 2c, right).  244 

 245 
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Experiment 5: Effects of LSB masker on LTB segmentation thresholds 246 

In order to explore the robustness of LTB segmentation to supra-threshold LSB maskers, two 247 

naïve, experienced observers (KNB, ERM) and author CJD segmented LTBs with a super-imposed 248 

LSB masker presented at various multiples of the LSB segmentation threshold (2x, 4x, 8x), 249 

yielding a masking LSB whose orientation was clearly visible. LTB segmentation thresholds were 250 

measured using the same staircase procedure as in Experiment 1a.  251 

Data Analysis 252 

Psychometric function fitting 253 

Data was fit using a signal-detection theory (SDT) psychometric model (Kingdom & Prins, 2016), 254 

where the proportion correct responses (𝑃𝐶) for a single-interval classification (1-AFC) task is 255 

given by  256 

 𝑃𝐶 =  Φ (𝑑′2 ), (1) 

 𝑑′ = [𝑔𝑥]𝜏, (2) 

where 𝑑′ is the separation of the (unit variance) signal and noise distributions, with stimulus 257 

intensity 𝑥, and free parameters of gain 𝑔 and transducer exponent 𝜏. The SDT model was fit to 258 

psychophysical data using MATLAB® routines from the Palemedes Toolbox 259 

(http://www.palamedestoolbox.org/), as described in (Kingdom & Prins, 2016). Data was fit both 260 

with and without lapse rates, and nearly identical threshold estimates were observed in both cases, 261 

although sometimes fitting without lapse rates under-estimated the psychometric function slope.  262 

For the case of the model fitted using lapse rates,  263 

 𝑃𝐶 = 𝜆2 + (1 − 𝜆)Φ (𝑑′2 ), (3) 

where λ denotes the lapse probability, which was constrained to lie in the range [0, 0.1]. 264 

 265 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.06.27.175505doi: bioRxiv preprint 

http://www.palamedestoolbox.org/
https://doi.org/10.1101/2020.06.27.175505
http://creativecommons.org/licenses/by-nc-nd/4.0/


bioRxiv.org Pre-print  2.1 – DO NOT CIRCULATE 

12 

 

Psychometric functions fit to luminance differences 266 

Psychometric functions were also fit using one or two quantities computed from stimulus images. 267 

Given stimulus levels 𝑥 used to generate the stimulus, we computed from each of the resulting 268 

images two quantities:  𝐿(𝑥), which is the absolute value of the difference in luminance across the 269 

diagonal corresponding to the target orientation, and 𝐶(𝑥), which is the global RMS stimulus 270 

contrast.  271 

We then fit an alternative SDT psychometric function, where  272 

 𝑑′ = [𝑔1𝐿(𝑥)]𝜏11 + [𝑔2𝐶(𝑥)]𝜏2 
(4) 

to model effects of global stimulus contrast 𝐶(𝑥) that might co-vary with luminance differences 273 𝐿(𝑥) as stimulus level 𝑥 is varied. This model (4) is only appropriate for experiments in which the 274 

global stimulus contrast 𝐶(𝑥) varies, since otherwise it is over-parametrized, and in these cases 275 

we set  𝑔2 = 0.  276 

Image-computable model with one filtering stage 277 

By design of the stimuli used in Experiments 1-3, for each trial image there is no difference in 278 

luminance across the anti-diagonal (the axis orthogonal to the stimulus orientation). Therefore, 279 

there was usually no need to take this into account when applying the model (4). However, in the 280 

masking experiment (Experiment 4), in the case where the masking LSB has an incongruent 281 

orientation, there will be a luminance difference across the anti-diagonal, which can potentially 282 

influence the decision. To analyze this data, we apply a slightly different model. In this model, 283 

illustrated schematically in Fig. 4a, we assume that each stimulus 𝑥 gives rise to a decision variable 284 𝑢(𝑥) which serves as input to the unit normal cumulative density function (CDF) Φ, so that the 285 

probability of a “right-oblique” behavioral response (𝑏 = 𝑅) is given by  286 
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 𝑃(𝑏 = 𝑅) = Φ(𝑢(𝑥)),   (5) 

 287 

 𝑢(𝑥) = [𝑔1𝐿𝑅 (𝑥)]𝜏1 − [𝑔1𝐿𝐿 (𝑥)]𝜏1
, (6) 

where 𝐿𝑅(𝑥), 𝐿𝐿(𝑥) are the absolute values of the luminance differences across the right- and left- 288 

diagonals. We also extended the model (6) to include divisive normalization by global stimulus 289 

contrast 𝐶(𝑥), as in (4). 290 

Image-computable model with two filtering stages 291 

Masking data from Experiment 4 was modeled using a two-stage model, illustrated in Fig. 9a. 292 

This model first convolves the image with on-center and off-center Difference-of-Gaussians 293 

