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Abstract 

We introduce the concept of a segment of a degenerate convex polytope specified by a system 

of linear constraints, and explain its importance in developing algorithms for enumerating the 

faces. Using segments, we describe an algorithm that enumerates all the faces, in time polynomial 

in their number. The role of segments in the unsolved problem of enumerating the extreme points 

of a convex polytope specified by a degenerate system of linear constraints, in time polynomial 

in the number of extreme points, is discussed. 
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1. Introduct ion 

The problem of  enumerating all the extreme points (or vertices) of  a convex polytope 

specified by a system of linear constraints has been studied extensively in the literature. 

It is discussed in textbooks (see [ 14, Section 3.19] ), and a large number of  journal 

articles have discussed a variety of  algorithms for it (see [ 1-6,9,10,12,16,17] ). There 

are some applications in which this problem appears, but the typical exponential growth 

of  the number of  extreme points in terms of  the number of  variables n and the number 

of  constraints p in the linear system describing the polytope makes this practical only 

for systems in which both n and p are small. In spite of  this, there is considerable 

mathematical interest in developing efficient new algorithms for this problem and the 

problem of  enumerating not only the extreme points, but all the faces of  all dimensions. 
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For any matrix H, we denote by Hi., H.), its ith row vector and j th column vector, 

respectively. We will use the abbreviation LP for "linear program". For two sets D, E, 

D \ E  denotes the set of  elements of  D which are not in E. 

If  {a 1 . . . . .  a t} is a set of  points in N ~, we denote its convex hull by (a I . . . . .  at). The 

affine rank of  {a 1 . . . . .  a t} is defined to be the rank of  the set {a 2 -  a 1 . . . . .  a t -  al};  it 

is the dimension of  the affine space of  {a 1 . . . . .  at}. 

Without any loss of  generality, we consider the convex polytope K which is the set 

of  feasible solutions of  the system of constraints 

A x = b ,  x>/O,  (1) 

where A is a matrix of  order m x n and rank m, and n > m. For j = 1 . . . . .  n, A.j is the 

column of  the variable xj in (1).  Our method can be extended very directly to handle 

polytopes defined by more general systems consisting of  linear equations, inequalities 

and/or  bounds on variables; or such general systems can be transformed into a system 

of  the form (1) by simple transformations that preserve one-to-one correspondence 

between faces of  the original and the transformed systems. We assume that A, b are 

integer, and that K is nonempty and bounded. 

If  max{xj: x C K} = 0, then the variable xj is equal to the constant 0 all over K and 

can be eliminated. So, we assume that max{x /  x E K} > 0 for all j = 1 . . . . .  n. This 

implies that the dimension of  K is n - m. 

Given a convex polytope F C R ~, a hyperplane H in 1R" is said to be a supporting 

hyperplane for F iff F is completely contained in one of  the halfspaces determined by 

H, and F n H  ~0 .  

Definition 1.1 (Faces of  a convex polytope). Let F C N n be a convex polytope. A 

face of F is either the empty set, or F itself, or the intersection of  F with a supporting 

hyperplane. 

Faces of  dimension 0 of  a convex polytope are its extreme points or vertices, and 

its one-dimensional faces are its edges. A facet of a convex polytope F is a face 

whose dimension is one less than the dimension of  F .  A facetal hyperplane of a full- 

dimensional convex polytope in R n is a hyperplane in R n containing one of  its facets. 

Geometrically, an extreme point of  a convex polytope is said to be nondegenerate 

(degenerate) if the number of  facets incident at it is equal to (strictly greater than) the 

dimension of  the convex polytope. The convex polytope itself is said to be nondegenerate 

if all its extreme points are nondegenerate, degenerate if at least one of  its extreme points 

is degenerate. 

Given a linear inequality constraint and a point 2 satisfying it, the constraint is said 

to be active at ~ if it holds as an equation there, inactive if it holds as a strict inequality. 

Given a convex polytope F in R n, it can be represented algebraically through a 

system of  linear equations and inequalities in variables x = (Xl . . . . .  Xn) T, in several 

different ways. The various representations differ in redundant constraints, etc. Let 

(P) denote a linear constraint representation of  F ,  in which if there are any linear 
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equations, the system of linear equations is linearly independent. In this representation 

(P),  algebraically, an extreme point 2 of F is said to be nondegenerate (degenerate) if 

the total number of linear equations in (P) and the inequality constraints in (P) active 

at 2 is equal to n (strictly greater than n). The system (P) is said to be nondegenerate 

if every extreme point of f '  is nondegenerate; degenerate if at least one extreme point 

o f / '  is degenerate by this algebraic definition. 

I f  a convex polytope is degenerate (nondegenerate) by the geometrical definition, 

every minimal representation (i.e., a representation using the smallest possible number of 

constraints) of it will be degenerate (nondegenerate). Also, when a system representing 

a convex polytope is nondegenerate, the convex polytope is nondegenerate. 

From the definition we see that system (1) representing K is degenerate if b is in 

the nonnegative hull of some set of m - 1 or less column vectors of A, nondegenerate 

otherwise. The problem discussed in this paper is to enumerate all the faces of K when 

it is represented by a system of the form (1) which is degenerate. 

Some methods for enumerating faces use a pivot scheme to first enumerate the extreme 

points of K based on enumerating the feasible bases for (1). Every extreme point of K 

is the basic feasible solution (BFS) associated with one or more feasible bases for ( 1); 

this is the principle used in these methods. 

I f  ( 1 ) is nondegenerate, every extreme point of K is associated with a unique feasible 

basis for (1) and vice versa. If  go is the number of extreme points of K, the pivot 

scheme of [2] enumerates all these extreme points in time O(gomn), an effort which 

grows linearly with go. Also, in this case the pivot step of entering any nonbasic variable 

into a feasible basic vector leads to an edge. Hence in this case at every vertex of K, 

the number of incident edges is equal to the dimension of K, that is why K is said 

to be a simple (or regular) convex polytope in this case, and all its edges can be 

generated with an effort which grows linearly with their number by the pivot scheme of 

entering one nonbasic variable at a time into a feasible basic vector for (1). And when 

(1) is nondegenerate, for any r, any set of r edges {el . . . . .  er} of K with a common 

vertex 2 defines an r-dimensional face F containing that vertex 2, with the property that 

{el . . . . .  er} is exactly the set of edges incident at 2 in F [13]. So, in this case, once 

all the edges are determined, all faces of all dimensions can be determined using this 

result, in linear time [8]. 

