Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs - Supplementary Material -

Bjoern Andres ${ }^{1 *}$, Julian Yarkony ${ }^{2 *}$, B. S. Manjunath ${ }^{2}$, Steffen Kirchhoff ${ }^{1}$, Engin Turetken ${ }^{3}$, Charless C. Fowlkes ${ }^{4}$, and Hanspeter Pfister ${ }^{1}$

${ }^{1}$ Harvard University, ${ }^{2}$ UC Santa Barbara, ${ }^{3}$ EPFL, ${ }^{4}$ UC Irvine

1 Derivation of the Dual of the Decomposition

We now derive the dual of the Lagrangian decomposition. We begin by writing the decomposition below.

$$
\begin{align*}
\max _{\theta^{p m c}, \psi} & 1^{T}\left(\theta^{\mathrm{P}}-\theta^{p m c}-Y \psi\right)+1^{T}\left(\psi+\theta^{\mathrm{NP}}\right) \tag{1}\\
\text { subject to } & Z \theta^{p m c} \geq 0 \tag{2}\\
& -W \psi \geq \theta^{\mathrm{NP}} \tag{3}\\
& \theta^{\mathrm{P}}-\theta^{p m c}-Y \psi \leq 0 \tag{4}\\
& \min \left(\left[0,-\theta^{\mathrm{P}}\right]\right) \leq-\theta^{p c m}-Y \psi \tag{5}\\
& \psi \geq 0 \tag{6}
\end{align*}
$$

The dual of this decomposition for the planar multicut problem is derived in [1]. In order to be closer to the form of [1], we make the following adjustments to the notation. We define $\phi=\min \left(\left[0,-\theta^{\mathrm{P}}\right]\right)$ and $\hat{\lambda}=-\theta^{p m c}-\phi$. Notice that $\theta^{p m c}=-\hat{\lambda}-\phi$. We now rewrite the decomposition using $\hat{\lambda}$ and ϕ.

$$
\begin{array}{ll}
\max _{\hat{\lambda}, \psi} & 1^{T}\left(\theta^{\mathrm{P}}+\hat{\lambda}+\phi-Y \psi\right)+1^{T}\left(\psi+\theta^{\mathrm{NP}}\right) \\
\text { subject to } & Z(-\hat{\lambda}-\phi) \geq 0 \\
& -W \psi \geq \theta^{\mathrm{NP}} \\
& \theta^{\mathrm{P}}+\hat{\lambda}+\phi-Y \psi \leq 0 \\
& \phi \leq \hat{\lambda}+\phi-Y \psi \\
& \psi \geq 0 \tag{12}
\end{array}
$$

We now move terms to different sides of the relevant inequalities. This facilitates the writing of the LP as a Lagrangian.

[^0]\[

$$
\begin{align*}
\max _{\hat{\lambda}, \psi} & 1^{T}\left(\theta^{\mathrm{P}}+\hat{\lambda}+\phi-Y \psi\right)+1^{T}\left(\psi+\theta^{\mathrm{NP}}\right) \tag{13}\\
\text { subject to } & 0 \leq-Z \hat{\lambda}-Z \phi \tag{14}\\
& 0 \leq-\theta^{\mathrm{NP}}-W \psi \tag{15}\\
& 0 \leq-\theta^{\mathrm{P}}-\phi+Y \psi-\hat{\lambda} \tag{16}\\
& 0 \leq \hat{\lambda}-Y \psi \tag{17}\\
& \psi \geq 0 \tag{18}
\end{align*}
$$
\]

We now write the above LP as a Lagrangian.

$$
\begin{align*}
\min _{\gamma, \omega, \beta, \delta \geq 0} \max _{\hat{\lambda}, \psi \geq 0} & 1^{T}\left(\theta^{\mathrm{P}}+\hat{\lambda}+\phi-Y \psi\right)+1^{T}\left(\psi+\theta^{\mathrm{NP}}\right) \tag{19}\\
& +\gamma^{T}(-Z \hat{\lambda}-Z \phi) \tag{20}\\
& +\omega^{T}\left(-\theta^{\mathrm{NP}}-W \psi\right) \tag{21}\\
& +\beta^{T}\left(-\theta^{\mathrm{P}}-\phi+Y \psi-\hat{\lambda}\right) \tag{22}\\
& +\delta^{T}(\hat{\lambda}-Y \psi) . \tag{23}
\end{align*}
$$

Now we group the terms that have components of ψ and $\hat{\lambda}$ together. This facilitates the creation of new constraints.

$$
\begin{align*}
\min _{\gamma, \omega, \beta, \delta \geq 0} & 1^{T}\left(\theta^{\mathrm{P}}+\phi\right)+1^{T} \theta^{\mathrm{NP}}-\gamma^{T} Z \phi-\omega^{T} \theta^{\mathrm{NP}}+\beta^{T}\left(-\theta^{\mathrm{P}}-\phi^{T}\right) \tag{24}\\
& +\left(1^{T}-\gamma^{T} Z-\beta^{T}+\delta^{T}\right) \hat{\lambda} \tag{25}\\
& +\left(-1^{T} Y+1^{T}-\omega^{T} W+\beta^{T} Y-\delta^{T} Y\right) \psi \tag{26}
\end{align*}
$$

Since $\hat{\lambda}$ is unbounded and ψ is non-negative, the LP with the following constraints is equivalent to the Lagrangian above.

$$
\begin{align*}
\min _{\gamma, \omega, \beta, \delta \geq 0} & 1^{T}\left(\theta^{\mathrm{P}}+\phi\right)+1^{T} \theta^{\mathrm{NP}}-\gamma^{T} Z \phi-\omega^{T} \theta^{\mathrm{NP}}+\beta^{T}\left(-\theta^{\mathrm{P}}-\phi^{T}\right) \tag{27}\\
\text { subject to } & \gamma^{T} Z+\beta^{T}=1^{T}+\delta^{T} \tag{28}\\
& \omega^{T} W \geq \beta^{T} Y-1^{T} Y+1^{T}-\delta^{T} Y . \tag{29}
\end{align*}
$$

Except for transposes of some terms, this is the final form of the Lagrangian decomposition used in the main manuscript.

References

1. J. Yarkony. MAP inference in Planar Markov Random Fields with Applications to Computer Vision. PhD thesis, University of California, Irvine, 2012.

[^0]: * Authors contributed equally.