(DOG) filters. The output of this first filtering stage is rectified and then passed to a second stage 294 

of filtering which computes a difference in first-stage activity across the left and right oblique 295 

diagonals. Second-stage filters were assumed to take a half-disc shape, integrating uniformly 296 

across the first stage outputs.  The outputs of these second-stage filters are then subtracted to 297 

calculate a decision variable 𝑢(𝑥). We fixed the first-stage DOG filter properties so that the 298 

standard deviation of the Gaussian defining the filter center is matched to the radius of the dots, 299 

while that defining the surround has a standard deviation twice that of the center. This choice is 300 

consistent with previous classification image studies of Gaussian detection in noise (Eckstein, 301 

Shimozaki & Abbey, 2002). Mathematically, this filter is defined as 302 

 ℎ(𝑥, 𝑦) = 𝑐(𝑥, 𝑦) − 𝜌𝐼𝐸𝑠(𝑥, 𝑦),   (7) 

where 𝑐(𝑥, 𝑦) denotes the center, and 𝑠(𝑥, 𝑦) the surround, evaluated at (𝑥, 𝑦). The only free 303 

variable for the first stage which we estimate from the data is the ratio 𝜌𝐼𝐸 of the amplitudes of the 304 

center and surrounds, with 𝜌𝐼𝐸 = 0 indicting no surround.  If the rectified luminance differences 305 
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(with nonlinear exponent 𝜏1) from the left and right ON-center filters is given by 𝐿𝐿𝑂𝑁(𝑥), 𝐿𝑅𝑂𝑁(𝑥), 306 

and from the OFF-center filters 𝐿𝐿𝑂𝐹𝐹(𝑥), 𝐿𝑅𝑂𝐹𝐹(𝑥), our decision variable is 307 

 𝑢(𝑥) = [𝑔2𝐿𝑅𝑂𝑁(𝑥)]𝜏2 + [𝑔2𝐿𝑅𝑂𝐹𝐹(𝑥)]𝜏2 − [𝑔2𝐿𝐿𝑂𝑁(𝑥)]𝜏2 − [𝑔2𝐿𝐿𝑂𝐹𝐹(𝑥)]𝜏2, (8) 

where 𝑔2, 𝜏2 are gains and nonlinearities for the second-stage filters. The two-stage model only 308 

contains 4 free parameters (𝜌𝐼𝐸, 𝜏1, 𝜏2, 𝑔2) which we estimate by fitting to data. To make 309 

computations tractable, we pre-filtered the stimuli with the center-surround DOG filters with IE 310 

amplitude ratios given by 𝜌𝐼𝐸 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and then optimized 311 

(MATLAB fmincon) the remaining parameters for each value of 𝜌𝐼𝐸. Initial starting points for the 312 

optimization were found using a 3-D grid search with 𝜏1, 𝜏2 taking grid values [0.5, 1, 2] and 𝑔2 313 

taking grid values from 10-3 to 101 in 5 log steps. 314 

Bootstrapping psychometric functions 315 

Bootstrapping was employed to determine the 95% confidence intervals for both the psychometric 316 

function thresholds (Experiment 1), as well as the proportion of correct responses predicted as a 317 

function of the stimulus level defined as either 𝜋𝑈 or absolute luminance difference (Experiment 318 

3). For bootstrapping analyses, N = 100 or N = 200 simulated datasets were created as follows: 319 

For each stimulus level with ni presentations and ci experimentally observed correct responses 320 

(proportion of correct responses pi = ci/ni), we sampled from a binomial distribution having ni trials 321 

with probability pi to create a simulated number of correct responses for that stimulus level. We 322 

fit our models to each of these simulated datasets, and obtained distributions of the psychometric 323 

function parameters, as well as the stimulus levels corresponding to JND (75% correct) 324 

performance, with confidence intervals being calculated using the standard deviation of the 325 

bootstrapped distributions.  326 

 327 
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RESULTS 328 

Luminance texture boundary stimuli 329 

In order to quantitatively examine the segmentation of luminance texture boundaries (LTBs), we 330 

defined a set of LTB stimuli which allowed us to vary the luminance across a boundary by varying 331 

the proportion of black and white micro-patterns within in each region (Fig 2a). When there are 332 

equal numbers of black (B) and white (W) micro-patterns on each side of the boundary, each 333 

micro-pattern is balanced by another of the same color on the other side. In this case, the luminance 334 

difference between regions is zero. When one side has more W patterns, and the opposite side has 335 

more B patterns, a proportion of the patterns on each side are imbalanced, giving rise to a 336 

difference in luminance across the diagonal. Therefore, we can modulate the luminance difference 337 

and therefore the boundary salience by changing the proportion of patterns on each side that are 338 

unbalanced (𝜋𝑈), as illustrated in Fig 2a. A value of 𝜋𝑈 = 0 corresponds to no boundary, whereas 339 𝜋𝑈 = 1 means that all the patterns on each side are the same.  340 

