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Abstract

This paper proposes a segregated temporal assembly recur-
rent (STAR) network for weakly-supervised multiple action
detection. The model learns from untrimmed videos with
only supervision of video-level labels and makes prediction
of intervals of multiple actions. Specifically, we first assem-
ble video clips according to class labels by an attention mech-
anism that learns class-variable attention weights and thus
helps the noise relieving from background or other actions.
Secondly, we build temporal relationship between actions by
feeding the assembled features into an enhanced recurrent
neural network. Finally, we transform the output of recurrent
neural network into the corresponding action distribution. In
order to generate more precise temporal proposals, we design
a score term called segregated temporal gradient-weighted
class activation mapping (ST-GradCAM) fused with attention
weights. Experiments on THUMOS’14 and ActivityNet1.3
datasets show that our approach outperforms the state-of-the-
art weakly-supervised method, and performs at par with the
fully-supervised counterparts.

1 Introduction
Multiple action detection, which aims at localizing tem-
poral intervals of actions and simultaneously identifying
their categories in videos, is a fundamental problem in
video understanding. Many existing works (Shou, Wang,
and Chang 2016; Zhao et al. 2017; Shou et al. 2017; Xu,
Das, and Saenko 2017; Yang et al. 2018; Chao et al. 2018;
Lin et al. 2018; Alwassel, Caba Heilbron, and Ghanem
2018) make efforts to address this problem in a supervised
manner, where the algorithms rely on fully labeled data (i.e.,
videos with precise annotations of the starting and ending
frames of actions). However, such supervised methods are
prohibitively impractical in real applications, since frame-
level annotations are substantially time-consuming and ex-
pensive. Therefore, learning to detect temporal action from
untrimmed videos remains a crucial and challenging prob-
lem in video understanding.

A few explorations based solely on video-level annota-
tions have exemplified the weakly supervised temporal ac-
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Figure 1: An illustration of the multiple action detection task
from the perspective of MIML.

tion detection. UntrimmedNet (Wang et al. 2017) proposes
to learn a selection module for detecting important seg-
ments, and later STPN (Nguyen et al. 2018) conquers the
single-label limitation by introducing temporal class activa-
tion maps (T-CAM) trained with cross-entropy loss. To ad-
dress the issue that performing localization via thresholds
may not be robust to noises in class activation maps, Au-
toLoc (Shou et al. 2018) directly predicts temporal bound-
ary and proposes a Outer-Inner-Contrastive loss to provide
the desired segment-level supervision. W-TALC (Paul et al.
2018) introduces the Co-Activity Similarity Loss and jointly
optimizes it with the cross-entropy loss for the weakly-
supervised temporal action detection. However, the interfer-
ence and relationship among actions in a video hitherto have
not been concerned.

In reality, a video in general describes multiple actions
occurring in a complex background. Intuitively, a desired
video descriptor should have two characteristics: (1) refrain-
ing from the interference of other unrelated actions or back-
ground, and (2) enhancing the correlation among actions.

In this paper, we focus on the task of weakly supervised
multiple action detection with only video-level labels. As il-
lustrated in Figure 1, the task of multiple action detection
in a weakly-annotated video can be regarded as a multi-
instance multi-label (MIML) (Zhou et al. 2008) problem
where an example (i.e., a video) is described by multiple
instances (i.e., actions) and associated with multiple class
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labels (i.e., action categories). Correspondingly, we address
the weakly supervised action detection task in the following
two steps. Step 1: Action assembling for multi-instance pat-
tern generation. In order to eliminate interference from unre-
lated actions or complex background, we generate instance-
patterns for each type of action via an action selector. As
shown in Figure 1, three intervals of Action-A (denoted
in blue) are selected and integrated as an assembled fea-
ture representation Instance-pattern-A. By this way, each
instance-pattern is mapped from the corresponding type of
action in the input video. Step 2: Relation learning for label
generation. With assembled patterns, the corresponding in-
stances can be directly predicted, but some correlation (e.g.,
CricketShot always co-occurs with CricketBowling ) gener-
ally exists in the case of multiple actions in a video. There-
fore, we learn the implicit relationship between different in-
stances by adopting a recurrent neural network (Hochreiter
and Schmidhuber 1997). Furthermore, the corresponding in-
stance proposals can be activated from the learned class-
variable weights.

