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Abstract

In this paper, we study the distribution ofmsegregated nodal domains of them-mixture of Bose–Einstein condensates under
positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and
form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to
confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple
verticillate structures. In addition, our proposed Gauss–Seidel-type iteration method is very effective in that it converges linearly
in 10–20 steps.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In an ultracold dilute Bose gas, two different hyperfine spin states may repel each other and form segregated
domains like the mixture of oil and water. Such a phenomenon is called phase separation of a binary mixture of
Bose–Einstein condensates (BECs) and has been investigated extensively by experimental and theoretical physicists
([15,22,25]). Recently, Bose–Einstein condensation of the triplet states has been observed[24]. It is possible to
observe multispecies Bose–Einstein condensates with more spin states. This motivates us to study phase separation
of generalm-mixture of BECs both mathematically and numerically. As the numbermbecomes larger and larger,
due to phase separation, more and more segregated domains may occur. It is natural to ask how these segregated
domains distribute. Are there any rules for the distribution of segregated domains? We will answer such a question
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by studying the distribution of nodal domains of them-component ground state when the numberm increases from
two to thirty-three. The limit onm is merely due to the huge computational resources.

The coupled Gross–Pitaevskii equations ([15,23]), i.e., the coupled nonlinear Schrödinger equations,

−ι
∂

∂t
Φj = �Φj − Vj(x)Φj − µj|Φj|2Φj −

∑
i�=j

βij|Φi|2Φj for x ∈ Ω, t > 0,

Φj = Φj(x, t) ∈ C, ι = √−1, j = 1, . . . , m, Φj(x, t) = 0 for x ∈ ∂Ω, t > 0, (1.1)

can be used as a mathematical model for multispecies Bose–Einstein condensates inmdifferent hyperfine spin states
on the corresponding condensate wave functionsΦj ’s. HereΩ is a bounded smooth domain inRd, d = 2,3, and
the nonnegative constantsµj ’s andβij ’s are the intraspecies and interspecies scattering lengths which represents the
interactions between like and unlike particles, respectively. Hereafter, it is natural to assume thatβij ’s are symmetric,
i.e.,βij = βji for i �= j. For simplicity, we may choose suitable scales for the Planck constant, atom mass and mean
number of atoms in hyperfine states to make the system (1.1) consistent with the physical model. The functions
Vj, j = 1, . . . , m represent the magnetic trapping potentials.

From (cf.[25]), we learned that there are two distinct types of spatial separation: (i) potential separation, caused
by the external trapping potentials in much the same way that gravity can separate fluids of different specific weight.
(ii) Phase separation, which persists in the absence of external potentials. In the fluid analogy, phase separated
condensates can be compared to a system of two immiscible fluids, such as oil and water. The main purpose of this
paper is to study phase separation in the coupled nonlinear Schrödinger equations. Hence we may assumeVj ≡ 0
for j = 1, . . . , m in the rest of this paper.

As m > 3 andVj ≡ 0, j = 1, . . . , m, the coupled nonlinear Schrödinger equations of the system (1.1) are of
physical relevance in the theory of multichannel bitparallel-wavelength optical fiber networks (cf.[27]) and pho-
torefractive media in nonlinear optics (cf.[1]). Generically, the spatial dimensiond can be 1, 2 and 3 for different
physical situations. However, until now, most results on the coupled nonlinear Schrödinger equations are of only one
spatial dimension (cf.[9,16–18,21], etc). Here we may provide some results in high spatial dimensions, especially
in two spatial dimension for the coupled nonlinear Schrödinger equations.

To find solitary wave solutions of the system (1.1), we set

Φj = e−ιλjtuj(x), j = 1, . . . , m.

Then we may transform the system (1.1) into am-component system of semilinear elliptic equations given by

−�uj + µju
3
j +Λ

∑
i�=j

β̃iju
2
i uj = λjuj in Ω, j = 1, . . . , m, (1.2)

which are time independent vector Gross–Pitaevskii Hartree–Fock equations (cf.[11,12]) for the condensate wave
functionsuj ’s, whereβij = Λβ̃ij, Λ is a parameter, and̃βij ’s are positive constants. The standard conservation law
of mass on the coupled nonlinear Schrödinger equations of the system (1.1) may give

∫
Ω

u2
j = mj for j = 1, . . . , m,

wheremj ’s are constants. For simplicity, we may setmj = 1 for j = 1, . . . , m and assume∫
Ω

u2
j = 1, j = 1, . . . , m. (1.3)

Moreover, by the boundary conditions of the system (1.1), we obtain the Dirichlet boundary conditions:

uj|∂Ω = 0, j = 1, . . . , m. (1.4)

From[2,12], a large interspecies scattering length may set in spontaneous symmetry breaking inducing phase
separation. Furthermore, due to Feshbach resonance, interspecies scattering lengths can be positive and large by
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adjusting the externally applied magnetic field[14]. Hence we may assume the parameterΛ as a large parameter.
Actually, in a binary mixture of Bose–Einstein condensates, i.e.,m = 2, spontaneous symmetry breaking may occur
whenΛ2β̃2

12 > µ1µ2 (cf. [2,25,26]). To fulfill such a condition, we may assume intraspecies scattering lengthsµj ’s
are constants and the parameterΛ as a large parameter. However, when the parameterΛ is large but finite, it is
easy to show that each componentuj of the solution (u1, . . . , um) of the system (1.2) cannot be zero in a nonempty
domain by the standard maximum principle of elliptic partial differential equations (cf.[13]). Hence the segregated
nodal domains are not clear to figure out as the parameterΛ is large but finite. On the other hand, it is expected that
repelling condensates would separate into single condensate regions if the repulsive interaction is sufficiently large
(cf. [25]). Therefore we let the parameterΛ tend to infinity to find well separated nodal domains.

As the parameterΛ goes to infinity, some basic questions need to be asked as follows:

1. What are the governing equations of the limiting functions of the bound state solutions of the system (1.2)?
2. What the nodal domains of the limiting functions look like?

To answer these questions, we state the following theorem.

Theorem 1.1. AssumeΩ is a bounded smooth domain inR2. Let (u1,Λ, . . . , um,Λ) be a positive solution of the
system(1.2)satisfying(1.3)and(1.4),whereλj ’s are bounded quantities asΛ→∞. Then

(i) uj,Λ ⇀ uj,0, in H1
0(Ω; R), asΛ→∞ (up to a subsequence).

(ii) Assume the nodal domainsΩj ≡ {x ∈ Ω : uj,0(x) > 0}, j = 1, . . . , m are open. Then the limiting functions
uj,0’s satisfy

−�uj,0+ µju
3
j,0 = λ̃juj,0 in Ωj, (1.5)

where λ̃j ’s are the limits ofλj ’s asΛ→∞ (up to a subsequence). Moreover, uj,0 is smooth inΩj for
j = 1, . . . , m.

(iii) The nodal domainsΩj ≡ {x ∈ Ω : uj,0(x) > 0}, j = 1, . . . , m are finitely union of disjoint domains with pos-
itive Lebesgue measure.

