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Abstract. This paper presents a new deformable model using both population-
based and patient-specific shape statistics to segment lung fields from serial 
chest radiographs. First, a modified scale-invariant feature transform (SIFT) lo-
cal descriptor is used to characterize the image features in the vicinity of each 
pixel, so that the deformable model deforms in a way that seeks for the region 
with similar SIFT local descriptors. Second, the deformable model is constrained 
by both population-based and patient-specified shape statistics. Initially, popula-
tion-based shape statistics takes most of the rules when the number of serial im-
ages is small; gradually, patient-specific shape statistics takes more rules after a 
sufficient number of segmentation results on the same patient have been ob-
tained. The proposed deformable model can adapt to the shape variability of dif-
ferent patients, and obtain more robust and accurate segmentation results.  

1   Introduction 

Evaluation of the variation of cardiac size from month to month by taking serial chest 
radiographs [1-3] remains crucial for the treatment of hemodialysis patients. This is be-
cause the evaluation of a patient’s dry weight (DW) is usually based on the cardiac size 
measured during each dialysis session [4], and the misevaluation of DW often results in a 
fatal illness such as patient’s death. Since segmentation of lung fields in the chest radio-
graphs provides a means to measure cardiac size, it is important to accurately segment 
lung fields from the regularly captured serial chest radiographs of each patient. Methods 
for segmenting lung fields in chest radiographs [1] can be classified into three groups, 
i.e., the rule-based methods [3], the pixel-based classification methods [2], and the de-
formable model-based methods, including ASM [5] and AAM [6]. In this paper, a new 
deformable model is proposed for robust and accurate serial lung field segmentation. 
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In deformable segmentation, it is important to characterize the relatively rich image 
features around the boundaries of lung fields, and then use these image features to 
guide the image segmentation. This is because the generic image features, such as 
edges along the boundaries of lung fields, are always inconsistent, and not sufficiently 
distinctive to discriminate, for example, rib edges from lung field edges. Therefore, the 
complex local descriptors, such as SIFT [7], might be suitable to characterize the im-
age features around each point along the boundaries of lung fields. In the proposed 
deformable model, SIFT is used to capture image features for guiding the segmentation 
of lung fields, since it has been validated as the best among many local descriptors [8]. 

Another important idea in the proposed method is that the deformable model is 
constrained by both population-based and patient-specific shape statistics. The shape 
statistics collected from the segmentation results of a population, i.e., the shapes of 
lung fields of individuals, can be used for constraining the segmentation of lung fields 
in the initial time-point images of a specific patient. As the number of serial images of 
the same patient increases with time, it is possible to collect the patient-specific shape 
statistics from previous segmentation results of the same patient and use it to guide 
the segmentation of lung fields in the serial chest radiographs of the same patient. In 
this way, the deformable model gradually adapts to the shape statistics of the specific 
patient and yields more robust segmentation results. In our method, the patient-
specific shape statistics is updated each time after a new image is acquired and seg-
mented; then the segmentation results of all the previous time-point images are further 
refined by using the updated shape statistics. 

2   Method 

2.1   Description  

In the clinical setting, serial chest radiographs are acquired monthly from each pa-
tient. Our goal is therefore to accurately segment the lung fields from the serial im-
ages and provide measures such as cardiac size for quantitative estimation of DW. At 
each time-point t, two major steps are performed for the newly captured image, i.e., 
the preprocessing step and the deformable segmentation step, as detailed next.  

• The preprocessing step. The first time-point image is selected as the template im-
age, and the image captured at time t is rigidly transformed onto the space of the tem-
plate image by using rigid transformation [9]. Moreover, the image intensities are 
globally normalized to have a similar distribution to the one of the template image 
[10]. Thus, we obtain a normalized image at time t. All the normalized serial images 
are denoted as {Ii, i=1, 2,…, t}, where It is the current time-point image.  
• The deformable segmentation step. A new deformable model is utilized to segment 
the current image It, by using the statistical information collected from a population 
and also from t-1 previously segmented images of the same patient. The energy func-
tion of the deformable model is defined as, 