If  (1) is degenerate, there may be several feasible bases associated with a degenerate 

extreme point of K, and the number of feasible bases for (1) may grow exponentially 

with go and n. A degenerate polytope will have at least one vertex at which the number 

of incident edges is strictly greater than the dimension of the polytope, hence such 

polytopes are also called nonsimple polytopes. And in this case, for r ~> 2, given a set 

E of r edges incident at a vertex 2 of K, there may be no face of K containing exactly 

these edges incident at 2. As an example, consider the polytope in R 3 illustrated in Fig. 

1. On this polytope, the pair of edges (one joining p4 and p3 and the other joining p4 
and p2) do not form a two-dimensional face, even though they have a common vertex 
p4. 

In [ 16], Provan developed a polynomial time algorithm for enumerating the extreme 
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Fig. 1. Polytope with five extreme points in ~3. The lines are edges. (pl, p2, p3, p4) is a segment of order 1 
of this polytope. 

points of  polyhedra associated with degenerate network linear programs. However, there 

is no known algorithm which enumerates all extreme points of  a convex polytope defined 

by a general degenerate system of  linear constraints in time polynomial in the size of  

input and output. Although we are unable to present such an algorithm, we present an 

algorithm for enumerating all faces in time polynomial in their number and the size of  

input. For this task, we define a new concept, that of  segments of  a convex polytope. 

Given a convex polytope it' of  dimension n, for 1 ~< s ~< n - 2, a segment o f / "  of  order 

s is the convex hull g2 of  a subset of  extreme points o f /~  which has the same dimension 

as / ' ,  and satisfies the property that for all 1 ~< t ~< s, every face of  g2 of  dimension t 

is a face o f / ' .  In a general step, starting from a segment g2 of  order s of  the original 

polytope F of  dimension n, if s < n - 1, the proposed algorithm tries to find a segment 

of  order s q_ 1 by checking whether there is an (s ÷ 1)-face of  g~ which is not a face 

of  F .  If  such an (s ÷ 1)-face is found, the algorithm is guaranteed to find an extreme 

point of  F that is not in g2; this is included in the list of  known extreme points of  F ;  

the algorithm then builds up this list until its convex hull becomes a segment of  r of  

order s + 1. 

2. Some preliminaries 

If  the minimum and maximum values of  a variable xj over x E K are the same, ce 

say, then K lies on the hyperplane xj = a in I~ n. In this case fix xj at a in ( l )  and 

eliminate it from the system. Each extreme point of  the reduced system becomes an 

extreme point of  the original system when we include xj at value ce in it. So, in the 

sequel we assume that the maximum value of  any variable in (1) is strictly greater than 

its minimum value. The operations carried out here do not change the dimension of  the 

set of  feasible solutions of  (1),  which we continue to denote by K. 
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Let xB be a basic vector for (1),  say (x~ . . . . .  Xm) to be specific, xN = (Xm+l . . . . .  x~) 

is the nonbasic vector when considering this basic vector. Let (B, N) be the partition 

of  A corresponding to the basic, nonbasic partition of  x into (XB,XN). The equality 

constraints in (1) are equivalent to XB = B - l b  - B-1NxN. Using these, the basic 

variables xB can be eliminated and system (1) expressed purely in terms of  the nonbasic 

variables xN as 

-B-1NXN + B - l b  >1 O, XN >10. (2) 

In (2) all the constraints are inequality constraints, and if £N is an extreme point 

solution for it, then (XB,3~N) (where -~B = B - l b  - B-1N£N) is an extreme point of  

(1) ,  and vice versa. Thus enumerating extreme points of  (1) ,  or those of  (2) ,  form the 

same problem. In fact, the set of  feasible solutions of  (2) is K itself, expressed in the 

space of  nonbasic variables XN; in this space, K is a full-dimensional convex polytope. 

We will find it convenient to use this transformation. 

Two extreme points of  a convex polytope are said to be adjacent iff the line segment 

joining them is an edge. By Definition 1.1 we have the following characterization of  

adjacency of  extreme points on the convex hull of  a given set of  points. 

Characterization 2.1. Let K2 = ( p l  . . . . .  pt) C ~n, where each pk is an extreme point 

of  K2 and all the points are distinct, with t ~> 3 and n >/2. Two extreme points of  K2, 

pl  and p2 say, are adjacent on K2 iff there exists a c = (Cl . . . . .  cn) satisfying (3) .  

Solving (3) for c can be posed as an LP using theorems of  alternatives for systems of  

linear constraints: 

c ( p l _ p 2 )  = 0 ,  c(p 1 - p ~ )  > 0 ,  f o r k = 3  . . . . .  t. (3) 

Definition 2.2 (Adjacency of edges). A pair of  edges el ,  e2 of  a convex polytope are 

said to be adjacent on it if they have a common vertex, and if both of  them together lie 

on a two-dimensional face of  that polytope. 

We now state the condition for checking whether two edges of  K2 are adjacent, based 

on Definitions 2.2 and 1.1, in a form similar to (3) that can be verified by solving a 

single LP, in the following proposition. 

Proposition 2.3. Let K2 = (pl . . . . .  pt) C ]~n, where each pk is an extreme point of K2 

and all the points are distinct. Suppose el, the line segment joining pl and p2, and e2, 

the line segment joining pl and p3, are two edges of K2 with a common extreme point 

pl. From Definitions 1.1 and 2.2, el, e2 are adjacent edges on K2 iff there exists a row 

vector c E R n, c ~ O, and a fl C ~1, such that 

cp I =cp 2 = c p  3 =fl, 

cp t < fl, if p t is an adjacent extreme point of p 1 on K2, 

different from p2 and p3, (4) 

cp k <~ fl, if p k is not adjacent to pl on K2. 
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I f  the edges el, e2 are adjacent on K2, the two;dimensional face of K2 containing 

them consists of  all the extreme points pk of K2 satisfying cp k = fl, for  c, /3 satisfying 

(4). 

Proof. By Definition 1.1, the edges el, e2 form a two-dimensional face of K2 iff there 

exists a supporting hyperplane H for Ks, determined by cy = fl say, which contains el 

and e2, and does not contain any other adjacent extreme point of pl on Ks. The system 

(4) is exactly a restatement of these conditions. When el, e2 do form a two-dimensional 

face of K2, that face is the intersection of K2 with that hyperplane H, and hence contains 

all the extreme points pk of Ks satisfying cp k =/3. [] 

Let/(2 = (pl . . . . .  pt) of dimension n in R n be such that each pk for k = 1 . . . . .  t is an 

extreme point of Ks. All the edges of Ks can be determined by using Characterization 

2.1. Once the edges of Ks are determined, using them, the two-dimensional faces of K2 

can be determined using the results in Proposition 2.3. This process can be continued to 

determine the (s ÷ 1 )-dimensional faces of Ks efficiently from the s-dimensional faces 

and the edges of Ks, using the results discussed in the following theorem, for all s. 