Theorem 1.1is the main result of this paper which shows that phase separation may occur for all positive
bound state solutions as the parameterΛ→∞. The main difficulty in provingTheorem 1.1is to show thatm
componentsuj,Λ’s of the solution repel each other and form separate domainsΩj ’s, asΛ goes to infinity. Moreover,
Λu2

i,Λuj,Λ, ∀i �= j, tend to zero pointwise inΩ, respectively, asΛ goes to infinity. This is essential to derive the
system (1.5) as the governing equations of the limiting functionsuj,0’s. One may readPropositions 2.1 and 2.2in
Section 2for detail.

To investigate ground state solutions of the system (1.2), we may study the energy minimization problem given
by

Minimize EΛ(u) for u = (u1, . . . , um) ∈ (H1
0(Ω; R))m,

∫
Ω

u2
j = 1, (1.6)

whereΩ is a bounded smooth domain inRd, d = 2,3, and the energy functionalEΛ is defined by

EΛ(u) =
∫
Ω

m∑
j=1

1

2
|∇uj|2+ µj

4
u4
j +

1

4
Λ

m∑
i,j=1,
i�=j

β̃ij

∫
Ω

u2
i u

2
j . (1.7)

Hereµj ’s andβ̃ij ’s are nonnegative constants independent ofΛ, andΛ is a large parameter. The Euler–Lagrange
equation of (1.7) is the system (1.2) withλj ’s the associated Lagrange multipliers. For ground state solutions, we
prove the following theorem.
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Theorem 1.2. AssumeΩ is a bounded smooth domain inRd, d = 2,3.Then there existsuΛ = (u1,Λ, . . . , um,Λ)
the energy minimizer of(1.6)such thatuΛ is a positive solution of the system(1.2),and satisfy

Λ

∫
Ω

u2
i,Λ u2

j,Λ → 0 ∀i �= j asΛ→∞ (up to a subsequence), (1.8)

and

uj,Λ → uj,∞ inH1
0(Ω; R) asΛ→∞ (up to a subsequence). (1.9)

The multipliersλj ’s are positive constants and are bounded quantities asΛ→∞. Assume the nodal domains
Ωj ≡ {x ∈ Ω : uj,∞(x) > 0}, j = 1, . . . , m are open.Then the nodal domainsΩj ’s are separated by the nodal line
{x ∈ Ω : uj,∞(x) = 0, j = 1, . . . , m}which has no interior point.Furthermore, if uj,∞ depends onµj continuously
for j = 1, . . . , m, then the nodal domainsΩj ’s are m disjoint domains.

FromTheorem 1.2, mnodal domainsΩj ’s can be determined by finding an optimal partition of the domainΩ

that achieves

min




m∑
j=1

ξj(ωj) : ωj ∈ A(Ω),∪m
j=1ω̄j = Ω̄, ωi ∩ ωj = ∅∀i �= j


 , (1.10)

whereA(Ω) is the class of all admissible domains, andξj(ωj) denotes the first Dirichlet eigenvalue defined by

ξj(ωj) = min
u∈H1

0(ωj ),
‖u‖

L2(ωj )
=1

∫
ωj

1

2
|∇u|2+ µj

4
u4. (1.11)

The problem (1.10) is complicated but may have some geometric structures for the distribution of nodal domains.
For instance, ifµj = 0, ∀j andm = 2, the problem (1.10) can be reduced to

min {λ(A)+ λ(B) : A,B ∈ A(Ω), A ∩ B = ∅} , (1.12)

whereλ denotes the first Dirichlet eigenvalue for the operator−∆, andA(Ω) is the class of all admissible domains.
About the problem (1.12), only few results are known which may depend on the geometric restriction of the domain
Ω (cf. [7]). Generically, if the domainΩ is assumed to be convex, then it is conjectured that the minimum of (1.12)
is achieved whenA,B are two nodal domains of the second Dirichlet eigenfunction for the operator−∆. A remark
by Kawohl[19] may support such a conjecture. However, such a conjecture has not yet been proved.

As m becomes larger and larger, it is natural to believe that the distribution ofm nodal domains may become
more and more complicated. To study the distribution ofm nodal domainsΩj ’s, we design efficient numerical
schemes by Gauss–Seidel-type iteration method to do numerical computation. When the domainΩ is a unit disk,
and the numberm varies from 2 to 33, we may observe multiple verticillate structures ofm nodal domains. For
m = 2, . . . ,5,mequal nodal domainsΩj ’s with centers at vertices ofm-polygon form (m)-verticillate structures.
Asm = 6,7,8, one nodal domainΩj0 occupies the center ofΩ and the restm− 1 nodal domains equally distribute
around the outside ofΩj0. As m = 9,10,11, two nodal domainsΩj1 andΩj2 locate near the center ofΩ and the
restm− 2 nodal domains equally distribute around the outside ofΩj1 andΩj2. As m increases from 12 to 16,
three, four, and five nodal domains may occur near the center ofΩ and the rest nodal domains equally distribute the
rest of domainΩ. Basically, centers of nodal domains are located at vertices of two eccentric polygons. Such new
structures of nodal domains called verticillate doubling can be observed inFig. 1(a)–(c). It is naturally expected that
we should have verticillate tripling or quadrupling for structures ofmnodal domains whenm increases. InFig. 1(c)
and (e), we observe verticillate tripling atm = 17 and quadrupling atm = 32.

The rest of this paper is organized as follows: We proveTheorems 1.1 and 1.2in Sections 2 and 3, respectively.
In Section 4, we demonstrate our numerical results for multiple verticillate structures.
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2. Phase separation on positive bound states

In this section, we shall proveTheorem 1.1as follows: without loss of generality, we may assumem = 2,
u1 ≡ u, u2 ≡ v, µ1 = α,µ2 = β, β̃ij = 1, and rewrite the system (1.2) as

−�u+ αu3+Λv2 u = λ1u in Ω, (2.1)

−�v+ βv3+Λu2 v = λ2v in Ω, (2.2)

Let (uΛ, vΛ) be a positive solution ofEqs. (2.1) and (2.2), and satisfy (1.3) and (1.4). We may multiply both sides
of Eq. (2.1) by uΛ and integrate overΩ. Then by (1.3) and (1.4), we have∫

Ω

|∇uΛ|2+ αu4
Λ +Λu2

Λv2
Λ = λ1. (2.3)

Similarly, byEqs. (2.2), (1.3) and (1.4), we obtain∫
Ω

|∇vΛ|2+ β v4
Λ +Λu2

Λv2
Λ = λ2. (2.4)

Sinceλ1 andλ2 are bounded quantities asΛ→∞, then by (2.3) and (2.4), we have

uΛ ⇀ u0, vΛ ⇀ v0 in H1
0(Ω; R) (up to a subsequence), (2.5)

and

u0 v0 = 0 almost everywhere inΩ. (2.6)

Moreover, by (1.3) and (2.5), we obtain

uΛ → u0, vΛ → v0 almost everywhere inΩ (up to a subsequence), (2.7)

and

|{x : u0(x) > 0}| > 0 and |{x : v0(x) > 0}| > 0, (2.8)

where| · | denotes the Lebesgue measure. Moreover,Eq. (2.6)implies that the sets{x : u0(x) > 0} and{x : v0(x) >

0} are disjoint. Hence we complete the proof ofTheorem 1.1(i). For (ii) of Theorem 1.1, we need two crucial
lemmas to obtain anL∞ estimate and a gradient estimate. Now we state these two lemmas as follows.