More specifically, we propose a weakly-supervised
framework for multiple temporal action detection called
Segregated Temporal Assembly Recurrent (abbr. STAR)
network. Firstly, we construct a well-designed attention
module to learn the action assembly weights for integrat-
ing the encoded segmented features into corresponding
instance-patterns. Then we learn the relationship between
instances by adopting an enhanced recurrent neural network
(RNN) for action label generating. We also involves a rep-
etition align mechanism in RNN for adaptively adjusting
the attention weights to generate finer action proposals. Fi-
nally, we design an operation term called segregated tempo-
ral Gradient-CAM (ST-GradCAM), which is an extension
of Gradient-CAM (Selvaraju et al. 2017), to indicate feature
significance for a specific action category. We fuse the re-
sponse of ST-GradCAM with the learned assembly weights
for the purpose of action localization.

The contributions of our paper are four-fold: (1) We re-
formulate the multiple action detection from a MIML per-
spective, i.e., extracting instance-patterns and generating ac-
tion labels, which eliminates interference among unrelated
action features and captures temporal dependency between
multiple concurrent actions. (2) An end-to-end framework
called STAR, which includes a well-designed attention mod-
ule and an enhanced RNN, is developed to be trained in
a weakly supervised manner from videos with only video-
level labels. (3) We design an ST-GradCAM operation fused
with class-variable assembly weights for action temporal lo-
calization. (4) Experiments demonstrate that our weakly su-
pervised framework achieves impressive performance on the
challenging THUMOS’14 (Jiang et al. 2014) and Activi-
tyNet1.3 (Heilbron et al. 2015) datasets for action detection,
comparable with those of supervised learning methods.

2 Related Work
Action Recognition. The task of action recognition seeks to
identify a single or multiple action labels for each video and
is often treated as a classification problem. Before the era of
deep learning, hand-crafted features, such as the improved

dense trajectories (Wang and Schmid 2013), obtained out-
standing performance on many benchmark datasets. Re-
cently, there have been vast works on action recognition
using convolutional neural networks (CNN). For example,
a 2D CNN for large-scale video classification was first in-
vestigated in (Karpathy et al. 2014), but has not achieved
comparable performance with hand-crafted features. Two-
stream (Simonyan and Zisserman 2014) and C3D (Tran et
al. 2015; 2018; Carreira and Zisserman 2017) networks are
recent mainstreams to learn discriminative features for ac-
tion recognition. The inception 3D (I3D) (Carreira and Zis-
serman 2017) is a two-stream network based on a 3D ver-
sion of Inception network (Ioffe and Szegedy 2015), which
is commonly used as a feature encoder for action localiza-
tion (Nguyen et al. 2018) and dense-labeling videos (Pier-
giovanni and Ryoo 2018).

Fully Supervised Action Detection. Different from action
recognition, action detection aims to identify the temporal
intervals containing target actions. Most existing works fo-
cus on fully-supervised approaches for that. To capture ro-
bust video feature representation, S-CNN (Shou, Wang, and
Chang 2016) uses a multi-stage CNN for temporal action
localization. SSN (Zhao et al. 2017) introduces structured
temporal pyramids with decoupled classifiers for classifying
actions and determining completeness. For precise bound-
aries, the Convolutional-De-Convolutional (CDC) network
(Shou et al. 2017) and the Temporal Preservation Convolu-
tional (TPC) network (Yang et al. 2018) are proposed for
frame-level action predictions. Boundary Sensitive network
(BSN) (Lin et al. 2018) is recently proposed to locate tempo-
ral boundaries which are further integrated into action pro-
posals. Furthermore, some region-based methods, e.g., R-
C3D (Xu, Das, and Saenko 2017) and TAL-Net (Chao et al.
2018), propose to generalize the methods for 2D spatial de-
tection to 1D temporal localization.