Theorem 2.4. Let Ks = (pl . . . . .  pt) of dimension n in •n be such that each pk for 

k = 1 . . . . .  t is an extreme point of  K2. For n -  1 > s >/ 2, every face G of Ks of 

dimension s ÷ 1 containing pl satisfies the following properties. Let dl ( K2), A1 ( G) be 

the adjacent vertices of  p 1 on 

of  dimension s containing pl 

of  p 1 on F, then 

(i) AI(G)  is a maximal 

affine rank of  {p 1 } t3 AI(G)  is s + 1; 

(ii) there exists a c C R n, c ~0,  and a real number/3 satisfying 

K2 and G, respectively. Then there exists a face F of  K2 

such that if  A 1 ( F)  is the set of adjacent extreme points 

subset of  A~(K2) satisfying AI(G) D AI(F) ,  and the 

=/3, for  all p E {pl } U Al ( G),  

cp </3,  f o r a l l p E A l ( K 2 ) \ A l ( G ) ,  (5) 

<~ /3, for  all p E {pl . . . . .  p t } \ d l ( K 2 )  ; 

(iii) G = K2 NH,  where H is the hyperplane (x: cx =/3} where c, /3 are from (ii). 

So, the extreme points of  G are all the pk, k = 1 . . . . .  t, which are on H. 

Conversely, i f  A1 ( F)  is the set of  adjacent vertices of  p 1 on an s-dimensional face 

of  K2 containing pl,  and A1 (G) is a subset of  A1 (K2) satisfying (i) and (ii), then G 

determined by (iii) is a face of  K2 of  dimension s + 1. 

Proof. By Definition 1.1, a face of a convex polytope is its intersection with a supporting 

hyperplane. So, if G is an (s ÷ 1)-dimensional face of K2, there must exist a c E ]~n, 

c ~¢ 0, and a real number /3, such that if H is the hyperplane (x: cx = /3}, then 

G = K 2 A H  and K2 C {x: cx <~ /3}. So, if G is an ( s + l ) - d i m e n s i o n a l  face of 

K2 containing pl ,  let F be an s-dimensional face of G containing pl .  Let AI(G) ,  

A1 (F )  be the sets of adjacent extreme points of pl on G and F, respectively. So, the 
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affine rank o f  {pl}  t J A I ( F  ) is s, and the a n n e  rank of { p l , p }  U A I ( F )  is s + 1 for 

any p E A 1 ( G ) \ A I ( F ) .  When the set of  edges joining pl  to its adjacent vertices in 

{p} U A1 ( F )  determine an (s  + 1)-dimensional face o f / (2 ,  this face G will contain all 

the points in 1(2 in the a n n e  hull of  { p l , p }  U A I ( F ) ,  and hence it satisfies ( i ) .  So, 

( i ) - ( i i i )  hold. 

Conversely, if dl ( G )  is a set satisfying (i) and (ii) ,  then the hyperplane H defined 

in (iii) is a supporting hyperplane for K2, and G = K2 N H is therefore a face of  K2 

and by (i)  and (ii) its dimension is s + 1. [] 

Consider the convex polytope K defined by (1) .  The following is a characterization, 

standard in linear programming literature, of  the dimension of the smallest dimension 

face of  K containing a given set of  edges of  K with a common vertex. 

Characterization 2.5. Let p0 be an extreme point of  the convex polytope K defined 

by (1) ,  and let {el . . . . .  er} be a set of  edges of  K incident at p0. Let pJ be the other 

extreme point of  K on ej for j = 1 . . . . .  r, and s is the affine rank of {p0, pl  . . . . .  pr }. The 

dimension of the smallest dimension face of  K containing all these edges el . . . . .  er is d, 

the cardinality of  {A.j: j such that xj > 0 in at least one of  the points in {p0,pl  . . . . .  

pr}}  minus the rank of  the same set. The smallest dimension face of  K containing all 

the edges el . . . . .  er is unique, and its dimension d is greater than or equal to s. I f  F 

is this face, it is possible that F contains some other edges incident at pO other than 

e l , . . . , e r .  

3. Enumeration of facets of the convex hull of a given set of points 

Let {pl . . . . .  p t }  be a given set of  points in R" and let P = (pl . . . . .  pt)  be the convex 

hull of  {pl . . . . .  pt}.  Let rank{p 2 - pl  . . . . .  pt _ p l }  = s. Then P has dimension s. I f  

s = n, P is a full-dimensional convex polytope in IR n. I f  s < n, a system of n - s 

equations characterizing the affine space of P can be determined, and by eliminating 

n - s variables using it, one goes into the affine space of P in which P is a full- 

dimensional convex polytope. In this reduced system the facets of  P can be determined 

by the procedure discussed below. Each facet leads to a linear inequality constraint 

for characterizing P through a system of  linear constraints. From these and from the 

system of equations characterizing the affine space of P in R n, we get a linear constraint 

representation of P. 

So, we assume without any loss of  generality that P is a full-dimensional convex 

polytope in IR ". Let p = (pl  + . . .  + p t ) / t .  The point p is an interior point of  P. Let 

Q be the polytope obtained from P by translating the origin to/5, i.e., Q = (ql . . . . .  qt) 

where qk = p~ _ ,6, for k = 1 . . . . .  t. Hence, 0 is an interior point of  Q, and thus is not 

contained on any of the facetal hyperplanes of  Q. Thus every facetal hyperplane of  Q 

can be represented by an equation of  the form alxl  + , . .  + anXn = 1 with Q lying in the 

halfspace represented by alxl  + ".. + anx, ~< 1 (since 0 ~ Q) .  We will represent this 
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facetal hyperplane by the vector of  coefficients (al . . . . .  an) .  Then a = ( a l  . . . . .  an)  is 

a vector representing a facetal hyperplane of  Q, iff a is an extreme point of  the system 

of constraints 

aq  k <. 1, k =  l . . . . .  t ,  (6) 

in which a is the vector of  variables, and ql . . . . .  qt are the data. 