Lemma 2.1 (L∞ estimate).There exists a positive constantC0 independent ofΛ such that

‖uΛ‖L∞(Ω) ≤ C0, ‖vΛ‖L∞(Ω) ≤ C0.

Lemma 2.2 (Interior gradient estimate).Let x0 ∈ Ω andR1 be a positive constant such that the diskBR1(x0) is
in the interior ofΩ. Then there exists a positive constantC1 depending only onC0 which is defined inLemma 2.1
such that

‖∇uΛ‖L∞(BR2(x0)) ≤ C1
√
Λ, ‖∇vΛ‖L∞(BR2(x0)) ≤ C1

√
Λ,

whereR2 = R1−Λ−1/2.
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Proof of Lemma 2.1. For simplicity, we writeu andv instead ofuΛ andvΛ, respectively. We may multiply both
sides ofEq. (2.1) by u2s−1(s ≥ 1) and integrate overΩ. Then by (1.4), we have

s−2(2s− 1)
∫
Ω

|∇us|2 = λ1

∫
Ω

u2s − α

∫
Ω

u2s+2−Λ

∫
Ω

u2sv2. (2.9)

Similarly, by (2.2) and (1.4), we have

s−2(2s− 1)
∫
Ω

|∇vs|2 = λ2

∫
Ω

v2s − β

∫
Ω

v2s+2−Λ

∫
Ω

v2su2. (2.10)

Hence

s−2(2s− 1)
∫
Ω

|∇us|2 ≤ λ1

∫
Ω

u2s, (2.11)

and

s−2(2s− 1)
∫
Ω

|∇vs|2 ≤ λ2

∫
Ω

v2s (2.12)

By (2.11), (2.12) andu, v ∈ H1
0(Ω; R), we obtainus, vs ∈ H1

0(Ω; R). Then by a Sobolev imbedding , we have(∫
Ω

usν

)2/ν

≤ C2

∫
Ω

|∇us|2, (2.13)

and (∫
Ω

vsν
)2/ν

≤ C2

∫
Ω

|∇vs|2 (2.14)

for 2 < ν <∞, whereC2 = C2(Ω) is the imbedding constant. Moreover, by (2.11)–(2.14), we have(∫
Ω

usν

)2/ν

≤ λ1C2s

∫
Ω

u2s, (2.15)

and (∫
Ω

vsν
)2/ν

≤ λ2C2s

∫
Ω

v2s (2.16)

for 2 < ν <∞. Here we have used the fact thats ≥ 1, i.e., 2s− 1≥ s.
We define sequences{sj} and{Mj} by

2s0 = ν, 2sj+1 = νsj for j ≥ 0,

and

M0 = (λ1C2)ν/2, Mj+1 = (λ1C2sjMj)
ν/2,

whereν > 2 is a constant. Thensj = (ν/2)j+1 . Now we claim that∫
Ω

u2sj ≤ Mj forj ≥ 0, (2.17)

Mj ≤ emsj−1 (2.18)
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for some constantm > 0. We may prove (2.17) by induction as follows: asj = 0, we may use (1.3) and (2.15) with
s = 1 to obtain (2.17). Suppose (2.17) holds asj = k. Then by (2.15), we have∫

Ω

u2sk+1 =
∫
Ω

uνsk ≤
(
λ1C2sk

∫
Ω

u2sk

)ν/2

(by (2.15))≤ (λ1C2skMk)
ν/2 = Mk+1

(by induction hypothesis).

Hence (2.17) is true. Now we prove (2.18) as follows: letµj = logMj. Thenµj+1 = (ν/2)µj + σj, whereσj =
(ν/2) log(λ1C2sj). Hence

σj = 1
2ν
[
log(λ1C2)+ (j + 1) log 1

2ν
]
≤ C∗(j + 1),

where

C∗ = ν max
{
log(λ1C2), log 1

2ν
}
. (2.19)

We may define a sequence{τj} by τ0 = µ0 andτj+1 = (ν/2)τj + C∗(j + 1) for j ≥ 0. Clearly,µj ≤ τj for j ≥ 0.
Moreover, since

τj =
(

1
2ν
)j

(µ0+ 2C∗ν(ν − 2)−2)− 2C∗(ν − 2)−1
[
j + ν

ν − 2

]
,

then bysj = (ν/2)j+1, we haveτj ≤ msj−1, where

m = µ0+ 2C∗ν(ν − 2)−2 = ν

2
log(λ1C2)+ 2C∗ν(ν − 2)−2. (2.20)

By (2.19) and (2.20), the constantm is a positive constant depending only onν, λ1 andC2. Hence logMj ≤ msj−1
and we obtain (2.18). By (2.17) and (2.18), we have

‖u‖
L

2sj (Ω) ≤ em/ν ∀j ≥ 0,

and hence lettingj →∞, we obtain‖u‖L∞(Ω) ≤ em/ν. Similarly, by (2.16), we may obtain‖v‖L∞(Ω) ≤ em
∗/ν,

wherem∗ is a positive constant independent ofΛ. Therefore, we may complete the proof ofLemma 2.1. �

Proof of Lemma 2.2.Without loss of generality, we may assumex0 is at the origin. Let ˜u(x) = uΛ(x/
√
Λ), ṽ(x) =

vΛ(x/
√
Λ), for x ∈ BR1

√
Λ(0). Thenũ andṽ satisfy

−�ũ+ αΛ−1ũ3+ ṽ2ũ = λ1Λ
−1ũ in BR1

√
Λ(0), (2.21)

−�ṽ+ βΛ−1ṽ3+ ũ2ṽ = λ2Λ
−1ṽ in BR1

√
Λ(0). (2.22)

Hence by (2.21), (2.22),Lemma 2.1and the standard theorem of interior gradient estimates (cf. Theorem 8.32 of
[13]), we have

‖∇ũ‖L∞(B
R2
√
Λ

(0)) ≤ C1, ‖∇ṽ‖L∞(B
R2
√
Λ

(0)) ≤ C1,

whereR2 = R1−Λ−1/2, andC1 is a positive constant depending only onC0 which is defined inLemma 2.1. Here
we have used the fact thatα andβ are nonnegative constants independent ofΛ, andλj ’s are bounded quantities as
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Λ→∞. Thus we have

‖∇uΛ‖L∞(BR2(0)) ≤ C1
√
Λ, ‖∇vΛ‖L∞(BR2(0)) ≤ C1

√
Λ.

Therefore we complete the proof ofLemma 2.2. �
By Lemmas 2.1 and 2.2, we may obtain

Proposition 2.1. Assumex0 ∈ Ω such thatuΛ(x0) → u0(x0) ≥ 2ε0 > 0 asΛ→∞, whereε0 is any positive
constant independent ofΛ.Then∀η > 1, vΛ(x0) ≤ 2C0 Λ−η, asΛ ≥ Λ0,whereC0 is the positive constant defined
in Lemma 2.1, andΛ0 is a positive constant depending only onx0, ε0, η, C0, and the upper bound ofλ1.