Since both W and B micro-patterns have the same amplitude relative to the gray mid-point, 341 

the stimulus RMS contrast remains constant as we vary 𝜋𝑈. Furthermore, when generating these 342 

stimuli we made sure that for each individual image there was no luminance difference across the 343 

orientation orthogonal to the boundary (the anti-diagonal). This ensured that there was no 344 

segmentation cue available which could mislead the observer to incorrectly classify the boundary 345 

as being in the opposite category.  346 

Experiment 1: Measuring segmentation thresholds  347 

In Experiment 1a, we examined the ability of N = 17 observers (16 naïve, 14/16 inexperienced) 348 

to segment LTBs using the proportion of unbalanced micro-patterns (𝜋𝑈) as a cue.  Fig. 3a shows 349 

the psychometric functions of two representative inexperienced observers (EMW, MCO) and two 350 
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experienced observers (ERM, KNB). Nearly identical threshold estimates were obtained with and 351 

without lapse rates (Supplementary Fig. S2a). A histogram of JND thresholds (75% correct) for 352 

all observers is shown in Fig. 3b. The median observer could perform the task at with a threshold 353 

of 𝜋𝑈 = 0.31 , and the best observer could reliably segment at 𝜋𝑈 = 0.16, suggesting a strong 354 

sensitivity to the proportion of unbalanced micro-patterns on the two surfaces.  355 

In Experiment 1b we also determined LSB segmentation thresholds for luminance disc 356 

stimuli like that shown in Fig. 2b in units of Michaelson contrast for the same N = 17 observers 357 

tested in Experiment 1a (Supplementary Fig. S3) Across the population of observers 358 

(Supplementary Fig. S4), we observed a significant positive rank-order correlation between LTB 359 

and LSB thresholds obtained in Experiments 1a and 1b (Spearman’s ρ = 0.56; p = 0.019). 360 

Evaluating a simple model 361 

One simple explanation for LTB segmentation performance is that the visual system is performing 362 

a simple luminance difference computation. As the proportion of unbalanced micro-patterns 363 

increases, so does this luminance difference, making the LTB more visible. We implemented an 364 

image-computable model like that shown in Fig. 4a, comprised of a single filtering-stage in which 365 

a left-oblique filter and right-oblique filter compute luminance differences across their respective 366 

boundaries, and the rectified, exponentiated outputs of these filters are subtracted to determine the 367 

probability the observer makes a “right-oblique” (R) response (Eq. 4). We see in Fig. 4b that this 368 

simple model predicts observer performance quite well as function of the luminance difference for 369 

LTB stimuli.  Likewise, this model predicts performance well for LSB stimuli (Supplementary 370 

Fig. S5).  371 

 372 

 373 
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Experiment 2: Holding luminance difference constant 374 

In order to directly test whether a simple luminance difference computation like that shown in Fig. 375 

4a is adequate to explain LTB segmentation, in Experiment 2, we constructed a series of LTB 376 

stimuli having an identical number of unbalanced micro-patterns on each side, which provide the 377 

segmentation cue, while increasing the number of balanced patterns on each side, which serve as 378 

distractors. Stimuli from this experiment are illustrated in Fig. 5a. We see in Fig. 5b that for all 379 

three observers tested, performance decreases as the number of distractors increases, with all 380 

observers showing a significant effect of the number of distractors (Pearson’s chi-squared test; 381 

CJD: χ2(4) = 25.32, p < 0.001, ERM: χ2(4) = 34.817, p < 0.001, KNB: χ2(4) = 18.56, p = 0.001). 382 

These results argue against the hypothesis that LTB stimuli are segmented using a simple 383 

luminance difference computation, at least in cases like this where the total number of micro-384 

patterns co-varies with the proportion of unbalanced patterns.  385 

Experiment 3: Varying contrast while segmenting by proportion unbalanced patterns 386 

As suggested by Experiment 2, a simple luminance difference computation is not a plausible 387 

candidate for segmenting LTB stimuli. In Experiment 3, we adduce additional evidence against 388 

this simplistic model. In this experiment, three observers (CJD, KNB, ERM) segmented LTB 389 

stimuli using the proportion of unbalanced micro-patterns 𝜋𝑈 as a cue, as in Experiment 1a. This 390 

was performed for three different levels of the stimulus Michaelson contrast (𝑐𝑀 = 0.2, 0.5, 0.8). 391 

This had the effect of creating drastically different regional luminance differences for stimuli in 392 

different series having the same proportion of unbalanced micro-patterns 𝜋𝑈 (Fig. 6a). As we see 393 

in Fig. 6b, 𝜋𝑈 (left panels) is a much better predictor of observer performance than the absolute 394 

luminance difference (right panels). Therefore, despite wide variation in the absolute difference in 395 
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luminance across the boundary at different contrasts, observers are still able to detect differences 396 

in the proportion of light and dark areas in the two regions.   397 

Extending the one-stage model: Divisive computations 398 

One can account for observer performance in Experiments 2 and 3 using a single-stage model 399 

like that in Fig. 4a by introducing a contrast normalization operation (Eq. 4). Pooling data from 400 

all three contrast levels in Experiment 3, we fit both the standard SDT model (Eq. 2) using simple 401 

luminance difference only, as well as the divisive SDT model (Eq. 4) incorporating both 402 

luminance difference and RMS contrast normalization. As we see in Fig. 6c, the fit of the standard 403 

additive SDT model (red lines) is quite poor compared to the divisive SDT model (blue lines). 404 