Weakly Supervised Action Detection. Action detection in
a weakly supervised fashion has been studied by only a few
works. UntrimmedNet (Wang et al. 2017) is an end-to-end
model for learning single-label action classification and ac-
tion detections. Hide-and-seek (Singh and Yong 2017) tries
to force the model to see different parts of the image and
focus on multiple relevant parts of the object beyond just
the most discriminative one by randomly masking different
regions of training images in each training epoch. Such a
method works well for spatial object detection but is unsat-
isfied for the temporal action detection. STPN(Nguyen et al.
2018) adopts an attention module to identify a sparse subset
of key segments associated with target actions in a video,
and fuse the key segments via adaptive temporal pooling.
The latest work (Shou et al. 2018) and (Paul et al. 2018)
boost the STPN by introducing novel objective functions
to separately tune coarse action boundaries and unearth co-
activity relationship between videos.

Multi-instance Multi-label framework. Single-instance
single-label (Krizhevsky, Sutskever, and Hinton 2012)
framework has led to remarkable performance. While in the
real-world settings, an example is usually composed of mul-
tiple instances, such as sentences in a text, image frames in
a video and objects in an image. Multi-instance multi-label
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(MIML) (Zhou et al. 2008) framework, where an example is
described by multiple instances and associated with multi-
ple class labels, has been applied to different tasks, such as
multi-label image classification (Wang et al. 2016), image
retrieval (Zhang et al. 2018), object detection and semantic
segmentation (Wei et al. 2017; Ge, Yang, and Yu 2018), and
sound separation (Gao, Feris, and Grauman 2018). Our pa-
per generalizes this framework to the action detection task
where a video contains multiple actions and is associated
with multiple video-level classes.

3 Segregated Temporal Assembly Network

The framework of STAR, which is shown in Figure 2, con-
sists of three components: (1) a pre-trained feature extractor
for encoding a video into a sequence of segmental feature
vectors, (2) an end-to-end trainable architecture that we call
segregated temporal assembly network, including an action
assembler and a label generator, and (3) a well-designed ac-
tion localizor for action location. In the following, we first
present the architecture of the proposed STAR in Section
3.1; Then a well-designed action proposal mechanism is de-
scribed in Section 3.2; Finally, the training strategy of the
whole network is given in Section 3.3.

3.1 Action Assembly and Label Generation

Stem Architecture Given N segments of K-dimensional
feature vectors S={s1, s2, . . . , sN} ∈ R

K×N , which are
extracted from a video V by a pre-trained feature extrac-
tor, we first assemble actions from S into instance-patterns
X={x1, x2, . . . , xT } ∈ R

K×T , where T is the number of
assembly actions in V . Then we use an RNN to build relation
between the assembled actions in X , and further generate
the action labels yi from a label set Y = {y1, y2, . . . , yT }
one-by-one. Concretely, we first assemble actions into a spe-
cific instance-pattern at time t by

xt =
N∑

i=1

αt,isi, (1)

where α is the learnt attending assembly weights over S.
Generally, α is calculated by simultaneously referring the
last hidden states of RNN and glimpsing the whole input S
(Chorowski et al. 2015). Correspondingly, we first evaluate
the energy state e over S by

et,i = vαϕ(Wαht−1 + Uαsi), (2)

where ht−1 is the hidden state of RNN at time t-1; Then the
energy state is further normalized by

αt,i = σ(et,i), (3)

where ϕ and σ are the activation function tanh and sigmoid
respectively, and Wα, Uα and vα are learnable parameters.
Note that, the conventional attention mechanism (Chorowski
et al. 2015) uses softmax function to normalize the energy
distribution, which results in failures to capture those long
or high-frequency actions. Instead of softmax, we adopt the
bounded logistic sigmoid activation function σ on the en-
ergy distribution to deal with this issue. Figure 3 illustrates
a comparison of effects of different activation functions.