As for the proof ofProposition 2.1, we have the following proposition.

Proposition 2.2. Assumex1 ∈ Ω such thatvΛ(x1) → v0(x1) ≥ 2ε1 > 0, asΛ→∞, whereε1 is any positive
constant independent ofΛ.Then∀η > 1, uΛ(x1) ≤ 2C0 Λ−η, asΛ ≥ Λ1,whereC0 is the positive constant defined
in Lemma 2.1, andΛ1 is a positive constant depending only onx1, ε1, η, C0, and the upper bound ofλ2.

We shall provePropositions 2.1 and 2.2later. Now we want to proveTheorem 1.1(ii) and (iii) as follows. By
Lebesgue dominated convergence theorem,Propositions 2.1 and 2.2, it is easy to proveTheorem 1.1(ii). Now we
want to proveTheorem 1.1(iii) by contradiction. Suppose thatΩu can be decomposed into infinitely many disjoint
subdomainsΩj, j = 1,2,3, . . .. Then without loss of generality, we may assume

λ(Ωj) →∞ asj →∞, (2.23)

whereλ(Ωj) is the first eigenvalue of−∆ on the spaceH1
0(Ωj). Moreover,u0 satisfies

−�u0+ αu3
0 = λ̃1u0 in Ωj, j = 1,2,3, . . . ,

and

u0 = 0 on∂Ωj, j = 1,2,3, . . . .

In eachΩj, we may defineUj = u0/‖u0‖L2(Ωj). ThenUj ∈ H1
0(Ωj), ‖Uj‖L2(Ωj) = 1, for j = 1,2,3, . . . . More-

over,Uj satisfies

−�Uj + α‖u0‖2
L2(Ωj) U

3
j = λ̃1Uj in Ωj, j = 1,2,3, . . . . (2.24)

We may multiply both sides of (2.24) byUj and integrate overΩj. Then we have

∫
Ωj

|∇Uj|2 ≤ λ̃1

∫
Ωj

U2
j = λ̃1.

Consequently, we haveλ(Ωj) ≤ λ̃1 <∞. This contradict with (2.23) and the proof ofTheorem 1.1(iii) is completed.
The main ideas of the proof ofProposition 2.1are as follows: (i) rescale spatial variables of the solution (uΛ, vΛ)

by
√

logΛ/Λ and show thatuΛ is positive in a suitable neighborhood ofx0. (ii) Find the comparison function and
apply maximum principle to force the functionvΛ tending to zero nearx0 (see the formulation of the statements
right after (2.36)). ByLemma 2.2, the solutionuΛ may be positive in a ballBρ(x0), ρ = √a/Λ for some constant
a > 0. It is natural to rescale spatial variables by

√
1/Λ. However, when we rescale spatial variables of the solution

(uΛ, vΛ) by
√

1/Λ, the nonlinear termsΛu2v andΛv2u becomeu2v andv2u, respectively. Consequently, the large
parameterΛ disappears and we cannot find the comparison function to force the functionvΛ tending to zero near
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x0. We need to enlarge the scale
√

1/Λ but due toLemma 2.2, the scale
√

1/Λ cannot be enlarged arbitrarily. So
one may enlarge the scale

√
1/Λ as

√
logΛ/Λ. Then the nonlinear termsΛu2v andΛv2u become (logΛ)u2v and

(logΛ)v2u, respectively. Hence we may find the comparison function to force the functionvΛ tending to zero near
x0.

Now we demonstrate the proof ofProposition 2.1as follows.

Proof of Proposition 2.1.Without loss of generality, we may assumex0 = 0, uΛ(0)≥ 2ε0 for Λ > 0, where the
origin 0 is in the interior ofΩ, andε0 is a positive constant independent ofΛ. Letû(x) = uΛ(Λ̃x), andv̂(x) = vΛ(Λ̃x),
for x ∈ Br0Λ̃

−1(0), whereΛ̃ = √
logΛ/Λ, andr0 is a positive constant independent ofΛ such that the diskBr0(0)

with radiusr0 and center at the origin is in the interior ofΩ. Then the equations of ˆu andv̂ are

−�û+ αΛ̃2 û3+ (logΛ)v̂2 û = λ1Λ̃
2û in Br0Λ̃

−1(0), (2.25)

−�v̂+ βΛ̃2 v̂3+ (logΛ)û2 v̂ = λ2Λ̃
2 v̂ in Br0Λ̃

−1(0). (2.26)

Let fΛ(r) = (1/2πr)
∫
∂Br(0) û

2 dS, for 0 < r ≤ r0Λ̃
−1,Λ > 0. Fix ε1 as a positive constant. Let{Λi} be any in-

creasing sequence of positive numbers such thatΛi →∞ asi→∞. Let 0< δ < 1/2 be a positive constant such
thatε1 log((1/2)/δ) ≥ 3C2

0, whereC0 is the positive constant inLemma 2.1. Now we replaceΛ by the sequence
{Λi} andû(x) = uΛi (Λ̃ix), whereΛ̃i =

√
logΛi/Λi. We claim that there exists a sequence{ri} such that

ri ∈
[
Λδ

i ,
Λ

1/2
i

logΛi

]
and |f ′Λi

(ri)| ≤ ε1r
−1
i (logri)

−1. (2.27)

We may prove (2.27) by contradiction. Supposef ′Λi
(r) > ε1r

−1(log r)−1, for r ∈ [Λδ
i ,Λ

1/2
i / logΛi]. Then

fΛi

(
Λ

1/2
i

logΛi

)
− fΛi (Λ

δ
i ) =

∫ Λ
1/2
i / logΛi

Λδ
i

f ′(r) dr ≥
∫ Λ

1/2
i / logΛi

Λδ
i

ε1r
−1(log r)−1 dr

= ε1 log

[
log(Λ1/2

i / logΛi)

logΛδ
i

]
→ ε1 log

(
1/2

δ

)
≥ 3C2

0.

However, byLemma 2.1, we havefΛi (Λ
1/2
i / logΛi)− fΛi (Λ

δ
i ) ≤ 2C2

0. Hence we obtain contradiction and com-
plete the proof of (2.27). �

By (2.27), we have

∣∣∣∣∣
∫
∂Bri

(0)
û∂nûdS

∣∣∣∣∣ ≤ πε1(log ri)
−1,

i.e., ∣∣∣∣∣
∫
∂Bri

(0)
û ∂n ûdS

∣∣∣∣∣ ≤ K0

logΛi

, (2.28)

whereK0 is a positive constant depending only onδ andε1, and∂n is the standard normal derivative on the boundary.
Now we multiply both sides of (2.25) by ˆu and integrate overBri (0). Then we obtain∫

Bri
(0)
|∇û|2 =

∫
∂Bri

(0)
û ∂n ûdS − αΛ̃2

i

∫
Bri

(0)
û4− (logΛi)

∫
Bri

(0)
û2v̂2+ λ1Λ̃

2
i

∫
Bri

(0)
û2, (2.29)
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whereΛ̃i =
√

logΛi/Λi. Hence by (2.28), (2.29) andLemma 2.1, we have∫
Bri

(0)
|∇û|2 ≤ K1

logΛi

, (2.30)

whereK1 is a positive constant depending only onC0, λ1, δ, andε1.
FromLemma 2.2, we have