And, a t x l  + • • • + a n x ,  = 1 represents a facetal hyperplane of  Q with Q lying in the 

halfspace defined by a l x i  ÷ •. • + anxn ~< 1, iff a l x l  + " • + anXn = 1 + a p  is a facetal 

hyperplane of  P with P lying in the halfspace defined by a l x l  ÷ . . .  + a n x ,  <~ 1 ÷ ap .  

Therefore, any algorithm for enumerating the extreme points corresponding to a system 

of  linear constraints can be used to enumerate the facets of  the convex hull of  a given 

set of  points. 

Let G = {a: a is feasible to (6)} be the polytope in the space of  the variables a. G 

is known as the d u a l  of the polytope Q. In the pair of  polytopes Q, G, each extreme 

point of  one corresponds to a facet of  the other and vice versa. 

4. Segments of a polytope 

Definition 4.1 ( S e g m e n t  o f  o rder  s). Let g2 be the convex hull of  a subset of  extreme 

points of  a convex po ly tope /"  of  dimension n. For 1 ~< s ~< n - 2, g~ is called a s e g m e n t  

o f  o rder  s o f / "  if g2 has the same dimension n a s / ' ,  and every face of  g2 of  dimension 

t is also a face of  f '  for all 1 <~ t ~< s. 

Thus, if g2 is the convex hull of  a subset of  extreme points of  a convex polytope F,  

J2 is a segment of  F of  order 1 if g2 has the same dimension as F ,  and adjacency of  

extreme points on g2 coincides with that on F.  

As an example, consider the convex po ly tope / ' 3  of  full dimension in R 3 shown in 

Fig. 1, with five extreme points, g23, the convex hull of  { p l , p 2 , p 3 , p 4 } ,  is a segment 

of  order 1 o f / ' 3 ,  because it satisfies both the necessary conditions for being one. And 

g23 is not a segment of  order 2 o f / ' 3 ,  because (p2,p3,p4) is a two-dimensional face 

of  g23 but not o f / ' 3 .  

As discussed earlier, in a simple (i.e., nondegenerate) polytope, the number of  edges 

incident at any vertex is always equal to the dimension of  the polytope. Hence the 

dimension condition implies that the only possible segment of  a simple polytope is the 

whole polytope itself. However, a nonsimple polytope may have a segment which is a 

proper subset of  it. Fig. 1 provides an example of  this. 

The polytope in Fig. 1 in I~ 3 is a bipyramid that is the union of  two three-dimensional 

simplices with a common base and disjoint interiors. Consider a bipyramid/,n in R n that 

is the union of  two n-dimensional simplices with a common base and disjoint interiors, 

and let g~n be one of  the two simplices (this will be a direct generalization of  the 

bipyramid in Fig. 1 to Rn). Clearly g2 n is a segment of  order 1 o f / ' ~  for all n >/ 3. 

Furthermore, every face of  g2 n of  dimension smaller than or equal to n - 2 is also a 
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Fig. 2. g21 is the unit cube in N3 with thick edges. FI is the convex polytope containing -¢~1 as a segment 
of order 1, plus six new extreme points (only three visible in the figure) with one on the outer side of each 
facet of g]l. 

face of  F n. So, g2" is a segment of  order n - 2 of /~n for all n ~> 4. This example is 

due to [111. 

Let 12 be a segment of  order 1 of  a full-dimensional convex po ly tope / "  in IR n. It is 

possible that none of  the facetal hyperplanes o f / "  is a facetal hyperplane of  12. As an 

example, let 121 be the unit cube in R 3. Draw the normal to each facet of  g21 through 

the center of  that facet, and take a point on it a little bit outside of  121 as a new extreme 

point. This generates a convex polytope 1"1 in N 3 with fourteen extreme points (eight 

extreme points of  121 and one extreme point on each of  the six normal lines to the facets 

of  121). It can be verified that 121 (outlined with thick edges in Fig. 2) is a segment of  

order 1 o f / " l .  Each facet of  I l l  is a two-dimensional simplex, but none of  the facetal 

hyperplanes of  F I  is a facetal hyperplane of  g21. 

There can exist full-dimensional convex polytopes/"  in 1R n and segments 12 of  order 1 

o f / "  such that for every face F of  F of  dimension r, 3 ~< r ~< n -  1, either F N 12 = F,  or 

F f3 12 has dimension ~< r - 1. To construct an example like this, repeat the construction 

in Fig. 2, replacing the unit cube with any full-dimensional convex polytope 122 in R". 

That is, draw the normal to each facetal hyperplane of  122 through the center (or any 

relative interior point) of  the corresponding facet, and select a point on this normal just 

outside 122 as a new extreme point. So, the number of  new extreme points added is 

equal to the number of  facets of  122. Le t / "2  be the convex hull of  the union of  122 and 

all these new extreme points. It can be verified that none of the facetal hyperplanes of  

/"2 is a facetal hyperplane of  122, and that gh  is a segment of  order 1 o f / " 2  which 

satisfies the properties mentioned above. 

The propositions given below establish some simple properties of  segments which may 

prove useful in the study of  segments, but they may not all be used in the algorithm 

developed later on. 

Proposi t ion 4.2. Let 12 be a segment o f  order 1 o f  a full-dimensional convex polytope 

F in R n, 12 7~/". I f / " \ 1 2  is a convex set, then 01,  the closure o f F \ O ,  is a segment o f  
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order 1 of /" ,  and 12 fq 121 is a facet  o f  12. 

Proof.  Since 12 is a closed subset o f / "  of  the same dimension a s / "  a n d / " \ 1 2  is convex, 

/ " \12  has the same dimension a s / " .  So, 121 has the same dimension a s / " .  

S i n c e / " \ 1 2  and 12 are disjoint  convex sets, they can be separated by a hyperplane. 

This hyperplane contains 12 A 121, and hence g2 fq 121 is a face of  both 12 and 121. Two 

convex polytopes of  full dimension with a common face and with disjoint interiors form 

a union which is also convex, only i f  that common face is a common facet. So, 12 A 121 

is a common facet of  both 12 and 121. 

I f  x 1 and x 2 are two extreme points of  121 at least one of  which is not in 12, then 

x I and x 2 are adjacent on 121 iff they are adjacent on F .  And two extreme points of  

12 A 121 are adjacent on g2 (and hence on 121 ) iff  they are adjacent o n / " .  These facts 

imply that 121 is also a segment of  order 1 o f / " .  [] 

P ropos i t ion  4.3. Let 12 be a segment o f  order 1 o f  a full-dimensional convex polytope 

/" in ~n, 12 ~ /". I f  F \ 1 2  is the union o f  convex sets AI . . . . .  Ar, where each At fo r  

t = 1 . . . . .  r is a maximal convex set in the union, let/ i t  be the closure o f  A t. Then/i t  is 

a segment o f  order 1 of /" ,  and At A g2 is a facet  of  both 12 and At, f o r  each t = 1 . . . . .  r. 