After assembling actions from S to X , we use the RNN
to build relation between instance-patterns in X by

ht = RNN(ht−1, yt−1, xt), (4)

where RNN is specified as the popular relation learning
model long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997). Then we further output the action prob-
ability distribution by

yt = softmax(Woht), (5)

where Wo is the learnt parameters.
Though the above process, denoted as the naive stem net-

work, can generate action labels to a certain extent, it is still
unsatisfactory to handle complicated video action tasks due
to the following three key factors:

1. Attending repetition: Repetition of attending regions is a
common problem for sequence-to-sequence models (Tu
et al. 2016) and is especially pronounced when generat-
ing multiple instance-patterns (see Raw Attention in Fig-
ure 4), which goes against the purity of single pattern.

2. Co-occurrence: Unlike usual sequential applications
(e.g., text reading, speech recognition, translation etc.),
co-occurrence is universal in videos (e.g., CricketBowl-
ing and CricketShot always appear successively and have
overlapping), which increases the challenge of video
tasks.

3. Trivial action missing: Some repetitive but inapparent
action features are usually shielded by the correspond-
ing prominent representative patterns due to the lack of
frame-level annotations, leading to failures of trivial ac-
tion detection.

Permissive Coverage Constraint For Attending repeti-
tion, coverage mechanism (Tu et al. 2016) has been in-
troduced to minimize the overlapping of attention weights
across time steps, assuming that once given high score-
weight in one step, the input vector must not be focused in
the future steps. However, shown as Original Coverage in
Figure 4, conventional coverage mechanism strictly forbids
focus on the same place, which is not suitable for video task
because of action co-occurrences phenomenon. Instead, we
design an action-friendly permissive coverage constraints on
the weights, in which values of a certain step not only are
constraint to the previous weights, but also refer to the last
hidden state, which is shown as Permissive Coverage in Fig-
ure 4. Specifically, we rewrite the coverage score at t-th step
for segment si as

COVt,i = f(ht−1, αt−1,i)

= σ[Zi(i−
N∑

k=1

αt−1,kk) +Wαht−1],
(6)

where Zi is the corresponding learnable parameter, and f is a
nonlinear activation function composed of a MLP structure
and the sigmoid activation. The COV t,i simultaneously re-
stricts the current weight αt attending relevant to αt−1 and
refers to the last recurrent hidden state ht−1.
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Figure 2: The workflow of the STAR framework. (a) The input video; (b) A pre-trained video encoder for segmental feature
extraction; (c) An action assembler for generating instance-patterns, in which stage attention weights are trained with well-
designed sub-modules (e.g., RAM); (d) A LSTM-based network for action label generation ; (e) A localizer for locating actions
from input video, only used for inference without any training.

(a) softmax (b) sigmoid

Figure 3: Effects of different normalization functions on en-
ergy distribution for attending actions. Horizontal and ver-
tical axes separately represent time and energy score. The
ground truth of the action regions is represented by a bar,
with yellow color indicating action occurrence.

Then we put the coverage term into the attending mecha-
nism by rewriting Equation 2 as

êt,i =vα[COVt,iϕ(Wαht−1 + Uαsi)], (7)

where COV t,i can be considered as a soft gating value
within the range of [0,1].

Repetition Alignment Mechanism For trivial action
missing, we propose a repetition alignment module (RAM)
to calculate the frequency of single-instance occurring in
each video, which heuristically tunes the action proposal
generation. Namely, RAM not only manifests trivial actions
occurring, but also restrains the unrelated time segments.
The RAM at t-th step is calculated by

RAMt = Wr

N∑

i=1

σ(êt,i), (8)

where Wr is the learned parameters. RAMt is supervised
with the number of corresponding action frequency. Then
we further involve this term into the RNN structures for en-
hancing the pattern-label relation learning. Thus Equation 4
is extended as

ht = RNN(ht−1, yt−1, xt, RAMt). (9)

Figure 4: Attending weights distribution in different cov-
erage mechanisms. Horizontal and vertical axes separately
stand for time and energy score. The black and orange bars
refer to the ground truth of two different actions. Curves in
black and orange are corresponding to the energy distribu-
tions in two steps.

Note that, counting the occurrence of each action category
need neither the frame-level information nor precise time
locations. RAM is an effective and flexible assistant sub-
module in the whole action assembly generation.