‖∇û‖L∞(Bri
(0)) ≤ C1

√
logΛi, (2.31)

whereC1 is the positive constant defined inLemma 2.2. Hence by (2.30), (2.31) and the imbedding theorem of
Morrey (cf. Theorem 7.17 of[13]), we have

oscBR(0) û ≤ C2 Rγ‖∇û‖Lp(BR(0))

= C2 Rγ

(∫
BR(0)

|∇û|p−2|∇û|2
)1/p

≤ C2 Rγ (C1
√

logΛi)
γ

(∫
BR(0)

|∇û|2
)1/p

(by (2.31))

≤ C2R
γ (C1

√
logΛi)

γ

(
K1

logΛi

)1/p

(by (2.30))

= K2R
γ (logΛi)

γ∗

for 0 < R ≤ ri, andp > 2, whereγ = 1− 2/p, γ∗ = 1/2− 2/p,C2 = C2(p) > 0, andK2 is a positive constant
independent ofΛi. In particular, we setR = κ

√
logΛi, ε1 = 1, andp = 5/2, whereκ is a positive constant depending

only onη andε0. We may determineκ later. Then we obtain

oscBR(0)û ≤ K2 κ1/5(logΛi)
−1/5 for R = κ

√
logΛi. (2.32)

SinceuΛi (0)≥ 2ε0, i.e.,û(0)≥ 2ε0, then by (2.32), we have

û(x) ≥ ε0 for x ∈ BR(0), (2.33)

asi ≥ N0, whereN0 is a large constant which depends only onε0, κ, C0, and the upper bound ofλ1.
Let ǔ(x) = û(

√
logΛi x) andv̌(x) = v̂(

√
logΛi x) for x ∈ Bκ(0). Then (2.33) implies

ǔ(x) ≥ ε0 for x ∈ Bκ(0). (2.34)

Moreover,ǔ andv̌ satisfy

−�ǔ+ α
log2 Λi

Λi

ǔ3+ (log2 Λi)v̌
2 ǔ = λ1

log2 Λi

Λi

ǔ in Bκ(0), (2.35)

−�v̌+ β
log2 Λi

Λi

v̌3+ (log2 Λi)ǔ
2 v̌ = λ2

log2 Λi

Λi

v̌ in Bκ(0). (2.36)

By (2.34) and (2.36), we have

�v̌ ≥ 1
2ε

2
0(log2 Λi)v̌ in Bκ(0). (2.37)

Let w be the solution of

�w = 1
2ε

2
0(log2 Λi)w in Bκ(0), w|∂Bκ(0) = supBκ(0) v̌ ≡ KΛi.

Then by the maximum principle, we obtain
v̌ ≤ w in Bκ(0). (2.38)
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Since the equation ofw is linear, we may writew = KΛiW , whereW is the solution of

�W = 1
2ε

2
0(log2Λi)W inBκ(0), W |∂Bκ(0) = 1.

HenceW(r) = I0((
√

1/2)ε0 r log Λi)/I0((
√

1/2)ε0 κ log Λi), whereI0 is the modified Bessel function of order
zero. Thus by the monotonic increasing ofI0 and the asymptotic formulaI0(r) ∼ er/

√
2πr asr →∞ (cf. [10]),

we have

W(r) ≤
I0( 1

2

√
1
2ε0κ log Λi)

I0(
√

1
2ε0 κ logΛi)

≤ 2Λ−ε0κ/
√

8
i , ∀0 < r ≤ κ

2
.

By Lemma 2.1, KΛi = supBκ(0) v̌ ≤ C0. Hence by (2.38), we obtain

v̌ ≤ 2C0 Λ
−η
i in Bκ/2(0)

for η > 1, whereη = ε0κ/
√

8 and the constantκ is determined. Thus

vΛi (0)= v̌(0)≤ sup
Bκ/2(0)

v̌ ≤ 2C0Λ
−η
i

for η > 1. Therefore we complete the proof ofProposition 2.1.

3. Positive ground states

In this section, we study the energy minimization problem (1.6) and proveTheorem 1.2as follows. To estimate
the energy upper bound , we may define comparison functions by

Uj(x) =




wj(x) for x ∈ Ω0
j ,

0 forx ∈ Ω

Ω0
j

, j = 1, . . . , m,

whereΩ0
j ’s are disjoint smooth domains satisfyingΩ0

j ⊂ Ω, j = 1,2, and∪m
j=1Ω̄

0
j = Ω̄. In addition, eachwj is

the first eigenfunction of Laplace operator in the spaceH1
0(Ω0

j ). Then it is easy to check that

EΛ(U) ≤ K0, (3.1)

whereU = (U1, . . . , Um) andK0 is a positive constant independent ofΛ.
By (3.1) and the standard Direct method, there exists an energy minimizeruΛ = (u1,Λ, . . . , um,Λ) of (1.6) such

that eachuj,Λ is nonnegative,

uj,Λ ⇀ uj,∞ in H1
0(Ω; R) (up to a subsequence), (3.2)

and

ui,∞uj,∞ = 0 almost everywhere inΩ ∀i �= j. (3.3)
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Here we have used the standard inequality

∫
Ω

|∇|u||2 ≤
∫
Ω

|∇u|2, ∀u ∈ H1(Ω; R),

to obtain the nonnegative ground state solutionuΛ. The solutionsuΛ satisfies the system (1.2), (1.3) and (1.4). We
may multiply both sides of thejth component of (1.2) byuj,Λ and integrate it overΩ. Then by (1.3) and (1.4), we
have ∫

Ω

|∇uj,Λ|2+ µj u
4
j,Λ +Λ

∑
i�=j

β̃iju
2
i,Λu2

j,Λ = λj, j = 1, . . . , m. (3.4)

Hence by (3.4),λj ’s are positive constants which may depend onΛ. Since eachuj,Λ is nonnegative, andλj ’s are
positive constants, then by (1.2), we have

�uj,Λ −

µju

2
j,Λ +Λ

∑
i�=j

β̃iju
2
i,Λ


 uj,Λ ≤ 0 inΩ. (3.5)

Thus by (3.5) and the strong maximum principle, eachuj,Λ must be positive inΩ. It is easy to check that the
multipliersλj ’s satisfy

m∑
j=1

λj =
m∑

j=1

∫
Ω

|∇uj,Λ|2+ µju
4
j,Λ +Λ

∑
i�=j

β̃iju
2
i,Λu2

j,Λ ≤ 4EΛ(uΛ) ≤ 4EΛ(U).