Since the divisive model has more parameters, we compare the goodness-of-fit using the Bayes 405 

Information Criterion (BIC), which rewards goodness of fit while penalizing model complexity 406 

(Schwarz, 1978; Bishop, 2006). The BIC analysis suggests a strong preference (Kaas & Raferty, 407 

1995) for the divisive model for all observers (Supplementary Table S1).  Similar results were 408 

obtained using models with lapse rates estimated as well (Supplementary Fig. S6).  In addition, 409 

we see that the divisive SDT model (Eq. 4) is able to do a reasonably good job of predicting 410 

observer performance in Experiment 2 (Supplementary Fig. S7, red symbols).   411 

Experiment 4: Segmenting LTBs while ignoring LSBs 412 

The results of Experiments 1-3 suggest that a model implementing a luminance difference 413 

computation (Fig. 4a) with contrast normalization can potentially explain LTB segmentation 414 

performance. However, one weakness of a single-stage model computing simple luminance 415 

differences is that it may be susceptible to interference from masking LSBs having incongruent  416 

orientations. Motivated by these considerations, in Experiment 4 we investigated the extent to 417 

which segmentation of LTB stimuli is influenced by the presence of masking LSB stimuli which 418 
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observers are instructed to ignore. The logic of this paradigm is that if LTBs and LSBs are 419 

processed by entirely different mechanisms, then the presence of a task-irrelevant LSB should 420 

have no effect on segmentation using the LTB cue. If one cue cannot be ignored, it suggests that 421 

there may be some overlap or interaction between the mechanisms. This sort of paradigm was used 422 

in a previous study (Saarela & Landy, 2012) to demonstrate that second-order color and texture 423 

cues were not processed independently.  424 

 In Experiment 4, N = 9 observers segmented LTB stimuli as in Experiment 1a using 425 

proportion of unbalanced micro-patterns as a cue, with 𝜋𝑈 set to the observer’s 75% performance 426 

threshold. For 200 neutral trials, the LTB was presented in isolation, for 200 congruent trials a 427 

masking LSB at segmentation threshold was presented with the same orientation (L/R oblique) as 428 

the target (Fig. 2c), and for 200 incongruent trials the LSB was presented at the orthogonal 429 

orientation (Fig. 2d). For half of the congruent trials, the LTB and LSB were phase-aligned (Fig. 430 

2c, "con-0", left), and for the other half they were opposite-phase (Fig. 2c, "con-180", right).  431 

 As we can see from Fig. 7a, performance when segmenting LTB stimuli when using 𝜋𝑈 as 432 

the cue is quite robust to interference from masking LSB stimuli.  Statistical tests (Pearson’s Chi-433 

squared) comparing observer performance across all three conditions did not find any significant 434 

effect of condition (neutral (neu), congruent (con), incongruent (inc)) for any individual observer 435 

(Supplementary Table S2). Pooling across all observers, we did however obtain significantly 436 

different (χ2(2) = 15.319, p < 0.001) values of proportion correct for each condition (neu: 0.8217, 437 

con: 0.8622, inc: 0.8189), due to slightly enhanced performance for congruent masking LSBs, 438 

since there was no impairment for incongruent masking LSBs (χ2(1) = 0.047, p = 0.828). The 439 

enhanced performance for congruent masking LSBs was phase-dependent, as seen in Fig. 7b. For 440 

the aligned-phase case (con-0), we observe significant improvements in performance over the 441 
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neutral condition for 4/9 observers (Supplementary Table S2). We fail to find any significant 442 

difference in individual observer's performance between the neutral and opposite-phase (con-180) 443 

cases. Pooling across observers, we find significant differences (χ2(1) = 24.383, p < 0.001) between 444 

the proportions correct for the neutral case and the aligned-phase case (neu: 0.8217, con-0: 445 

0.8944).  However, we fail to find a significant difference (χ2(1) = 0.288, p = 0.592) between the 446 

proportion correct in the neutral case and the opposite-phase case (con-180: 0.8300).  In at least 447 

some observers (3/9 total, 2/8 naive) we see improved performance for phase-aligned compared 448 

to opposite-phase boundaries in the congruent case (Fig. 7b, Supplementary Table S3), as well 449 

as a significant effect (χ2(1) = 15.732, p < 0.001) pooling across all observers (con-0: 0.8944, con-450 

180: 0.8300). 451 

 In Experiment 4, observers segmenting LTBs using proportion unbalanced patterns as a 452 

cue were relatively unimpaired by the presence of masking LSBs having an incongruent 453 

orientation, at least when the LSBs were presented at their segmentation thresholds. In 454 

Experiment 5, we studied the effects of supra-threshold LSB maskers on LTB segmentation in 455 

three experienced observers (ERM, KNB, CJD). Consistent with Experiment 4, we found that 456 

although LTB maskers presented well above threshold can somewhat raise LSB segmentation 457 

thresholds, this effect was generally modest (Supplementary Fig. S8).  458 

Evaluating one-stage and two-stage models  459 

Given our findings that LTB segmentation is fairly robust to interference from masking LSB 460 

stimuli, it seemed likely that LTBs might be detected by a distinct mechanism. Consequently, we 461 

considered the possibility that LTB segmentation may be better explained by a model like that 462 

shown in Fig. 8a with two stages of processing, rather than a single stage as in the model in Fig. 463 