3.2 Action Proposal Generation

The Class Activation Mapping (CAM) (Zhou et al. 2016)
is useful for action localization, and also has been applied
in the previous work (Nguyen et al. 2018). However, CAM
is only designed for linear architectures, and not suitable
for nonlinear architectures, such as RNN. While Gradient-
CAM (Grad-CAM) (Selvaraju et al. 2017) is applicable to
any differentiable architecture even with activations. In this
work, we adopt a more general Grad-CAM to calculate
class response for our task, termed as Segregated Temporal
Gradient-weighted Class Activation Map (ST-GradCAM).

At the t-th step, the prediction output dct (output distribu-

9073



tion for a class c before the softmax) is represented by

dct =

K∑

k=1

wc
t,kx

k
t , (10)

where wc
t,k is the importance of the k-th feature value xk

t

for a target class c, which is represented by the following
gradient score

wc
t,k =

∂dct
∂xk

t

=
∂dct
∂hc

t

· ∂h
c
t

∂xk
t

= Wo ·
∂RNN(xt)

∂xk
t

, (11)

where hc
t is the importance of ht for the target class c. Since

the attention weights possess rich information regarding ac-
tion intervals (Wang et al. 2017; Nguyen et al. 2018), we
formulate Equation 10 as

dct =

K∑

k=1

wc
t,k(

N∑

i=1

αt,is
k
i ) =

N∑

i=1

αt,i

K∑

k=1

wc
t,ks

k
i , (12)

where ski is the kth feature value ski in si.
Since dct indicates the importance of representations to

each class at recurrent step t, a class-aware activation map
can be derived from above. We define ST-GradCAM as

ξct,i =

K∑

k=1

wc
t,ks

k
i , (13)

where i indexes the segment in S. ST-GradCAM captures
the important local information of feature map k for a target
class c at recurrent step t.

To generate temporal action proposals, we train a two-
stream network and derive the attended ST-GradCAM at t-
th step using αt,i · σ(ξct,i). For each class c at the recurrent
step t, each proposal [Nstart, Nend] is assigned a score by:

Nend∑

i=Nstart

[λ · αc
t,i,RGB + (1− λ) · αc

t,i,flow]

Nend −Nstart + 1
· σ(ξct,i), (14)

where we fuse the attention values of RGB and optical flow
streams by the modality ratio λ (λ = 0.5 by default) first,
and then generate proposals based on RGB and flow sepa-
rately. For final detection, we perform non-maximum sup-
pression (NMS) among temporal proposals of each class by
removing highly overlapped ones.

3.3 Network Training

The training objective of the STAR network is to solve a
multi-task optimization problem. The overall loss function
consists of four terms: the classification loss, coverage loss,
repetition alignment loss and sparsity loss,

L = Lclass + βLsparsity + γLcov + δLram, (15)

where γ, δ and β are the hyper-parameters.
Given encoded segment inputs S, classification loss is de-

fined as the softmax loss over multiple categories by

Lclass = − 1

M

M∑

i=1

T∑

t=1

logPi(ŷt|S, θ), (16)

where M , ŷt and θ represent the number of training videos,
the ground truth of the t-th action category, and all the train-
able parameters respectively. Pi is the multinomial logistic
regression (a probability density over all action categories).

The coverage loss is to overcome the common laziness
of learning problems and thus to put emphasis on different
action segments, which is computed by

Lcov = max(0,

N∑

i=1

(

i∑

k=1

αt,k −
i∑

k=1

αt−1,k)). (17)

The RAM loss is designed to relieve the trivial action
missing problem by checking the repetition number, which
adopts the L2 loss and is defined as

Lram =
1

2T

T∑

t=1

||ct −RAMt||22, (18)

where ct is the ground-truth of the t-th action frequency.

The sparsity loss Lsparisity is the L1 regularization on the
attention weights, i.e., ||α||1.

4 Experiments

We evaluate our proposed framework (STAR) with mean av-
erage precision (mAP) score on two benchmarks for tempo-
ral action detection, i.e., THUMOS’14 (Jiang et al. 2014)
and ActivityNet1.3 (Heilbron et al. 2015). Following the
routine evaluation protocol in (Nguyen et al. 2018), our
method outperforms existing weakly-supervised methods.