From the energy upper bound (3.1),λj ’s must be bounded quantities asΛ→∞.
SinceuΛ is the energy minimizer, then by (3.3), we have

EΛ(uΛ) ≤ EΛ(u∞) =
m∑

j=1

∫
Ω

1

2
|∇uj,∞|2+ µj

4
u4
j,∞, (3.6)

whereu∞ = (u1,∞, . . . , um,∞). Hence by (3.2), (3.6) and Fatou’s Lemma, we obtain

Λ

∫
Ω

∑
i�=j

β̃iju
2
i,Λ u2

j,Λ → 0, j = 1, . . . , m, (3.7)

and ∫
Ω

|∇uj,Λ|2 →
∫
Ω

|∇uj,∞|2, j = 1, . . . , m. (3.8)

Thus by (3.2) and (3.8), we have the strong convergence as follows:

uj,Λ → uj,∞ in H1
0(Ω; R) (up to a subsequence). (3.9)

Now we want to prove the nodal lineΓ = {x ∈ Ω : uj,∞(x) = 0, j = 1, . . . , m} having no interior point by
contradiction. Suppose the nodal lineΓ having some interior points. LetΩ′

1 be the interior ofΩ \ ∪m
j=2Ωj. Then

Ω′
1 ⊃ Ω1 and|Ω′

1| > |Ω1|. Now we define the comparison functions byŨ = (Ũ1, . . . , Ũm),

Ũ1(x) =
{
ϕ(x) for x ∈ Ω′

1,

0 forx ∈ Ω \Ω′
1,
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and

Ũj(x) =
{

0 forx ∈ Ω \Ωj,

uj,∞(x) for x ∈ Ωj, j = 2, . . . , m,

whereϕ is the energy minimizer of the following minimization problem.

Minimize
∫
Ω′1

1

2
|∇ψ|2+ µ1

4
ψ4 forψ ∈ H1

0(Ω′
1; R),

∫
Ω′1

ψ2 = 1.

Then

EΛ(Ũ) =
∫
Ω′1

1

2
|∇ϕ|2+ µ1

4
ϕ4+

m∑
j=2

∫
Ωj

1

2
|∇uj,∞|2+ µj

4
u4
j,∞. (3.10)

Since EΛ(Ũ) ≥ EΛ(uΛ), then by (3.2), (3.10) and Fatou’s Lemma, we have
∫
Ω′1

(1/2)|∇ϕ|2+ (µ1/4)ϕ4 ≥∫
Ω1

(1/2)|∇u1,∞|2+ (µ1/4)u4
1,∞. This may contradict withΩ′

1 ⊃ Ω1 and the definition ofϕ. Therefore we may
complete the proof of the nodal line{x ∈ Ω : uj,∞(x) = 0, j = 1, . . . , m} having no interior point.

Now we claim thatΩj ’s aremdisjoint domains forµj ≥ 0, j = 1, . . . , m. Asµj = 0∀j, it is obvious thatΩj ’s
arem disjoint domains, i.e., each setΩj is connected. For generalµj ’s, we need a crucial assumption thatuj,∞
depend onµj continuously forj = 1, . . . , m. Now we prove the claim by contradiction. SupposeΩj is not a domain
for someµj > 0. Then by the continuity ofuj,∞ toµj, we may assume that for someµj > 0,Ωj can be divided into
two subdomainsΩ+

j andΩ−
j , where the measure ofΩ−

j is sufficiently small such thatλ(Ω−
j ) ≥ K∗, andK∗ > 0 is a

large constant determined later. Hereafter,λ(Ω−
j ) is the first eigenvalue of−∆ on the spaceH1

0(Ω−
j ). Furthermore,

we may assume

∫
Ω+j

u2
j,∞ = 1− ε,

∫
Ω−j

u2
j,∞ = ε, 0 < ε <

1

2
.

Let v+j = uj,∞/
√

1− ε in Ω+
j , andv−j = uj,∞/

√
ε in Ω−

j . Then∫
Ω+j

(
v+j
)2 = 1,

∫
Ω−j

(
v−j
)2 = 1. (3.11)

By (3.1) and (3.2), we obtain∫
Ω+j

1

2
|∇v+j |

2+ µj

4
(v+j )4 ≤ Kj, (3.12)

whereKj is a positive constant depending only on the upper boundK0 in (3.1). Hence we have∫
Ωj

1

2
|∇uj,∞|2+ µj

4
u4
j,∞ = (1− ε)

∫
Ω+j

[
1

2
|∇v+j |2+ (1− ε)

µj

4
(v+j )4

]
+ ε

∫
Ω−j

[
1

2
|∇v−j |

2+ ε
µj

4
(v−j )4

]

≥
∫
Ω+j

[
1

2
|∇v+j |2+

µj

4
(v+j )4

]
− 4εKj + 1

2
ελ(Ω−

j ) (by (3.11), (3.12))

≥ νj + ε

(
1

2
K∗ − 4Kj

)
,
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i.e., ∫
Ωj

1

2
|∇uj,∞|2+ µj

4
u4
j,∞ ≥ νj + ε

(
1

2
K∗ − 4Kj

)
, (3.13)

whereνj = ξj(Ω
+
j ), andξj is defined in (1.11). On the other hand, sinceuj,∞ is the limit function of the energy

minimizersuj,Λ’s, then it is easy to check that∫
Ωj

1

2
|∇uj,∞|2+ µj

4
u4
j,∞ ≤ νj. (3.14)

By (3.13) and (3.14), we may get contradiction and complete the proof ofTheorem 1.2if we set the constantK∗
satisfyingK∗ > 8Kj.

4. Verticillate structures of mnodal domains

In this section we study the numerical behavior of phase separation of generalm-mixture of BECs for sufficiently
large scattering lengthΛ. Because of phase separation, as the number of multispeciesmbecomes larger and larger,
more and more segregated domains may occur. As inSection 1, a natural question raised here is how these segregated
domains distribute whenΛ is sufficiently large. It will be shown later in this section by numerical computation that
multiple verticillate structures ofm (2≤ m ≤ 33) nodal domains occur form-component ground states.

Recently, a generalization of the normalized gradient flow (NGF) method[4] and the time-splitting spectral
method[5] have been developed in[3] for computing the ground state solutions of (1.2) of a multi-component BEC.
Instead, based on the fixed point iteration method[8] we propose a Gauss–Seidel-type iteration method (GSI),
which is inspired by the eigenvalue approach for computing the ground states and the other bound states of the
multi-component BEC.

Hereafter, we use the bold face letters or symbols to denote a matrix or a vector. Foru = (u1, . . . , uN )�,
v = (v1, . . . , vN )� ∈ R

N , u ◦ v = (u1v1, . . . , uNvN )� denotes the Hadamard productu andv, u = u ◦ · · · ◦ u
denotes ther-time Hadamard product ofu, [[u]] := diag(u) the diagonal matrix ofu. For A ∈ R

M×N , A > 0
(≥ 0) denotes a positive (nonnegative) matrix with positive (nonnegative) entries,A � 0 (withA� = A) denotes a
symmetric positive definitive matrix.