4a. The first stage is comprised of small-scale spatial filters, implemented here as center-surround 464 
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filters (see Methods), which are convolved with the input image and whose outputs are passed 465 

through a rectifying nonlinearity. The second stage analyzes the first-stage outputs, with two large-466 

scale filters selective for left-oblique and right-oblique boundaries. These second-stage filter 467 

outputs are rectified and subtracted to determine the probability of an “R” response. Note that since 468 

the center-surround filters in the first stage are poorly driven by constant light levels, this model 469 

can in principle exhibit robustness to interference from LSBs, while still permitting some degree 470 

of influence, depending on the relative strengths of the center-surround units, which determines 471 

the response of the filter to mean luminance.  472 

 Fig. 8b. shows the fits of both the one-stage model (Fig. 4a) and two stage model (Fig. 8a) 473 

to data obtained from Experiment 4 for four observers (EMW, MCO, ERM, KNB). One stage 474 

models were fit both with and without divisive normalization terms, and identical predictions of 475 

observer performance were obtained. We see in Fig. 8b that although both one-stage (green 476 

squares) and two-stage (red squares) models fit observer performance (blue circles) in the neutral 477 

(neu) and two congruent cases, the one-stage model clearly fails to account for observer 478 

performance in the incongruent case (inc), predicting near-chance performance. Plots like those in 479 

Fig. 8b are shown for all other observers in Supplementary Fig. S9. The lack of robustness of the 480 

one-stage model to incongruently oriented LSBs argues strongly in favor of the two-stage model 481 

as a more plausible mechanism for LTB segmentation, at least in the presence of interfering LSBs. 482 

Fitting these two models to all observers in Experiment 4 and plotting the preference for the two-483 

stage model (BIC2 – BIC1, Supplementary Fig. S10a) reveals over the set of N = 9 observers a 484 

significant preference for the two stage model (single sample t-test, mean = 30.22, t(8) = 4.077, p 485 

< 0.004).  486 
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 As shown in Fig. 8b, for the majority of observers, we obtain better LTB segmentation 487 

performance in the presence of a congruent boundary with aligned phase (con-0) than opposite 488 

phase (con-180). This difference is also evident for some of the other observers (Supplementary 489 

Fig. S9) Interestingly, the two stage model allows for LSB stimuli to potentially influence LTB 490 

segmentation via a center-surround imbalance of the first-stage filters which can provide a mean-491 

luminance ("DC") response. That is, if the on-center (off-center) filters have a small positive 492 

(negative) response to constant light levels, this would allow LSB stimuli to exert an excitatory 493 

influence on the second-stage filters, potentially explaining the slightly improved performance for 494 

the phase-aligned versus opposite-phase congruent case in Experiment 4 (Fig. 7b, 8b). Over the 495 

population of observers (Supplementary Fig. S10b), we found the fitted first stage on-center 496 

filters all had a positive DC response (single-sample t-test, mean = 6.91, t(8) = 2.92, p < 0.019).  497 

Finally, we investigate whether the two-stage model in Fig. 8a can also account for the results of 498 

Experiment 3 (Fig. 6). We find that as with the one-stage model, an excellent fit to the data (blue 499 

lines) is obtained using the two-stage model when a divisive normalization term is included 500 

(Supplementary Fig. S11). 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 
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DISCUSSION 513 

Summary  514 

Over half a century of research in modern vision science and has investigated visual texture 515 

segmentation using parametric stimuli (Julesz, 1962, 1981; Landy, 2013; Victor, 2017). However, 516 

this psychophysical work has largely focused on manipulating second-order and higher-order 517 

statistical properties which characterize textures, while holding first-order (luminance) cues 518 

constant (e.g., Zavitz & Baker, 2013, 2014). This is a sensible research strategy because it neatly 519 

isolates the problem of understanding how higher-order statistics influence segmentation. 520 

However, it is ultimately incomplete since natural region boundaries typically contain first-order 521 

cues like color and luminance (Johnson & Baker, 2005; Ing, Wilson, & Geisler, 2010; Mely et al., 522 

2016; Breuil et al., 2019), which are known to combine with higher-order cues for localization and 523 

segmentation (Rivest & Cavanaugh, 1996; McGraw, Whitaker, Badcock, & Skillen, 2003; Ing et 524 

al., 2010; DiMattina et al., 2012). In most studies in which first-order cues are manipulated they 525 

are presented as steps or gratings (e.g., Elder & Sachs, 2004; McIlhagga, 2018), or when they are 526 

measured from natural images, it is as average luminance within a region (Ing et al., 2010; 527 