Proof.  Since At is a maximal convex subset o f /~ \12 ,  it is clear that F \ A ,  is convex, 

and as in the proof  of  Proposit ion 4.2 it can be verified that A t is full-dimensional.  

Since both A t and I ' \ A  t are convex and have disjoint interiors, they can be separated 

by a hyperplane. So, as in the proof  of  Proposition 4.2, it can be concluded tha t / i t  • 12 

is a common facet of  both of  them, for t = 1 . . . . .  r. 

I f  x 1 is an extreme point  o f / "  in At and x 2 is an extreme point  o f / "  in /it, then the 

line segment {x: x = a x  1 + ( 1 - ~ ) x 2 , 0  < a ~< 1} C At, and hence x 1 and x 2 are 

adjacent on /it iff  they are adjacent o n / " ,  for t = 1 . . . . .  r. Also, two extreme points in 

/it A 12 are adjacent in At iff  they are adjacent i n / "  since 12 is a segment of  order 1 of  

/". So, /it is a segment of  order 1 o f / "  for t = 1 . . . . .  r. [] 

P ropos i t ion  4.4. Let 12 be a segment o f  order 1 o f  a full-dimensional convex polytope 

/" in IK n. I f  a two-dimensional face T o f / "  has an intersection with g2 that is more than 

an edge, then T is entirely contained in 12. 

Proof.  Suppose 12 has an intersection with T that is more than an edge, but does not 

contain all of  T. Then one of  the facets of  12 splits T through its relative interior, and 

the intersection of  T and that facet must lead to an edge of  12 in the facet; that edge is 

not an edge of  T, contradicting the segment property of  12. [] 

Proposition 4.5. Let F be a full-dimensional convex polytope in •3, and 12 ~ F a 

segment o f  order 1 o f /" .  Then there exists at least one facet  F o f  1" such that F fq 12 

has dimension smaller than or equal to 1 (i.e., F fq 12 is either empty or 12 contains at 

most an edge joining a pair o f  adjacent vertices on F) .  
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Proof. Since $2 5~ F, there must exist at least one facet of F, F say, such that $2 does 

not contain all of F. Since F is three-dimensional and F is a two-dimensional face of 

F, Proposition 4.4 implies that either F N $2 = 0, or $2 contains at most an edge joining 

a pair of adjacent vertices on F. [] 

Proposition 4.6. Let $2 be a segment of a full-dimensional polytope F in ]~n, n >~ 3. If  

$2 ~ F, there exists at least one face F of F of dimension greater than or equal to 2, 

such that the dimension of F N $2 is smaller than or equal to the dimension of  F minus 

1. 

Proof. Proposition 4.5 implies that the theorem holds when n = 3. So, consider n ~> 4. 

Now set up an induction hypothesis that the result in the proposition holds for every 

convex polytope K3 of dimension <~ n - 1 and a segment of it which is not the whole 

polytope K 3. Under this induction hypothesis, we will now prove that the result in the 

proposition holds for the polytope F of dimension n and its segment $2 ~ / ' .  

Since $2 5/F,  there must exist a facet of F, G say, such that $2 n G 5~ G. If the 

dimension of $2 n G is the dimension of G minus 1, we are done since the facet G 

satisfies the property of the required face in the proposition. If $2 N G has the same 

dimension as G, it is a segment of G. By the induction hypothesis there exists a face 

F of G of dimension >~ 2 such that the dimension of F n $2 is smaller than or equal 

to the dimension of F minus 1. Since F is also a face of F, this shows that F satisfies 

the property stated in the proposition for $2, F. So, the result in the proposition also 

holds for the n-dimensional polytope F and its segment $2 5 / F  under the induction 

hypothesis. We already verified that the result in the proposition holds for polytopes of 

dimension 3. So, by induction, it holds in general. [] 

Proposition 4.7. Let F be a convex polytope of dimension 3, and $2 ~¢ F a segment of 

it. Then $2 has to be of order l, i.e., there exists a pair of edges of $2 with a common 

vertex which are adjacent on g2 but not on F. 

Proof. Since $2 ~ F, there must exist a facet of $2, F1 say, which is not a facet of F. 

Let x l be a vertex on F1. Since $2 has dimension 3, F1 is a two-dimensional polytope. 

If el, e2 are edges of F1 incident at x l, these edges el, e2 with a common vertex x 1 are 

adjacent on $2, but not on F since F1 is not a facet of F, proving the proposition. [] 

Proposition 4.8. Let F be a convex polytope of dimension 4, and let $2 ~ F be a 

segment of it. Then either (i) there exists a facet F of F such that the dimension of 

F N $2 is smaller than or equal to the dimension of F minus 1 or (ii) $2 is not a 

segment of order 2 of I'. 

Proof. Suppose (i) does not hold. So, every facet of F has a three-dimensional intersec- 

tion with $2. Since $2 ~ F, there must exist a facet of F, Fl say, such that F l n  $2 ~¢ F1. 

So, Fl N $2 is a facet of $2, and is a segment of order 1 of FI.  By Proposition 4.5, 
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there exist a pair of edges of F1N 12, el, e2 say, which have a common vertex and are 

adjacent on F1 n 12 but not adjacent on F1. So, el, e2 are adjacent on 12 but not on F, 

proving that (ii) holds. [] 

Proposition 4.9. Let 12 be a segment o f  order r o f  a convex polytope F o f  dimension 

n. Let F be a face o f  I" o f  dimension u >/r + 1. I f  12 N F has dimension u, then 12 n F 

is a segment o f  order r o f  F. 

Proof. A face of a face of a polytope is also a face of the original polytope. And the 

intersection of two faces is a face. Using these facts, this result follows directly from 

the definitions. [] 

Proposition 4.10. Let 12 = (pl . . . . .  pt)  be a segment o f  order r <~ n - 2 o f  a convex 

polytope F o f  dimension n, such that 12 7L I'. Then 12 has a facet  which is not a facet  

of t .  