IPSIFTSmth
ttttttt EEEEE ωω +−++= )1(  (1) 

where Smth
tE  denotes the smoothness constraint of the deformable contour, and it re-

quires that the first and the second derivatives of the deformable contour be close to 
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zero. SIFT
tE  denotes the overall difference of the SIFT features of the corresponding 

model points in the image tI  and in the template 
0

I , which is actually a mean shape 

generated from a public database [2, 11]. P
tE  denotes the constraint derived from the 

population-based shape statistics, while I
tE  denotes the constraint required by the pa-

tient-specific shape statistics, trained from t-1 segmentation results on previous time-
point images of the same patient. The energy term I

tE  is not existent for several initial 
time-point images, simply because the available segmentation results for the specific 
patient are not sufficient to train a statistical shape model. We can actually begin to train 
the patient-specific statistical shape model once sN  time-point images have been col-

lected and segmented. Here, sN  is the minimal number of segmentation results for the 

same patient, and 5=sN  is used in our study. Afterward, we can gradually increase the 

weight of energy term I
tE  and simultaneously decrease the weight of energy term P

tE , 

as more and more new images are added. This is controlled by parameter tω : 
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If we have more than 
b

N  images from the same patient, we will stop using the popula-

tion-based shape constraint term P
tE , since the patient-specific statistics collected from 

over 
b

N  samples is sufficient to capture the variation of lung fields of the patient. 

The deformable segmentation of image tI  is summarized as follows: 

(1) If sNt ≤ , segment tI  by minimizing Eq. (1), where tω  is 0 and I
tE  is not used.   

(2) If sNt > , the following two steps are performed (refer to Fig.1 for details): 
Step (2.1), segment image tI  by incorporating the patient-specific constraint term 

I
tE , which is derived from t-1 segmentation results on previous time-point images 

11,..., −tII . 
Step (2.2), update the patient-specific shape statistics by adding a new segmenta-
tion result of tI  to the training set, and then use this updated patient-specific 
shape statistics to refine the segmentations on all t images tII ,...,1 . Finally, the 
patient-specific shape statistics is updated again, which will be used for segment-
ing the next time-point image. 

1I  2I 1−tI  tI  …  

I
tE  

I
tE  

1I  2I 1−tI  tI  …  

Step (2.1) 

Step (2.2)  

 

Fig. 1. Two major steps for seg-
menting the current image at  t 

Fig. 2. Demonstration of using SIFT features for corre-
spondence detection in two different time-point images 
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2.2   Energy Terms 

Denoting the deformable contour as M ordered points, i.e.,{ }Miyxv iii ,...,2,1|),( == , 
the smoothness constraint term Smth

tE  can be represented as, 

( ) |)2(|||)|(| 1,,1,
1 1
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i
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where Cont
itE ,  and Curv

itE ,  are the continuity and the curvature constraints on the i-th 

point of the contour during the segmentation of lung fields at time t. 
iα  and 

iβ  are the 

weights, and td  is the average distance between neighboring points in the contour.  

   The second energy term in Eq. (1) SIFT
tE  is a distance measure between two SIFT 

features, and minimizing it enables us to determine point correspondences between 
the template 

0
I  and image tI . As we will describe in the next subsection, SIFT  

features are distinctive, thus facilitating the correspondence detection in the chest 
radiographs. The SIFT features used in our study are designed as: for each point 

iv , a 

128-element vector is  is used to represent the histogram of orientations in the local 

image around the point 
iv . Then, the energy term SIFT

tE  can be defined as, 
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where Mdl
is  and t

is  represent the SIFT feature vectors of point 
iv  in the template im-

age 
0

I  and its corresponding point in the image tI .  )(lsi
Mdl  and )(lst

i  represent the l-

th element of Mdl
is  and t

is , respectively. 
The third and forth energy terms are population-based and patient-specific statistical 

constraints, respectively. We use [5] to capture shape statistics from the population, 
i.e., a set of manually segmented training samples [2]. In contrast, we use a hierarchical 
shape representation in [12] to effectively capture the patient-specific shape statistics, 
since the number of segmentation results from the same patient is not large. 

2.3   SIFT Local Descriptor 

SIFT, as detailed in [7], consists of four major steps: (1) scale-space peak selection; (2) 
key point localization; (3) orientation assignment; (4) key point description. The first 
two steps detect the key points in the scale space, and they are not required in this 
study since we only focus on using SIFT features of the contour points along the 
boundaries of lung fields. Thus, we use the last two steps to compute the SIFT features 
for each contour point. The SIFT local descriptor for a point is computed as follows: 

(1) A patch is centered on the point, rotated according to the dominant gradient orien-
tation around the point, and scaled to an appropriate size.  