DiMattina et al., 2012). However, as we see in Fig. 1, differences in mean luminance can also be 528 

caused by differences in the proportion of light and dark pixels in each surface region, with no 529 

abrupt change in albedo at the boundary. We refer to boundaries of this kind as luminance texture 530 

boundaries (LTBs), to distinguish them from luminance step boundaries (LSBs). Understanding 531 

whether or not these two kinds of luminance cue (LTB, LSB) are processed via the same, different, 532 

or partially overlapping mechanisms is of great utility for understanding how first-order and 533 

higher-order cues combine to enable natural boundary segmentation. The present study provides a 534 
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first step in this direction, suggesting that multiple mechanisms may contribute to luminance-based 535 

boundary segmentation in natural vision. 536 

Multiple mechanisms for segmentation using luminance cues 537 

Clearly, whenever there are mean differences in luminance between two regions, a single stage of 538 

linear filtering (Fig. 4a) is capable of detecting this difference, for both LTBs (Fig. 4b) and LSBs 539 

alike. However, this simplistic model would make the prediction that for any two boundaries with 540 

equal luminance differences, segmentation performance should be identical. Explicitly testing this 541 

idea in Experiment 2 and Experiment 3 lead us to reject this model. Further exploration revealed 542 

that we can however explain the LTB segmentation data in Experiments 2, 3 with a single stage 543 

of linear filtering if we incorporate a divisive operation (Carandini & Heeger, 2012) which 544 

normalizes filter outputs by global RMS contrast. Nevertheless, even with this improvement, any 545 

model positing a single stage of filtering computing a luminance difference is highly susceptible 546 

to interference from stimuli which provide extraneous luminance cues, for instance a shadow edge 547 

(LSB) with an orientation conflicting with the LTB orientation. We test this prediction explicitly 548 

in Experiment 4, where we investigated the ability of observers to segment LTB stimuli in the 549 

presence of masking LSB stimuli. In this experiment, we find that LTB segmentation is remarkably 550 

robust to interference from masking LSB stimuli. This robustness to masking argues against the 551 

idea that a single stage of filtering is adequate to fully explain LTB segmentation. Further 552 

investigation with supra-threshold LSB maskers (Experiment 5) added further support to the 553 

notion of separate mechanisms, although we did observe some degree of influence of LSB masking 554 

stimuli on LTB segmentation performance (Supplementary Fig. S8), as was also the case in 555 

Experiment 4. 556 
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 We posit that two sequential stages of filtering on different spatial scales may be required 557 

to explain LTB segmentation, and implement the two-stage model is shown in Fig. 8a. It is 558 

comprised of an initial layer of filtering on a local spatial scale which detects the micro-patterns, 559 

followed by a second-stage of filtering which looks for spatial differences in the rectified outputs 560 

of the first-stage filters on a global scale. This model successfully explains the ability of observers 561 

to segment LTB stimuli in the presence of masking LSBs (Fig. 8b), and fits LTB segmentation 562 

data obtained in Experiment 3 (Supplementary Fig. S11). Although the first stage filters in our 563 

model are implemented as center-surround filters, which are known to be present in area V1 564 

(Ringach, Shapley, & Hawken, 2002; Talebi & Baker, 2012), orientation tuned mechanisms 565 

pooled across different orientations can in principle serve the same function (Motoyoshi & 566 

Kingdom, 2007). This general model architecture is known as the Filter-Rectify-Filter model 567 

(Chubb & Landy, 1991), and has been applied in dozens of studies to model texture segmentation 568 

and second-order vision (Landy, 2013). To our knowledge, the present study is the first time that 569 

it has been explicitly demonstrated that an FRF-style model can describe how observers segment 570 

textures defined entirely by first-order luminance cues.  571 

 One important finding from our psychophysical work is that although LTB segmentation 572 

is highly robust to interference from masking LSB stimuli, it is not entirely independent. For 573 

instance, in Experiment 4 we found that segmentation performance was slightly better when the 574 

LTB an LSB having congruent orientation were phase-aligned compared to opposite phase (Fig. 575 

7b). Furthermore, Experiment 5 revealed higher LTB segmentation thresholds for supra-threshold 576 

LSB maskers, although this effect was very modest for two of the three observers tested. This 577 

interaction between LTB and LSB cues could arise in one of two possible ways. One possibility, 578 

suggested by our model fitting, is that the first-stage filters have a non-zero DC response. In 579 
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particular, we observed that the on-center filters which best fit the data from Experiment 4 had a 580 

slightly positive response to a constant uniform stimulus (Supplementary Fig. S10). This nonzero 581 

DC response is consistent with previous psychophysical studies (Eckstein et al., 2002), as well as 582 

known neurophysiology of center-surround retinal ganglion cells (Croner & Kaplan, 1995). 583 

However, another possibility is that the final decision arises by integrating the outputs of a two-584 

stage model like that in Fig. 8a with zero DC response with the outputs of a single-stage model 585 

like that in Fig. 4a. Such a model would also be consistent with our observations, and it is of 586 

interest for future work to design an experiment which could distinguish between these two 587 

possibilities.  588 

Future directions 589 

Although natural surfaces may have luminance differences which arise due to luminance texture 590 

boundaries, many other textural differences do not involve changes in luminance. Micro-pattern 591 

orientation, density, and contrast and others all provide powerful segmentation cues (Dakin & 592 

