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Abstract

We discuss various properties of the Seiberg–Witten curve for the
E-string theory which we have obtained recently in hep-th/0203025.
Seiberg–Witten curve for the E-string describes the low-energy dy-
namics of a six-dimensional (1, 0) SUSY theory when compactified on
R4 × T 2. It has a manifest affine E8 global symmetry with modulus τ
and E8 Wilson line parameters {mi}, i = 1, 2, . . . , 8 which are associ-
ated with the geometry of the rational elliptic surface. When the radii
R5, R6 of the torus T 2 degenerate R5, R6 → 0, E-string curve is reduced
to the known Seiberg–Witten curves of four- and five-dimensional gauge
theories.

In this paper we first study the geometry of rational elliptic surface
and identify the geometrical significance of the Wilson line parame-
ters. By fine tuning these parameters we also study degenerations of
our curve corresponding to various unbroken symmetry groups. We
also find a new way of reduction to four-dimensional theories without
taking a degenerate limit of T 2 so that the SL(2,Z) symmetry is left
intact. By setting some of the Wilson line parameters to special values
we obtain the four-dimensional SU(2) Seiberg–Witten theory with 4
flavors and also a curve by Donagi and Witten describing the dynamics
of a perturbed N = 4 theory.

e-print archive: http://lanl.arXiv.org/abs/hep-th/0211213
UT-02-46
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1. Introduction

In our previous paper [1] we have constructed a Seiberg–Witten curve for
the E-string (or E8 non-critical string) theory [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14]. Seiberg–Witten curve for E-strings describes the low-energy
dynamics of a (1, 0) SUSY theory in six dimensions partially compactified
on R4 × T 2. E-string is essentially one half of the E8 × E8 heterotic string
and describes the degrees of freedom which appear on the M5-brane in the
M-theory description of small E8 instanton singularities.

Our curve has a manifest affine E8 global symmetry with the modulus τ
of T 2 and possesses E8 Wilson line parameters {mi}, i = 1, 2, . . . , 8. When
the radii of the torus T 2 degenerate R5, R6 → 0, the curve reduces to the
Seiberg–Witten curves of four- and five-dimensional gauge theories [15, 16,
17, 18, 10] and {mi} are identified as the mass parameters of the matter
hypermultiplets.

It is known for some time that the E-string is associated with the geom-
etry of the rational elliptic surface. In fact our curve has the form

C : y2 = 4x3 − f(u; τ,mi)x − g(u; τ,mi) (1.1)

where the function f, g are polynomials of degree 4, 6 in u which denotes the
coordinate of P1. (1.1) describes the structure of an elliptic fibration over
the base P1, i.e. the rational elliptic surface. The parameter τ is identified
as the modulus of the elliptic fiber E∞ at u = ∞. Modulus τ̃ of the fiber at
finite u depends on u and τ,mi and is identified as the inverse gauge coupling
constant in the usual manner. See Figure 1.

Rational elliptic surface may be constructed by blowing up 9 points of
P2 and is also called as the (almost) del Pezzo surface B9. Its homology two-
cycles form a lattice Γ9,1 = Γ8 ⊕ Γ1,1 where Γ8 denotes the E8 root lattice
and Γ1,1 is a Lorentzian lattice. Thus b+

2 = 1, b−2 = 9. It is well-known
that the rational elliptic surfaces appear in many ways like one half of the
K3 surface, so that they are sometimes called as the 1

2K3. In fact when
M5-brane of M-theory is wrapped over K3 surface, one obtains a heterotic
string while when M5 is wrapped on 1

2K3, one obtains an E-string [12].

Using a chain of string dualities it has been pointed out that the BPS
states of E-string are in one-to-one correspondence with the holomorphic
curves in 1

2K3 and also the instantons of N = 4 gauge theory on 1
2K3 [12].

Let us denote the number of BPS states of E-string with winding number
n and momentum k as NBPS

n,k when it is compactified on a circle. Using the

duality between F-theory and M-theory it is possible to show that N BPS
n,k
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agrees with the number N curve
n,k of holomorphic curves of 1

2K3 in the class

n[Σ]+k[E] where Σ denotes the base P1 and E the elliptic fiber. Furthermore
by considering the M5-brane wrapped around 1

2K3 × T 2 it was shown that
NBPS

n,k also agrees with the k instanton amplitude N inst
n,k of the N = 4 U(n)

gauge theory on 1
2K3. Thus we have

NBPS
n,k = N curve

n,k = N inst
n,k ≡ Nn,k. (1.2)

Prepotential is then defined as usual [19] by

F(φ, τ) = Fclassical −
1

(2πi)3

∞∑

n=0

∞∑

k=0

Nn,kLi3(e
2πinφ+2πikτ ) (1.3)

where Li3(x) is the tri-logarithm function Li3(x) =
∑∞

m=1(x
m/m3) and φ

denotes the size of the base P1. Due to the global E8 symmetry of the theory
BPS states etc. of E-string fall into E8 Weyl orbits and thus Nn,k may be
expanded as

Nn,k =
∑

O

dim(O)NO
n,k (1.4)

where dim(O) denotes the dimension of the Weyl orbit O. When we intro-
duce the E8 Wilson line parameters mi, i = 1, 2, . . . , 8, the prepotential is
modified as

F(φ, τ, ~m) = Fclassical −
1

(2πi)3

∞∑

n=0

∞∑

k=0

∑

O

NO
n,k

∑

~ν∈O

Li3(e
2πinφ+2πikτ+i~ν·~m).