Proof. By hypothesis, all the points in {pl . . . . .  pt}  are extreme points of F, and there 

exists at least one extreme point of F which is not in 12. If all the facets of 12 are facets 

of F, then 12 would be F, a contradiction. So, there must be at least one facet of 12 

which is not a facet of F. [] 

Theorem 4.11. Let 12 = (pl . . . . .  pt) be a segment o f  order s, 1 <~ s <~ n - 2, o f  K de- 

f ined by ( 1 ). Let G be an ( s + 1 )-dimensional face o f  12, containing an extreme point, pl  

say, and let A1 ( G) be the set o f  adjacent extreme points o f  p 1 on G. Then G is a face o f  

K iffrank{A.j: j such that xj > 0 in at least one o f  the extreme points in the set {pl} 

UAI(G)} is equal to its cardinality - (  s + 1). 

Proof. Let E be the set of edges of 12 (and hence of K) obtained by joining pl to a 

vertex p C A1 (G). By hypothesis, the set of edges E determines the ( s +  1 )-dimensional 

face G of 12. If the condition holds, E also determines an (s + 1)-dimensional face, 

F say, of K. Let H be a supporting hyperplane of K such that F = H N K. Then 

G = H N  12. So, G C F, and since g2 is a segment of order s of K, G = 12 n F is a 

segment of order s of F by Proposition 4.9. Hence, all facets of G are facets of F, and 

since G C F, this implies that G = F. So, G is an (s + 1)-dimensional face of K. [] 

Suppose 12 is the convex hull of a subset of extreme points of K, the set of feasible 

solutions of (1), of full dimension. For s ~> 1, if 12 is a segment of K of order s, and 

all its s-dimensional faces are determined, then the results in Theorems 2.4 and 4.11 

can be used to generate the (s + 1)-dimensional faces of 12, and to check whether in 

fact 12 is a segment of K of order s + 1. If 12 is not a segment of order s + 1 of K, this 

procedure will determine a vector c, and number/3 such that 12 C {x: cx <~/3}, and 

there exists at least one extreme point of K not in 12 in the half-space {x: cx >1/3}. 
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5. Algorithm for enumerating extreme points and faces of K 

39 

Consider the convex polytope K defined by (1).  This algorithm is initiated with one 

extreme point of  K obtained by solving, for example, a Phase I problem using any of  the 

polynomially bounded algorithms for LP. Beginning with this, the algorithm develops a 

list of  extreme points of  K, adding at least one new extreme point to the list per iteration, 

until all of  them are in. The computation also produces faces of  K of  all dimensions. 

At some stage suppose the list is {d 1 . . . . .  dr}, consisting of  r distinct extreme points 

of  K. Let Kl = (d ~ . . . . .  dr). At this stage we need to check whether there is an extreme 

point of  K which is not in K1. This involves checking: is K C K1 ? If  K1 is specified 

as the convex hull of  a general set of  rational points, this problem is known to be 

NP-complete [7] .  However, in our problem K1 is a special set, it is the convex hull of  a 

subset of  extreme points of  K, and the complexity of  this problem in this special case is 

not known. Most of  the computation in the algorithm discussed below is concerned with 

answering questions of  this type, but this process produces faces of  higher dimensions 

of  K as a by-product. 

Let (XB, XN) be a partition of  the variables in (1) into basic and nonbasic parts for 

some basic vector for ( 1 ). This partition is never changed during the algorithm. 

We will now discuss an algorithm for enumerating all the faces of  K based on the 

results discussed in Sections 2 and 4. When we use the result in Proposition 2.3 to 

identify a two-dimensional face of  the convex hull of  the current subset of  extreme 

points of  K, it yields all the extreme points of  that face; the face itself can be stored 

by storing its edge graph (i.e., one-dimensional skeleton). Later on, when we use the 

result in Theorem 2.4 to find a face of  dimension greater than 2 of  the convex hull of  

a subset of  extreme points of  K, it also yields all the extreme points of  that face; again 

the face itself can be stored by storing its edge graph. All these faces can also be stored 

by storing the vector c feasible to (4) or (5) corresponding to it; the face itself is the 

set of  optimum solutions for the problem of maximizing cx over K. 

An  algorithm for generating all faces of K. 

Initialization. Find an extreme point of  K using a Phase I procedure. With it go to 

the first iteration. 

General iteration. Suppose { d  1 . . . . .  d r} is the present list of  extreme points of  K. 

Step 1. For k = 1 . . . . .  r, let (d~, d~) be a partition of  the vector d k into basic and 

nonbasic parts as in the partition (XB, XN) of  the variables in (1).  Here we check 

whether the dimension of  KI = (d I . . . . .  d r) is smaller than n - m, the dimension of  

K. This step is carried out only if in the previous iteration this step resulted in the 

affirmative answer for the corresponding question at that stage, otherwise we go directly 

to Step 2 in this iteration. 

The dimension of  K1 is the rank of  {dr~ - d~: k = 1 . . . . .  r}. I f  it is n - m, go to 

Step 2, and in all subsequent iterations omit this step. If  it is smaller than or equal to 

n - m - 1, there exists an fN = (fm+l . . . . .  fn )  5¢0 such that f N ( d ~  -- d~) = 0 for all 

k = 2 . . . . .  r; find such a vector fN- Let fNd~ = ft. Then all the extreme points d 1 . . . . .  d r 
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in the current list correspond to points in the XN-space lying on the hyperplane defined 

by fNXN = ft. Now solve the two LPs, minimize fNXN, and maximize fNXN subject to 

(1) .  One or both of  these LPs will have as an optimum extreme point a point not in 

the current list. Call it d r+l , add it to the list and go to the next iteration. 

Step 2. In this step the algorithm tries to find a pair of  points in the current list 

{d 1 . . . . .  d r } satisfying the property that they are not adjacent on K, but adjacent on K1 = 

/d 1 . . . . .  dr). Adjacency of  some pairs of  extreme points of  K~ may have already been 

determined in previous iterations, l f  p = (p j ) ,  q = (qj)  from (d ~ . . . . .  d r) have not been 

checked for adjacency earlier, we know that they are not adjacent on K iff the rank of  

the set of  vectors {A.j: j such that at least one of  pj or qj or both are greater than 0} 

is strictly less than its cardinality - 1 .  And p, q are adjacent on K1 iff the following 

system in variables c = (cl . . . . .  cn) has a feasible solution, which can be checked by 

solving an LP: 

c(p  - q) = 0, (7) 
c ( p - d  k) > 0 ,  for all k such that d k ~ p o r q .  

If  some new edges of  K1 a r e  found which are also edges of  K, store them. 