Mareschal, 2000; DiMattina & Baker, 2019; Zavitz & Baker, 2013, 2014; Wolfson & Landy, 1995; 593 

Motoyoshi & Kingdom, 2007), which must be combined with luminance cues to enable 594 

segmentation in natural vision. It is of great interest for future research to understand how 595 

luminance textures combine with other cues. In particular, one could define black and white micro-596 

patterns as oriented bars instead of the dots used here, and simultaneously vary orientation and 597 

luminance cues to see how these cues summate, i.e. via probability summation or additive 598 

summation (Kingdom et al., 2015). Such an experiment would greatly expand the literature on the 599 

interaction of first-order and second-order cues, which has largely been limited to simple detection 600 

experiments in which the first-order cues were presented as gratings (Schofield & Georgeson, 601 

1999; Allard & Faubert, 2007). Another interesting direction of research would be to consider how 602 
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luminance steps and luminance textures combine for boundary segmentation. In many cases, two 603 

surfaces may have both kinds of cues defining luminance difference, and therefore combining both 604 

cues will be helpful for segmentation. Although we suggest that the mechanisms are not identical, 605 

they are most likely overlapping and therefore this kind of psychophysical summation experiment 606 

would be very interesting.  607 

 The present study strongly suggests the possibility of neural mechanisms tuned to LTBs 608 

which are minimally influenced by overlapping LSBs. We hypothesize that individual neurons 609 

tuned to LTBs will most likely be found in extra-striate areas, for instance V2 and V4, which are 610 

known to contain units sensitive to second-order boundaries (Mareschal & Baker, 1998; Schmid, 611 

Purpura, & Victor, 2014) and units exhibiting texture selectivity (Okazawa, Tajima, & Komatsu, 612 

2017). As suggested by our psychophysical models, neurons at higher areas of the visual pathway 613 

may receive inputs from neurons in V1 or V2 responsive to the micro-patterns or texture elements. 614 

If the afferent presynaptic V1 neurons in one spatial region are optimally driven by light micro-615 

patterns, and those in an adjacent spatial region prefer dark micro-patterns, the downstream extra-616 

striate neuron will be sensitive to differences in the proportion in light and dark micro-patterns in 617 

these adjacent regions. It is of great interest for future neurophysiology studies to see if neurons 618 

can be observed which are selectively responsive to LTB stimuli, while being poorly driven, if at 619 

all, by step edges. Such neurons could provide a physiological basis for the ability to segment 620 

surface boundaries in the presence of shadows and distinguish shadow edges from boundaries 621 

(Vilankar, Golden, Chandler, & Field, 2014; Breuil et al., 2019).  622 

 Finally, a large body of work has demonstrated that deep neural networks trained on visual 623 

tasks like object recognition develop intermediate-layer representations which are sensitive to 624 

textural features (Kriegeskorte, 2015; Guclu & van Gerven, 2015). An entire sub-field of 625 
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computational neuroscience known as “artificial neurophysiology” has developed to analyze the 626 

selectivity properties of units in these deep networks, and to interpret their results in light of known 627 

neurophysiology. It would be of great interest for future investigation to do an artificial 628 

neurophysiology study on deep neural networks resembling the ventral visual stream (Guclu & 629 

van Gerven, 2015) in order to look for neurons which are tuned to luminance texture boundaries 630 

while being relatively unresponsive to luminance steps, and to see if decoding such a population 631 

of units can account for human performance psychophysical in texture segmentation tasks. 632 

 633 
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FIGURE CAPTIONS 794 

Figure 1: Boundaries without luminance step edges 795 

(a) A luminance step boundary (LSB) and a simple detection model in which a linear Gabor filter 796 

measures the regional luminance difference. (b) Model similar to that in (a) where the LSB is 797 

analyzed by multiple Gabor filters at varying spatial scales. (c) Example of luminance texture 798 

boundary (LTB). The luminance difference is defined by differing proportions of black and white 799 

micropatterns on each side of the boundary, with no sharp luminance change at the boundary. (d) 800 

Two juxtaposed textures from the Brodatz database. Although there is clearly a regional difference 801 

in luminance, there is no sharp luminance change at the boundary.   802 

Figure 2: Stimulus images  803 

(a) Examples of luminance texture boundary (LTB) stimuli used in this study, shown for varying 804 

densities (16, 32, 64 micropatterns on each side of boundary) and proportion unbalanced 805 

micropatterns (𝜋𝑈 = 0.2, 0.4, 0.6, 0.8). For all of these example stimulus images, the boundary is 806 

right oblique. (b) Luminance step boundary (LSB) stimulus. (c) Stimulus image examples with 807 