(2) The SIFT local descriptor is then created by sampling the magnitudes and the 
orientations of the image gradients in the patch around the point, to build the 
smoothed orientation histograms for capturing the important information in this 
patch of image. A 4x4 array of histograms, each with 8 orientation bins, is ob-
tained, capturing the rough spatial structure of this patch of image.  
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(3) This 128-element vector is then normalized to a unit length and further thresh-
olded to remove the elements with small values.  

Fig. 2 shows the performance of SIFT features in detecting corresponding points in 
the chest radiographs. In this figure, the SIFT features of the red crossed point in one 
time-point image as shown in the left image are compared with the SIFT features of 
all the points in another time-point image as shown in the middle image. As indicated 
by the color-coded similarity map in the right image, a very small number of points in 
the middle image are similar to the red crossed point in the left image. Since the two 
images have been rigidly aligned, the corresponding point of the red crossed point in 
left image is detected in the middle image by searching the maximal similarity within 
a local neighborhood. 

2.4   Learning Patient-Specific Shape Statistics 

For serial image segmentation, it is important to use the segmentation results from the 
previous time-point images to guide the segmentation of the current time-point image. 
Similarly, the segmentation results of previous images can also be refined using the 
information collected in the later time-points. Since we have normalized intensities 
and poses of other time-point images to the first time-point image, all the lung fields 
are globally overlapped well. However, although the globally aligned serial lung field 
shapes are very similar, there still exist visible differences, due to distortion, pose 
change, 3D-2D projection, and normal or abnormal development. Fig. 3 shows an 
example of the serial lung field shapes. The thin black contours represent the bounda-
ries of lung fields in each image, while the thick red contours are identical and they 
are actually the same contour segmented from the first time-point image. It can be 
seen that the segmentation results obtained from the serial images of the same patient 
are globally similar while locally different, because of the reasons mentioned above. 
Note that it is relatively easy to capture the shape statistics from the shapes of the 
same patient, even using a small number of shape samples. This type of patient-
specific shape statistics, collected from the previous segmentation results, can guide 
the segmentation of the current and future time-point images. This is the main idea of 
our on-line learning method for capturing the patient-specific shape statistics.  

M2                    M3                      M4                     M5                     M6                      M7                     M8                      M9 

 M10                  M11                    M12                   M13                   M14                   M15                    M16                   M17 

 

Fig. 3. Demonstration of local deformations of lung field shapes from the serial images of the same 
patient. The thin black contours are the segmentation results of the serial images, and the thick red 
contours are identical, denoting the same shape segmented from the first time-point image. 
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At time-point t, we have t-1 previously segmented images and a current time-point 
image tI . We can use the t-1 segmentation results from images 11,..., −tII  (in Step (2.1) 
of Fig.1), or the t segmentation results from images tII ,...,1  (in Step (2.2) of Fig.1), as 
the training samples. In order to capture the patient-specific shape variability informa-
tion from the training samples, we adopt the hierarchical representation of shape sta-
tistics that can effectively guide the deformable segmentation of lung fields in the 
current time-point image [12].  

It should be noted that this on-line and incrementally learned patient-specific shape 
statistics can be used only after a sufficient number ( sN ) of segmentation results are 
obtained. As more images are processed, the constraint derived from the population-
based shape statistics becomes less and less important, while the constraint derived 
from the patient-specific shape statistics increases gradually. Finally, the weight for 
population-based statistical constraint is 0 if we have 

b
N  or more training samples. 

This mechanism enables the deformable model to adapt to the patient-specific shape 
variability, thus it is more robust and accurate for lung field segmentation. 

3   Experimental Results 

The serial frontal chest radiographs of 39 patients, most with up to 17 monthly scans, 
are used. The lung fields of all serial images have been manually delineated by a 
human observer, which are used as a gold standard to validate the segmentation re-
sults obtained by our method, a standard Snake [13], and ASM [6] in the next.  