4.1 Implementation Details

Datasets. THUMOS’14, extracted from over 20 hours of
sport videos, consists of 20 action classes. It contains 200
videos from validation set for training, and 212 videos for
testing. This dataset is challenging for temporal detection
because (1) averagely, each video contains more than 15 oc-
currences of all actions, (2) the length of an action varies
significantly (e.g., from less than one second to over 26 min-
utes), and (3) averagely, each video is with about 71% back-
ground. It is a good benchmark for multiple action detection.

ActivityNet1.3 contains 200 activity categories, in which
10,024 videos are used for training, 4,926 for validation,
and 5,044 for testing. ActivityNet1.3 only contains 1.5 occur-
rences per video on average and most videos simply contain
single action category with averagely 36% background.

Training Details. Our model is implemented on Caffe.
For a direct and fair comparison, we follow the video pre-
processing procedure of STPN (Nguyen et al. 2018) by pre-
training the two-stream I3D network (Carreira and Zisser-
man 2017) on Kinetics dataset (Kay et al. 2017). Then we
uniformly sample 400 segments from each video for feature
extraction. The whole network is trained by using Adam op-
timizer with learning rate 10−4 and dropout ratio 0.8 on both
streams. Besides, β, γ and δ in Equation 15 are empirically
set to be 10−4, 10−4 and 10−6 respectively.
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Testing Details. We retrieve one-dimensional temporal
proposals from the predicted label distribution d based on
the outputs of the two-streams network. As the two streams
have similar classification performance, we set a modality
ratio of 1:1 (RGB:flow) as classification confidence scores
and make the prediction jointly. Then we exploit Equation
14 to output the action proposals.

4.2 Ablation Study

To analyze the contributions of several different compo-
nents of STAR, we conduct the ablation study on the THU-
MOS’14 dataset. Performance is evaluated with average
mAP (%) by calculating the multiple overlap IoU with
thresholds varying from 0.1 to 0.5.

Effects of architecture modules We investigate modules
including coverage constraints (COV ), sparsity (SPA), and
RAM with stem network of STAR. Table 1 shows the effects
of each module and their combinations.

• Stem network. It serves as our baseline model.

• Stem with one module. In overall, each single module
can improve the stem structure by 3%-5%. Interestingly,
both (SPA) and (RAM) are constraints on the frequency
and extent of attended weights, and though by different
means, they obtain similar performance alone, better than
(COV ). We can infer that direct penalty of occurrence is
more effective than the handling of action co-occurrence.

• Stem with two modules. RAM with either sparsity or cov-
erage can achieve better performance than other compo-
nents, which indicates that additional repetition informa-
tion is very useful. (SPA,COV ) is unsatisfying com-
pared to other module combinations, even worse than
(SPA) solely. We analyze the reason that both of them re-
strains the extents of attended weights, but (RAM) aligns
the extents by zooming in and out. So combinations with
(RAM) achieve steady improvements, while the combi-
nation without (RAM) tends to suppress excessively.

• Stem with all modules. STAR with all modules achieves
the best performance which improve the stem by 8%.

Table 1: Performance evaluation with different modules of
STAR on THUMOS’14.

Stem
√ √ √ √ √ √ √ √

Sparsity
√ √ √ √

Coverage
√ √ √ √

RAM
√ √ √ √

Ave-mAP(%) 39.0 43.8 42.4 43.8 43.3 44.0 44.7 47.0

Effects of detection operations As introduced in Equa-
tion 12, ST-GradCAM and the learned assembly weights are
respectively responsible for indication of class-specific con-
tribution and input segmented duration. Since the learned
attention weights are sensitive to action classes, we can al-
ternatively use only attention weights without ST-GradCAM
to propose locations of each class, termed by Attention. Sim-
ilarly, the location of each class also can be proposed based

Table 2: Effects of different modules on THUMOS’14.