We now discretize the VGPEs of (1.2) into a nonlinear algebraic eigenvalue problem and derive the discretized
version of the associated minimized energy functional problem. We considerEq. (1.2) on a two-dimensional unit
diskΩ = D and rewrite the Laplacian operator−∇2 onuj(x) in the polar coordinate system. Based on the recently
proposed discretization scheme[20] the standard central finite difference method discretizes−�uj(x) into

Âuj = Â[uj1, . . . , ujl, . . . , ujN ]�, Â ∈ R
N×N, (4.1)

whereuj is an approximation of thejth wave functionuj(x) for j = 1, . . . , m. The matrixÂ is irreducible and
diagonally dominant with positive diagonal and nonpositive off-diagonal entries. Moreover,Â is symmetrizable to
a symmetric positive definitive matrixA by a positive diagonal matrixD > 0, i.e.,

Â = D−1AD, A� = A � 0. (4.2)

It can be shown[8] that the square of thelth diagonal element ofD is equal to the area of thelth sector corresponding
to an integrated partition forD. Applying (4.1) to (1.2) and normalizing eachuj with respect toD2, the discretization
of VGPEs in (1.2), referred as a nonlinear algebraic eigenvalue problem (NAEP), can be formulated as

Aj(Duj)+Λ
∑
i�=j

β̃ijui ◦ (Dui) = λj(Duj), (4.3a)
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where

u�j D
2uj = 1, Aj := A + 2[[Vj + µjuj ]] (4.3b)

for j = 1, . . . , m. Furthermore, the associated optimization problem of(4.3)becomes

Minimizeu=(u1,...,um) E(u)

subject to u�j D
2uj = 1, j = 1, . . . , m,

(4.4a)

where

E(u) ≡
m∑

j=1

(
1

2
u�j DADuj + (Vj + µjuj )�(Duj)

)
+ 1

2
Λ

∑
1≤j≤i≤m

β̃iju T
i (Duj) . (4.4b)

The derivation of(4.3)and(4.4)can be found in[8].
Define the set

M = {v ∈ R
N |v�D2v = 1, v ≥ 0},

◦
M= interiorofM. (4.5)

For convenience, we now suppose that

β̃ji = β̃ij > 0 (j �= i), j, i = 1, . . . , m. (4.6)

For any givenVj ≥ 0 and (u1, . . . ,um) ∈ ×m
j=1M, the matrix

Āj ≡ Aj + 2[[Vj]] +Λ
∑
i�=j

[[ β̃ijui ]] (4.7)

is an irreducibleM-matrix. By th Perron–Frobenius theorem (see e.g.[6]) there is a unique positive eigenvector
Dūj > 0 with ū�j D

2uj = 1 corresponding to the maximal eigenvalueωmax
j of A−1

j which satisfies

Āj(Dūj) =

Aj +Λ

∑
i�=j

[[ β̃ijūi ]]


 (Dūj) = λmin

j (Dūj), (4.8)

whereλmin
j = 1/ωmax, j = 1, . . . , m.

Define a functionf : ×m
j=1M→×m

j=1M by

f (u1, . . . ,um) ≡ (f1(u1, . . . ,um), . . . , fm(u1, . . . ,um)) = (u1, . . . ,um), (4.9)

where uj > 0 is well-defined by (4.8) forj = 1, . . . , m. We now construct a Gauss–Seidel-type mapping
g : ×m

j=1M→×m
j=1M by

g(u1, . . . ,um) = (u1, . . . ,um), (4.10a)

where

ū1 = g1(u1, . . . ,um) = f1(u1,u2, . . . ,um),

ū2 = g2(u1, . . . ,um) = f2(ū1,u2,u3, . . . ,um),
...

ūm = gm(u1, . . . , ūm) = fm(ū1, ū2, . . . , ūm−1,um)

(4.10b)
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with {fj}mj=1 as given by (4.9). The mappingg in (4.10)can be used to naturally define a Gauss–Seidel-type iteration
(GSI). The following theorem from[8] gives a necessary and sufficient condition for the convergence of the above
GSI.

Theorem 4.1 (Chang et al.[8]). Suppose thatµj (j = 1, . . . , m) in (4.3)are sufficiently small positive numbers.
Let (λ∗,u∗) = ((λ∗1, . . . ,λ

∗
m), (u∗1, . . . ,u

∗
m)) be a fixed point of(4.3) satisfying(4.6).The GSI method defined by

(4.10)converges to(λ∗,u∗) locally and linearly if and only ifu∗ = (u∗1, . . . ,u
∗
m) is a strictly local minimum of(4.4).

We simulate the multi-component BECs fromm = 2 tom = 33 by using GSI method in(4.10). By Theorem 4.1
the GSI method can converge to a bound state or a ground state solution of(4.3) which depends on whether the
associated energy is the smallest one.

It is well-known that when the scattering lengthΛ = 0 in (4.3) the NAEP of(4.3) is decoupled and havem
identical ground state solutions. On the other hand, byTheorem 1.1whenΛ→∞ the VGPEs havem disjoint
ground state solutions. We now compute the energy state solutions of(4.3)by GSI method, takingΛ as a parameter
varying from 0 to 106.

In the numerical simulation, we first show that for a fixedm there is aΛ1(m) > 0 (dependent onm) such
that the NAEP(4.3) have only identical ground state solutions for 0≤ Λ < Λ1(m), and a bifurcation occurs at
Λ = Λ1(m), so that some ground state solutions begin to separate and some ground state solutions are still identical,
for Λ > Λ1(m). SinceΛ > 0 is a repulsive scattering length, it is expected that the ground state solutions of(4.3)
should be mutually separated whenΛ is continually increased. We continue this process and observe that there
is a second bifurcation pointΛ2(m) (Λ2(m) > Λ1(m)) so that more ground state solutions separate. We finally
reach a bifurcation pointΛ∗(m) so that the ground state solutions of(4.3)have a phase separation, forΛ > Λ∗(m).
As we continue increasingΛ beyondΛ∗(m), the structure of the phase separation will stay unchanged and reach
a stage of totally disjoint phases, whenΛ approaches to 106 (a value common to allm). In the above general
bifurcation process, it is helpful to point out that the final stage is reached via a sequence of transition intervals such
as [0,Λ1(m)], [Λ1(m),Λk(m)], [Λk(m),Λ∗(m)] and so on. The numberk may take on 1, 2 and so on.

We observe that at the final stage the disjoint phases have a verticillate or multiple verticillate structure which
depends onm, the number of components in BECs. We now elaborate on the verticillate structures using the following
parameters. For a given positive integern1 > 0 withn1 ≤ m, we use the index (n1) to denote the verticillate structure
of the unit disk that is partitioned uniformly by then1 supports of the ground state solutions. In general, for a
given sequence of positive integers 0< n1 < n2 < · · · < nr with

∑r
i=1 ni ≤ m and a sequence of concentric disks

D1 ⊂ D2 ⊂ · · · ⊂ Dr := D, we define the index (n1, . . . , nr) to describe the multiple verticillate structure of the
unit disk in which theni supports of the bound state solutions uniformly partition the ringDi \Di−1,1≤ i ≤ r

with D0 being the empty set. In short,

(n1) := ann1-verticillate structure of the phase separation,

(n1, . . . , nr) := an (n1, . . . , nr)-multiple verticillate structure of the phase separation.