3.1   Segmentation of Serial Chest Radiographs 

Visual comparison. Fig.4 qualitatively compares the performances of our method, the 
standard Snake, and ASM in segmenting the lung fields from the serial chest radio-
graphs (256x256). Initializations for these three methods are displayed in the top left 
image. The top right image is a selected time-point image from the serial images. The 
red, green and black contours denote the segmentation results by the standard Snake, 
ASM, and our method, respectively. It can be observed that our results are very close 
to the lung field boundaries, and they are temporally more stable than the ASM results 
(please refer to the four small serial images shown on the bottom of the figure). These 
results indicate that the use of patient-specific shape statistics improves the accuracy 
of image segmentation. They also indicate that a simple feature, such as a local gradi-
ent used in the standard Snake, is not able to describe the complex and inconsistent 
image content along the boundaries of lung fields. On the other hand, SIFT features 
facilitate the detection of correspondences in the serial images, which ensures the 
relatively better segmentations by our method.  

Quantitative comparison. We also used quantitative measures to compare the seg-
mentation results obtained by the three segmentation algorithms. We use the overlay 
percentage to compare the automated segmentation results with the manual segmenta-
tion results for each image. It turns out that the mean and standard deviation of overlay 
percentage are 93.8%±0.58% by our method, 92.6%±0.8% by ASM, and 78.7%±1.3% 
by the standard Snake. We also compute the average contour distance between auto-
mated segmentations and manual segmentations [2]. The mean and standard deviation 
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of average contour distance are 1.76±0.23 pixels by our method, 2.06±0.25 pixels by 
ASM, and 5.31±0.29 pixels by the standard Snake, respectively. These results show 
that our method achieved better performance than the standard Snake and ASM. 

3.2   1D and 2D Cardiothoracic Ratios  

By segmenting lung fields from chest radiographs, we can compute the diagnostic 
measures, i.e., cardiothoracic ratio (CTR), referred to as 1D-CTR. 1D-CTR is defined 
as the ratio of the transverse diameter of the heart to the transverse diameter of the 
thorax, as shown in Fig.5. Recently, the extraction of 2D cardiothoracic ratio (2D-
CTR) from the chest radiographs has been extensively studied [14], since it is be-
lieved to be more robust than 1D-CTR. In our study, 2D-CTR is defined as the 
squared root of the ratio between the area of white region and the area of both white 
and grey regions, as shown on the right of Fig.5.  

The importance of 1D-CTR has been validated in many clinical applications. For 
evaluating the usefulness of 2D-CTR, we need to measure the relationship between 
1D-CTR and 2D-CTR from the same serial chest radiographs. As shown by the left 
plot in Fig.6, 2D-CTR is highly related to 1D-CTR, which indirectly indicates that 
2D-CTR can be also used as a diagnostic measure.  

Moreover, the Bland and Altman plots [15] of 1D-CTR and 2D-CTR are provided 
in the middle and right plots in Fig.6, respectively, by using the manual segmentation 
results as the gold standard. These two plots indicate that the distribution of 2D-CTR 
is more compact than that of 1D-CTR. Also, the mean difference value by 2D-CTR 
measurement is smaller than that by 1D-CTR measurement. Moreover, the confidence 
interval of 2D-CTR is tighter than that of 1D-CTR. 

  
initial contour                 matching results 

 
      month 8      month 9       month 10      month 11 

Fig. 4. Comparison of automated segmentations 

 
 

Fig. 5. 1D-CTR and 2D-CTR. In left 
image, MR+ML denotes the cardiac di-
ameter, and MTD denotes the thoracic 
diameter. In right image, white region 
represents the central shadow in the chest 
radiograph, while gray region represents 
the bilateral lung fields. 

4   Conclusion  

We have presented a new deformable model to segment the lung fields from serial 
chest radiographs by using both population-based and patient-specific shape statistical 
constraints. The patient-specific shape statistics is on-line and incrementally learned 

MTD

MR

ML
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from the segmentation results of the previous time-point images of the same patient. 
For the initial time-point images, the population-based shape statistics plays the major 
rule for statistically constraining the deformable contours. As more and more segmen-
tation results are obtained, the patient-specific shape statistics starts to constrain the 
segmentation, and it gradually takes the major rule for statistical constraining. Also, 
SIFT features, used to characterize image points, are relatively distinctive, thus mak-
ing the correspondence detection in the two chest radiographs relatively easy. Ex-
perimental results show that our method can segment the lung fields more accurately, 
compared to the standard Snake and ASM. Finally, we demonstrated that 2D-CTR is 
highly related to 1D-CTR, but it is more robust to compute the diagnostic measure.  

Fig. 6. Relationship between 1D-CTR and 2D-CTR (left), the Bland and Altman plots of 1D-
CTR and 2D-CTR (middle and right), respectively 
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