Weakly-supervised Model Ave-mAP(%)

Wang et al. (2017) 29.0
Singh et al. (2017) 20.6
Nguyen et al. (2018) 35.0
Paul et at.(2018) 39.7

ST-GradCAM 24.4
Attention 39.6
Attended ST-GradCAM 47.0

on only ST-GradCAM without attention weights,(i.e., ST-
GradCAM). We also integrate both learned attention weights
and ST-GradCAM as a fused action detector, denoted by At-
tended ST-GradCAM (used by default in our work).

Table 2 gives the results. We find that Attention already
has achieved comparable performance to previous methods,
implying that the learned attention weights themselves con-
tain rich location information and play important roles in
the entire detection process. As expected, the Attended ST-
GradCAM significantly outperforms each single term (i.e,
Attention and ST-GradCAM), which demonstrates the effec-
tiveness of the STAR scoring mechanism (in Equation 10).

4.3 Qualitative Evaluation

STAR can iteratively segregate different actions from the
origin input video segments, then assemble the correspond-
ing actions into a target action-patterns. For further demon-
strating the performance of STAR, we qualitatively analyze
the effects of STAR from different aspects as follows:

• Effect of Attention: The learnt assembly weights are
used to assemble actions into the corresponding instance-
patterns so that the weights are capable of indicating
action locations (e.g., see intervals [16.0s, 17.6s] and
[17.6s, 18.1s] in Figure 5), in consonance with the perfor-
mance in subsection ablation study. However, it still suf-
fers from ambiguous boundaries of actions (e.g. see time
48.4s or 85.6s in Figure 5).

• Effect of Attended ST-GradCAM: Considering the re-
sponse mechanism of ST-GradCAM, the Attended ST-
GradCAM can achieve more precise action location than
Attention (e.g. at time 85.6s or 103.7s in Figure 5).

• False Positive Analysis: We also analyze the false posi-
tives, and find that those falsely detected image frames
usually bear high similarities to the annotations, (e.g. ac-
tions before time 84.9s or after time 86.4s in Figure 5)
and are even ambiguous to human beings.

• Evaluation of Extreme Scenarios: In general, action may
occur sparsely or densely in videos, and the degree to
which a video is filled with actions can be measured by
the action occurring density, which is defined as the over-
lap of all action intervals over the given whole video. For
example, denisty = 0 means that there is no actions oc-
curring in the video, while denisty = 1 means actions
occur continuously in the whole video. Methods for ac-
tion detection easily fail in videos with excessively either

9075



Figure 5: An example for action localization on THUMOS’14, which contains two actions (CricketBowling denoted and Crick-
etShot). The video is segregated into two assemblies (TimeStep1 and TimeStep2) step-by-step.

Figure 6: Results on videos persistently occurring multi-actions.

Figure 7: Results on videos with sparse single-actions.

sparse or dense action occurrence. Figure 6 and 7 display
the action detection results on dense and sparse situations
respectively, which further demonstrate the robustness of
our method. We also report the performances in terms of
Ave-mAP with different densities of occurring actions in
videos, which is shown in Figure 8. The results show that
STAR maintains high performances under different levels
of action occurring density.

4.4 State-of-the-Art Comparisons

We compare STAR with state-of-the-art weakly-supervised
and fully-supervised methods on THUMOS’14 and Activi-
tyNet1.3 datasets. Note that, THUMOS’14 is a better bench-
mark for evaluating our method, as addressed in Datasets
section. Table 3 and 4 summarize the results.

Comparison with weakly supervised methods. It is shown
that STAR outperforms all other weakly supervised meth-
ods by a remarkably large margin, improving the reported
highest average mAP about 7% by 47.0% on THUMOS’14

and 2% by 18.1% on ActivityNet1.3. Note that, on THU-
MOS’14, our model achieves more than 10% higher than
existing methods on both IoU 0.1 and 0.2. This verifies the
superiority of our framework.

Comparison with fully supervised methods. In Table 3,
our model also has comparable results with those fully su-
pervised methods. There is a great gap between the existing
fully and weakly supervised methods because of the usages
of detailed boundary annotations in fully supervised meth-
ods. However, our model still outperforms all fully supervi-
sion results at both IoU 0.1 and 0.2 on THUMOS’14 dataset.