LTB and LSB having the same orientation (congruent), either phase-aligned (con-0) or opposite-808 

phase (con-180).  (d) Example image having superimposed, orthogonal (incongruent)  luminance 809 

texture (right-oblique) and luminance step (left-oblique) boundaries (inc). 810 

Figure 3: Psychometric functions and threshold distributions 811 

(a) Psychometric functions and fitted functions based on SDT model (blue curves) for four 812 

observers (EMW, MCO, ERM, KNB) performing luminance texture boundary (LTB) 813 

segmentation (Experiment 1a) as a function of the  proportion unbalanced micropatterns (𝜋𝑈), 814 

i.e. the proportion of micropatterns not having an opposite-polarity counterpart on the same side 815 

of the boundary. The size of each solid dot is proportional to the number of trials obtained at that 816 
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level, and dashed black lines denote 75% thresholds for the fitted curves. Circles and lines indicate 817 

threshold estimates and 95% confidence intervals obtained from 200 bootstrapped re-samplings of 818 

the data. (b) Histogram of segmentation thresholds (𝜋𝑈) measured from all observers (N = 17) in 819 

Experiment 1a.  820 

Figure 4: Single-stage filter model  821 

(a) Model with a single stage of filtering. Luminance differences are computed across the left-822 

oblique and right-oblique diagonals, passed through a rectifying, exponentiating nonlinearity and 823 

subtracted to determine the probability P(R) of observer classifying the boundary as right-oblique. 824 

(b) Fits of the model in (a) to LTB segmentation data from Experiment 1a for the same observers 825 

as in Fig. 3a.   826 

Figure 5: Holding luminance difference constant 827 

(a) Examples of LTB stimuli used in Experiment 2, having an equal number (8) of unbalanced 828 

micropatterns on each side of the boundary, with varying numbers (0, 16, 32) of balanced micro-829 

patterns. In this series, the luminance difference across the boundary is constant for all stimuli. (b) 830 

Proportion correct responses for three observers for differing numbers of balanced micropatterns. 831 

Lines indicate 95% binomial proportion confidence intervals for each level (N = 50 trials at each 832 

level). We see that performance degrades significantly with increasing numbers of balanced 833 

micropatterns, despite constant luminance difference. This suggests that a simple luminance 834 

difference computation may be inadequate to explain segmention of LTB stimuli.  835 

Figure 6: Using micro-pattern amplitude to vary global luminance difference 836 

(a) Examples of LTB stimuli used in Experiment 3, with different Michaelson contrasts 0.2, 0.5, 837 

0.8. (b) Bootstrapped SDT psychometric function fits (200 bootstrapped re-samplings) with 90 838 

percent confidence intervals of observer performance as a function of proportion unbalanced 839 
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micropatterns (left panels) and absolute luminance difference (right panels). This shows that 840 

identical luminance differences give rise to significantly different levels of observer performance 841 

for the three Michaelson contrasts (right panels), i.e. global luminance difference is a very poor 842 

predictor of performance. Instead, observer performance is much better predicted by the proportion 843 

of unbalanced micro-patterns, (almost) irrespective of micro-pattern amplitude (left panels).   844 

(c) Data from Experiment 3 (black dots) and fits of the additive (red) and divisive (blue) signal 845 

detection theory models to the data. Each observer was tested at three different maximum micro-846 

pattern amplitudes, which correspond to different Michaelson contrasts (0.2, 0.4, 0.8) of the 847 

stimuli.  We see that a model incorporating a global luminance difference computation followed 848 

by contrast normalization (blue) provides an excellent fit to this data.  849 

Figure 7: Effects of masking LSBs on LTB segmentation 850 

(a) Performance for N = 9 observers in Experiment 4, segmenting LTB stimuli using a proportion 851 

of unbalanced micro-patterns (𝜋𝑈), set at 75% JND for each observer, as measured in Experiment 852 

1a. We see similar performance for most observers in the absence of a masker (neutral case, neu) 853 

as well as with a masker having congruent (con) and incongruent (inc) orientation. Here the 854 

congruent case pools across in-phase and opposite-phase conditions. (b) Performance for same 855 

observers for congruent stimuli which are in-phase (con-0) and opposite-phase (con-180).   856 

Figure 8: Two-stage model fits Experiment 4 results 857 

(a) Model with two cascaded stages of filtering. The first stage of this model detects texture 858 

elements (here, micro-patterns) on a fine spatial scale. The second stage looks for differences in 859 

the outputs of these first-stage filters on the coarse spatial scale of the texture boundary, at either 860 

of two possible orientations. Such a model can detect differences in the proportions of black and 861 

white micro-patterns on opposite sides of the boundary, while being fairly robust to interference 862 
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from luminance steps. (b) Fits of single-stage model (green squares) and two-stage model (red 863 

squares) to data from Experiment 4 (blue circles, lines denote 95% confidence intervals), for four 864 

ways of combining LTB and LSB stimuli:  neutral (neu);  congruent, in-phase (c0);  congruent, 865 

opposite phase (c180);  and incongruent (inc).  866 
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FIGURE 2 907 
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FIGURE 3 915 
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FIGURE 4 934 
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FIGURE 5 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.06.27.175505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175505
http://creativecommons.org/licenses/by-nc-nd/4.0/


bioRxiv.org Pre-print  2.1 – DO NOT CIRCULATE 

44 

 

 964 
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FIGURE 7 978 
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