In Fig. 1(a)–(e) we plot the energy of ground states or bound states versus the numbermof components in BECs.
Here the energies are computed by (4.4b). We denote by “∗" the minimal energy and by “♦" the excited energy.
A proper index for the verticillate or multiple verticillate structure of the phase separations is indicated near a “∗"
or “♦". For m = 2, . . . ,5, we observe that the ground states have (m)-verticillate structures andm equal nodal
domainΩj ’s, where the tops ofuj, j = 1, . . . , m form the vertices of am-polygon. Furthermore, two bound states
have (1,3)- and (1,4)-verticillate structures, respectively, form = 4 and 5. Asm = 6,7,8, a new structure for
ground states emerges where one nodal domainΩj0 occupies the center ofΩ and the restm− 1 nodal domains
equally distribute around the outside ofΩj0. Form = 6 (7 or 8), we observe that a double verticillate structure (1,5)
((1,6) or (1,7)) for ground states and the single verticillate structure (6) ((7 or (8))) become bound state solutions. As
m = 9,10,11, two nodal domainsΩj1 andΩj2 locate near the center ofΩ and the restm− 2 nodal domains equally
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distribute around the outside ofΩj1 andΩj2. Asm increases from 12 to 16, three, four, and five nodal domains may
occur near the center ofΩ and the rest nodal domains equally distribute the rest of domainΩ. Basically, for these
cases, the tops ofuj in the nodal domains are located at vertices of two eccentric polygons. We term this change
of verticillate structures as averticillate doubling. It is naturally expected that we should have verticillate tripling
or quadrupling for ground states wherem increases. More precisely, asm = 17,18, . . . ,21, one nodal domainΩj0

begin to occupy the center ofΩ, respectively, 6, 5, 5, 7, 7 nodal domainsΩj1, . . . ,Ωjr (say!) equally distribute
around the outside ofΩj0 and, respectively, the rest 10, 12, 13, 12, 13 nodal domains equally distribute around the
outside ofΩj1, . . . ,Ωjr . Similarly, inFig. 1(d) and (e) we observe the triple and quadruple verticillate structures of
nodal domains for 22≤ m ≤ 33. Especially, inFig. 1(c) and (e), respectively, we observe that there is averticillate
tripling atm = 17 and averticillate quadruplingatm = 32.

Furthermore,Theorem 4.1shows that GSI method can converge to different local minima of the optimization
problem(4.4). In Fig. 1we see that there is only one local minimum, i.e., one unique global minimum of(4.4) for
m = 2 or 3, but there exist other local minimums of(4.4) for m ≥ 4 which are denoted by “♦". In Fig. 1(b), we
even find that there exist the other two local minimums of(4.4) for m = 9,10 and 12.

In order to understand the different patterns of multiple verticillate structures for the ground state and the bound
state solutions, inFigs. 2 and 3we plot the nodal domains for the ground state and bound state solutions with
associated energies, form = 5 andm = 6, respectively. We observe that form = 5, the ground state has a (5)-
verticillate structure with energy= 15.81 and a bound state has a (1,4)-verticillate structure with energy= 16.22;
however, form = 6, the ground state has a (1,5)-verticillate structure with energy= 18.06 and a bound state has a
(6)-verticillate structure with energy= 19.15. A verticillate doublingoccurs firstly here atm = 6. In addition, in
our simulation we notice that the numbern1 for the first verticillate structure onD1 cannot be larger than 5. We
conclude fromFig. 1that one more verticillate multiplying for the ground state solutions will occur when an1 > 5
is experienced.

For the sake of comprehension of the distribution of multiple verticillate structures of all nodal domains for
ground states, inFig. 4, we plot the nodal domains form = 2, . . . ,33 with sufficiently large and positive repulsive
scattering lengthΛ ≈ 106. The figure here shows thatm segregated nodal domains ofm nodal domains ofm-
mixture of BECs are clearly separated byΛ ≈ 106. We see that as the numberm becomes larger and larger, the
distribution of the nodal domains is arranged in whorls more and more, and then the ringlike levels are getting
increasing. InFig. 4, we observe that averticillate doubling, tripling andquadruplingoccurs atm = 6,17 and 32,
respectively.

To study the numerical behavior of the energy versus the repulsive scattering lengthΛ we consider the case
of nine-component BECs (m = 9) and plot its bifurcation diagram inFig. 5. In this case thatm = 9, we find
that there are four different kinds of verticillate structures for bound states with variousΛ that is enough to
illustrate the verticillate structures of a generalm. In our numerical result, we observe that the VGPEs have only
identical ground state solutions, i.e., (1)-verticillate structure forΛ < Λ1(9), and bifurcate into the (1,7)-verticillate
structures, forΛ1(9)≤ Λ, where there are two identical components onD1 and seven component solutions uniformly
partition the ringD2 \D1. Note that hereD1 ⊂ D2 := D are two concentric disks. The (1,7)-verticillate ground
state solutions of VGPEs again bifurcate atΛ = Λ2(9) into the (2,7)-verticillate structure for bound states and
the (1,8)-verticillate structure for ground states, forΛ ≥ Λ2(9). In fact, both of these two bound state solutions
are the local minimums of the optimization problem (4.4a). The associated nodal domains of these four kinds
of verticillate structures are attached near the energy curve inFig. 5. Notice that the dash line inFig. 5 means
that the (9)-verticillate structures are computed by the GSI method with some artificial constraints[8]. Without
these constraints the GSI method always converges to either the (1,8)- or the (2,7)-verticillate structure locally and
linearly.

We now consider VGPE of BEC coupled only with equal neighboring repulsive scattering lengths. The corre-
sponding NAEP as in(4.3)can be simplified by

Aj(Duj)+Λ[[uj+1]] (Duj)+Λ[[uj−1]] (Duj) = λjDuj, (4.11a)
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Fig. 1. Energy vs. the number of components.
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Fig. 2. m = 5: (a) Ground state solutions with energy= 15.81, (b) bound state solutions with energy= 16.22.

Fig. 3. m = 6: (a) Ground state solutions with energy= 18.06, (b) bound state solutions with energy= 19.15.

where

u�j D
2uj = 1, Aj = A + 2[[Vj]] , (4.11b)

for j = 1, . . . , m.
Since the local coupled VGPEs are simpler than the globally coupled VGPEs(4.3), no transition stage occurs by

computation. Numerical result shows that there is aΛ1(m) > 0 such that the NAEP(4.11)have only identical ground

Fig. 4. Nodal domains form = 2, . . . ,33 withΛ ≈ 106.
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Fig. 5. m = 9: Energy curves vs.Λ.

state solutions when 0≤ Λ < Λ1(m) and have a phase separation of the ground state solution whenΛ ≥ Λ1(m).
Furthermore, ifm is odd, then we have an (m)-verticillate structure of the ground state solutions; ifm is even, then
we have a (2)-verticillate structure of the ground state solutions, i.e.,mground state solutions separate disjointedly
into two groups ofm/2 identical solutions whenΛ approached to 106. In this case, the structure changes only once
from identical solutions to phase separations and the convergence of GSI is relatively fast.

5. Conclusions

In this paper, we have studied the distribution ofm segregated nodal domains of them-mixture of BECs under
positive and large repulsive scattering lengths. We showed rigorously that the components of positive bound states
may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. By
numerical computations, we observed a new phenomenon: verticillate multiplying, i.e., the generation of multiple
verticillate structures, when the number of the first verticillate structure is larger than five. In addition, we have
created new techniques that are quite different from the existing methods[3], and our proposed Gauss–Seidel-type
iteration method is very effective in that it converges always linearly in just 10–20 steps.
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