If  a pair of  extreme points p, q in the current list adjacent on K1 but not on K is 

found, let ~ be the vector obtained as the feasible solution for (7) for that pair. Now 

solve the LP 

maximize ~x 

subject to (1).  (8) 

The maximum objective value in (8) will be greater than or equal to y = 6p = ~q > 

min{6dk: k = 1 . . . . .  r such that d ~ 5¢p or q}. If  the maximum objective value in (8) 

is greater than y, an extreme point optimum for it is a new extreme point of  K; add it 

to the list and go to the next iteration beginning with Step 2. 

If  the maximum objective value in (8) is y, and an optimum extreme point obtained 

for it when (8) is solved is either p or q, the set of  optimum solutions for (8) is a face 

S of  K determined by 

A x = b ,  ~ x = y ,  x>/O.  (9) 

In this case, p,  q are the only two points from the current list feasible to (9) (this 

follows from (7) by the choice of  ~). Hence, its set of  feasible solutions, the face S of  

K, contains only p, q from the current list. Since S contains p,  q which are not adjacent 

on K (and hence not adjacent on S, since S is a face of  K), the dimension of  S must 

be greater than or equal to 2. So, S, the set of  feasible solutions of  (9),  has dimension 

greater than or equal to 2 and we only have two extreme points p,  q on it in the current 

list. Therefore, by applying Step 1 discussed earlier to (9) with p,  q as the only known 

extreme points on it at this stage, we can get a new extreme point of  S; this will be an 

extreme point of  K since S is a face of  K, add it to the list and go to the next iteration 

beginning with Step 2. 
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If there exist no pair of extreme points which are adjacent on K1 but not on K in the 

current list, then all the edges of KI = (d I . . . . .  d r) are edges of K, so K1 is a segment 

of order 1 of K; go to Step 3. 

Step 3. When we come to this step, Kl = (d 1 . . . . .  d r ) ,  the convex hull of the current 

list, is a segment of order 1 of K. 

All the edges of K1 would have been determined already at this stage. The adjacency 

of some pairs of edges of K1 may have already been determined in previous iterations. 

If a pair of edges of Kl with a common vertex has not been checked for adjacency 

earlier, we can check whether they are adjacent on Kl using the result in Proposition 

2.3; and if they are adjacent on K1, we can check whether they are adjacent on K using 

Characterization 2.5. If some new two-dimensional faces of K1 are found which are also 

two-dimensional faces of K, store them. If every pair of adjacent edges of Kl is also 

adjacent on K, all two-dimensional faces of K1 are also two-dimensional faces of K; so 

KI is a segment of order 2 of K, go to Step 4. 

If we find a pair of adjacent edges of K1, el, e2 say, which are not adjacent on K, 

let d 1 be the common vertex, and d 2, d 3 the other vertices on them. So, in this case we 

have a row vector c in ~n and a fl E R J satisfying 

cd 1 = c d  2 = c d  3 =fl ,  

c d  t < f l ,  if d t is an adjacent extreme point of d 1 on K1, 

different from d 2 and d 3, (10) 

cd k<~fl, i f d  k is not adjacent to d I onKl .  

Now solve the LP 

maximize cx 

subject to (1). (11) 

The optimum objective value in (11) is greater than or equal to ft. If it is greater 

than fl, an extreme point optimum for (11) yields an extreme point of K not in K1, 

add it to the list and go to the next iteration beginning with Step 2. 

If the optimum objective value in (11) is fl, and if the extreme point optimum 

obtained is not in K1, then again we have a new extreme point, add it to the list and 

go to the next iteration beginning with Step 2. On the other hand, suppose an extreme 

point of K1 is obtained as an optimum solution of (11). Now consider the LP 

maximize cx 
(12) 

subject to x E KI. 

We know from these conditions that the optimum objective value in (12) is ft. Among 

adjacent extreme points of d 1 on K1, the only ones which are optimum to (12) are 

d 2, d 3 . This implies that the set of optimum solutions for (12) is the two-dimensional 

face F say, of K1 determined by the edges el, e2. However, since el, e2 do not form 

a two-dimensional face of K, the set of optimum solutions for (11) has dimension at 

least 3, and contains F. That set is the set of feasible solutions of 

A x = b ,  c x = f l ,  x>>.O. (13)  
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Let A be the set of  extreme points on F.  The affine rank of  A is 2, and it is the subset 

of  extreme points of  (13) in the present list. By applying Step 1 to the system (13) 

and the current known set A of  extreme points of  it, we can get a new extreme point of  

the set of  feasible solutions of  (13).  This set is the set of  optimum solutions of  (11),  

and hence it is a face of  K, so that new extreme point of  (13) is a new extreme point 

of  K; add it to the list and go to the next iteration beginning with Step 2. 

Step 4. When we come to this step, K~ = (d 1 . . . . .  d r ) ,  the convex hull of  the 

current list, is a segment of  order 2 of  K. All the edges and two-dimensional faces 

of  K1 would have been determined already at this stage. Using them, Theorem 2.4, 

and Characterization 2.5, look for a three-dimensional face of  KI which is not a three- 

dimensional face of  K. ( I f  this is not the first pass through Step 4, some of  the 

three-dimensional faces of  K1 would already have been determined, all these are three- 

dimensional faces of  K. It is only necessary to check three-dimensional faces of  K1 that 

can be formed using two-dimensional faces and at least one new edge that has been 

formed since the last pass through Step 4.) If  some new three-dimensional faces of  K1 

are found which are also three-dimensional faces of  K, store them. 

If  a three-dimensional face of  KI that is not a three-dimensional face of  K is found, 

using the vector c feasible to the system of the form (5) for it, find an extreme point of  

K not in K~ as in Steps 2 and 3 (this needs maximizing cx  over K, and possibly using 

Step 1 on the set of  optimum solutions of  this LP). Add the new extreme point to the 

list. Go to the next iteration beginning in Step 2, with the new list. 

If  all the three-dimensional faces of  K1 are also three-dimensional faces of  K, Kl is 

a segment of  K of  order 3, go to Step 5, obtained by setting s = 3 in the following 

general step. 

General step s + 2. When we come to this step, Kt = (d I . . . . .  dr), the convex hull of  

the current list, is a segment of  order s of  K. All the faces of  KI of  dimension smaller 

than or equal to s would have been determined already at this stage. Using the results 

in Theorems 2.4 and 4.11, look for a new (s + 1)-dimensional face of  KI that is not a 

face of  K; store all the new (s + 1 )-dimensional faces of  K1 which are also faces of  K 

found in this process. If  one (s + 1 )-dimensional face of  K1 which is not a face of  K is 

found, using the vector c feasible to the system of the form (5) for it, find an extreme 

point of  K not in K1 as in Steps 2 and 3; add this new extreme point to the list, and 

with the new list go to the next iteration beginning with Step 2. 