As in Table 4, results with asterisk (*) are collected from
ActivityNet Challenge submissions (only for general ref-
erences here), which can not be impartially compared di-
rectly with our STAR. We see that our model even overtakes
the recent strong-supervised method (Xu, Das, and Saenko
2017) and partially surpasses method (Chao et al. 2018),
but falls behind work BSN (Lin et al. 2018). Note that,
BSN takes full use of boundary annotations via a sophisti-
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Figure 8: The performance (mAP) with varying action density values on THUMOS’14. The horizontal, left-vertical and right-
vertical axes separately represent the density of action occurring, the mAP and the frequency of action occurring. Three curves
describe the mAP performances with IoU 0.1 and IoU 0.5, and the average IoU over 5 thresholds within [0.1, 0.5]. The colored
(denoted as different type of actions) histogram refers to the frequency of corresponding actions occurring at the specific density.

Table 3: Comparison with state-of-the-arts on THUMOS’14.

Supervision Method
AP@IoU

0.1 0.2 0.3 0.4 0.5

Fully
Supervised

Richard (2016) 39.7 35.7 30.0 23.2 15.2
Shou (2016) 47.7 43.5 36.3 28.7 19.0
Yeung (2016) 48.9 44.0 36.0 26.4 17.1
Yuan (2016) 51.4 42.6 33.6 26.1 18.8
Shou (2017) – – 40.1 29.4 23.3
Yuan (2017) 51.0 45.2 36.5 27.8 17.8
Gao (2017) 54.0 50.9 44.1 34.9 25.6
Xu (2017) 54.5 51.5 44.8 35.6 28.9
Zhao (2017) 66.0 59.4 51.9 41.0 29.8
Lin (2017) 50.1 47.8 43.0 35.0 24.6
Yang (2018) – – 44.1 37.1 28.2
Chao (2018) 59.8 57.1 53.2 48.5 42.8
Alwasssel (2018) 49.6 44.3 38.1 28.4 19.8
Lin (2018) – – 53.5 45.0 36.9

Weakly
Supervised

Wang (2017) 44.4 37.7 28.2 21.1 13.7
Singh (2017) 36.4 27.8 19.5 12.7 6.8
Nguyen (2018) 52.0 44.7 35.5 25.8 16.9
Shou (2018) – – 35.8 29.0 21.2
Paul (2018) 55.2 49.6 40.1 31.1 22.8
Ours 68.8 60.0 48.7 34.7 23.0

cated multi-stage training strategy. In conclusion, STAR sur-
passes all the reported weakly-supervised methods on both
two benchmarks. Although fully-supervised approaches still
have good results at large IoU thresholds, STAR signifi-
cantly narrows down the gap between the fully and weakly
supervised methods.

5 Conclusion

We propose an end-to-end weakly supervised framework
STAR for action detection in MIML perspective. The model
first assembles actions into corresponding instance-patterns
with a well-designed attention mechanism, and then learns
the temporal relationship between multiple instance-patterns
by using RNN. Finally, with the predicted action labels and
the learned attention weights, we use a well designed ST-
GradCAM for localizing each action. Experiments show that
our approach outperforms all the reported results by weakly

Table 4: A comparison on ActivityNet v1.3 validation set.
The sign (*) indicates results from ActivityNet Challenge.

Supervision Method
AP@IoU

0.5 0.75 0.95

Fully
Supervised

Singh (2016)* 34.5 – –
Shou (2017)* 45.3 26.0 0.2
Dai (2017)* 36.4 21.2 3.9
Xiong (2017)* 39.1 23.5 5.5
Lin (2017)* 49.0 32.9 7.9
Xu (2017) 26.8 – –
Chao (2018) 38.2 18.3 1.3
Lin (2018) 52.5 33.5 8.9

Weakly
Supervised

Nguyen (2018) 29.3 16.9 2.6
Ours 31.1 18.8 4.7

supervised approaches by a large margin, and also achieves
comparable performance with those fully supervised meth-
ods on both THUMOS’14 and ActivityNet1.3 datasets.
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