On the other hand, if all the (s + 1 )-dimensional faces of  Kl are also faces of  K, Kl 

is a segment of  order s + 1 of  K. If  s + 1 = n - 1, the set of  all the faces o f  K consists 

of  all the faces in storage now, and 0, and K, terminate the algorithm. If  s +  1 < n - 1, 

go to Step s + 3. 

Discussion 

Whenever a face of  K1, the convex hull of  the current list of  extreme points, is 

obtained in this algorithm, it is either a face of  K, or from the vector c found in the 

process of  finding this face, a new extreme point of  K not in K1 is found by solving 
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at most three LPs. In this algorithm faces of dimension s + 1 of K1 are found by 

building up an s-dimensional face with newly found edges that enhance its dimension 

by 1 maximally. From this it can be verified that the time complexity of this algorithm 

is polynomial in the unknown number of faces of K and the size (i.e., the number of 

digits in the binary encoding of the data) of ( 1 ). Let L be the size of the original system 

(1), ~0 be the total number of extreme points of K, £1 be the total number of edges 

of K and ~ be the total number of nonempty faces of K of all dimensions. Then the 

size of any system of the form (4) or (5) whose feasibility needs to be checked during 

the algorithm is at most O(gonL).  Hence each LP to be solved during the algorithm 

needs an effort of at most O(£0Ln35). And the number of LPs to be solved is at most 

O(ggl ). Since this is the major work during the algorithm, its overall complexity is at 

most O (gel ~0 Ln 3"5 ). 

So, for the problem of enumerating all the faces of K, this algorithm has complexity 

bounded above by a polynomial in their number. 

However, for the problem of enumerating just the extreme points of K, this algorithm 

may not be efficient since the total number of faces could grow exponentially in the 

number of extreme points. For developing an efficient algorithm to enumerate extreme 

points using this approach, we need an efficient technique for checking whether a given 

segment Kl of order s of K for some small value of s (like 1, 2 or 3) is equal to K, 

or find an extreme point of K that is not in Kl. 

This remains a challenging problem. What we need is an algorithm for this problem 

that either determines that K1 = K, or finds a facetal hyperplane {x: cx = fl} of K1 

that is not a facetal hyperplane of K, in time polynomial in the size of (1) and r, the 

number of extreme points of K1. It is not known whether such an algorithm exists. For 

this we are studying the conjectures given below. 

Let F be a polytope of dimension n in R n represented through a system of linear 

constraints, Dy <. d say, where D is a matrix of order m~ × n, and r l  = ({pl . . . . .  pt}) ,  

the convex hull of a subset of extreme points of F ,  which is a segment of order 1 

of F. Without any loss of generality assume that the origin 0 is in the interior of the 

segment El ;  this can be achieved by finding an interior point of El ,  say the average 

of its extreme points, and translating the origin to it if necessary. Since 0 is an interior 

point of F,  we have d > 0, so, by scaling the rows of D we can convert d into the 

vector of all ones. So, F is the set of feasible solutions of a system of the form 

Di.y <~ 1, i= 1 . . . . .  ml.  (14) 

Each facet of F is the set of feasible solutions of (14) satisfying a specified constraint 

in (14) as an equation. We assume that none of the constraints in (14) is a redundant 

constraint. Then, for each i = 1 . . . . .  ml, the system 

D i . y = l ,  Du.y<. l,  f o r u = l  . . . . .  mL, uT~i, (15) 

defines a facet of F and conversely. 

If  there exists a facet F of F satisfying that the dimension of F N F1 is smaller than 

or equal to n - 2, then, by applying Step 1 in the general iteration of the algorithm 
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discussed above, on the facet F with F N {pl . . . . .  p t )  as the set of  extreme points on 

it determined already, we can find a new extreme point on F which is not in F1. On 

the other hand, if all the facets F o f / ~  are such that F N/~1 has dimension n - 1, then 

F A/~1 is a segment of  the facet F for every facet of  F .  In this case it seems reasonable 

to conjecture that ((DI~) f . . . . .  (Dm~.)f), the convex hull of  the coefficient vectors of  

the facetal hyperplanes of  F ,  is not a segment of order 1 or 2 of  the dual polytope of  

F1. We give a precise statement of  this conjecture now. 

Conjecture  5.1. Let F be the full-dimensional convex polytope in the y-space (i.e., Rn) 

defined by (14) with each constraint there defining one of its facets as in (15). Let 

{pl . . . . .  pt} be a subset of extreme points o f f  whose convex hull Fl is a segment of 

order 1 of F. If  F1 ¢ F, either 

(i) there exists at least one facet F of F such that F A F1 has dimension smaller 

than or equal to n - 2 (i.e., equivalently, for at least one i between 1 and ml, the affine 

rank of the set of points among {pl . . . . .  pt } satisfying Di. y = 1 is smaller than or equal 

to ( n -  2)) ,  or 

(ii) for each i = 1 . . . . .  mb (Di.) T is a vector representing a facet of F1, i.e., it is 

an extreme point of the set of feasible solutions of the following system in terms of the 

variables a = (al . . . . .  as)T: 

( p k ) T a <  1, k = l  . . . . .  t, (16) 

and ((D1.) T . . . . .  (Din,.) T) is not a segment of order 2 of this set. 

Notice that (16) defines the polar dual of  F~. If  this conjecture is true, it is possible 

to modify the above algorithm into one for enumerating the extreme points, whose 

time complexity is bounded above by a polynomial in the unknown number of  extreme 

points. 

The second strategy tries to generate extreme points in such a way that the list of  

known extreme points is never a segment until all the extreme points of  the polytope 

are in the list. For this we are investigating the following conjecture. 

Conjecture  5.2. Consider the convex polytope K defined by (1). Let { d I . . . . .  d r} be 

the set of known extreme points of K such that their convex hull K1 has the same 

dimension as K, but is not a segment of K. Now identify all the pairs of extreme points 

among {d 1 . . . . .  d r } that are adjacent on K1 but not on K. For each such pair, find the 

vector c satisfying the condition similar to that in (3). Obtain a new extreme point of K 

by maximizing cx as in Step 2 of the general iteration of the algorithm discussed above 

and include it in K1. Let K2 be the set of known extreme points of K after this process 

is completed. Then either K2 = K, or it is not a segment of K. 

Again, if Conjecture 5.2 is true, we can generate extreme points of  K in batches, 

keeping the nonsegment property of  the set of  known extreme points at each stage, until 

all the extreme points are enumerated. 
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