(1.5)
Here ~ν runs over the weights on the Weyl orbit O. Partition functions Zn

of U(n) gauge theories on 1
2K3 are then defined by

F(φ, τ, ~m) = Fclassical −
1

(2πi)3

∞∑

n=1

qn/2Zn(~m; τ)e2πinφ, q = e2πiτ . (1.6)

(An extra factor of qn/2 has been introduced in the right-hand side so that Zn

has a simpler modular property). Prepotential (1.5), (1.6) is also interpreted
as the generating function for the number of E-string BPS states or the
holomorphic curves of 1

2K3. Variable u and φ are related to each other by a
mirror-type transformation of Seiberg–Witten theory.

It is known that the instanton amplitudes Zn(~m; τ) are Jacobi forms and
possess good modular properties except for the “anomaly”: i.e. they contain
contributions of E2, the Eisenstein series with weight 2 which possesses an
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anomalous transformation law. Dependence of Zn on E2 is determined by
the holomorphic anomaly equation [11]

∂Zn

∂E2
=

1

24

n−1∑

m=1

m(n − m)ZmZn−m. (1.7)

Holomorphic anomaly represents the contributions of reducible connections
of gauge theory on 1

2K3 which possesses b+
2 = 1.

It is known that the amplitude Zn also obeys the “gap” condition,

Nn,k = 0 for k < n. (1.8)

Namely, holomorphic curves in the class n[Σ] + k[E] exist only for k ≥ n in
1
2K3. Amplitudes Zn have been determined for lower values of n perturba-
tively in [12] by making use of the holomorphic anomaly equation (1.7) and
gap conditions (1.8).

It is well-known that given a Seiberg–Witten curve one can compute the
amplitudes Zn and generate the instanton expansion (1.5) by following the
standard steps of the Seiberg–Witten theory. In our previous paper we have
taken an inverse procedure: we first computed Zn up to sufficiently high-
orders in n using holomorphic anomaly and gap condition and then used
these data to determine the Seiberg–Witten curve C. It turned out that
functions f(u; τ, ~m) and g(u; τ, ~m) are expressed in terms of the characters
of affine E8 algebra up to level 4 and 6 [1]. We have checked the consistency
of our curve in various ways: it possesses the correct modular properties and
in particular reproduces the known five- and four-dimensional curves in the
degenerate limit R6, R5 → 0.

In this paper we first study holomorphic sections of the rational elliptic
surface by making use of our curve C. In the mathematical literature [20] it is
known that meromorphic sections of an elliptic surface form a lattice under a
suitable definition for their addition and their inner product. In the case of a
rational elliptic surface [21, 22], this lattice (Mordell–Weil lattice) coincides
with the root lattice of E8. In particular there exist 240 holomorphic sections
corresponding to non-zero roots of E8.

We first construct a holomorphic section explicitly which corresponds
to a given root of E8 by making use of affine E7 characters. Then the
rest of 240 sections can be simply obtained by the application of E8 Weyl
transformations to this section.

We shall show that the Wilson line parameters {mi} are identified as the
coordinates of the points on the elliptic fiber E∞ where holomorphic sections
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intersect. This is in fact the geometrical significance of the parameters {mi}
suggested in the literature [8, 13]. We also present the calculation of sections
of five-dimensional curves for the sake of illustrations.

In the latter half of this paper we investigate various specializations of
our Seiberg–Witten curve. First we study the relation between sets of special
values of Wilson line parameters {mi} and the corresponding degenerations
of elliptic fibration: for instance, we find an unbroken symmetry E7 ⊕ A1

when all the parameters mi are set equal to π/2 while we have an unbro-
ken E8 symmetry when they are all set to zero mi = 0. In general when
one adjusts the parameters {mi} so that they preserve a symmetry under a
subgroup of E8, elliptic fibration exhibits corresponding degenerations. De-
generate fibers form ADE-type singularities in Kodaira’s classification and
correspond precisely to the unbroken symmetry group.

Partial specification of Wilson line parameters in our curve also produces
interesting results. As we mentioned already, our curve contains a series of
known Seiberg–Witten curves for five- and four-dimensional gauge theories
and the latter are obtained by taking the degenerate limit of T 2 and sending
some of the mass parameters to ∞. In this way of reduction, however, we
necessarily lose SL(2,Z) symmetry of T 2 and can not naturally recover the
SL(2,Z) symmetry of Nf = 4 theory in four dimensions.

In this paper we propose new type of reductions to four dimensions with-
out taking the degenerate limit of T 2 so that the SL(2,Z) symmetry is left
intact. In fact, for instance, by setting four of the parameters {mi} to half-
periods (0, π, π + πτ, πτ) we obtain the curve for the SU(2) Nf = 4 gauge
theory directly from our six-dimensional curve. As a remarkable by-product,
the SO(8) triality of the Nf = 4 theory is derived from the SL(2,Z) sym-
metry of the six-dimensional curve in a natural manner.

The organization of this paper is as follows: In section 2 we recall the
basic symmetry properties of our six-dimensional curve (we call it as the Ê8

curve) and its five-dimensional counterparts (En curves). In section 3 we
derive some holomorphic sections for En curves for the sake of illustrations.
In section 4 we present holomorphic sections for the Ê8 curve and identify
the geometrical significance of the Wilson line parameters. In section 5 we
present examples which exhibit the correspondence between special values
of Wilson line parameters and patterns of degenerations of elliptic fibration.
In section 6 we discuss a new reduction to four dimensions and show how
to obtain the Seiberg–Witten curve for the SU(2) Nf = 4 gauge theory.
We also present a reduction to four-dimensional Donagi–Witten theory [23].
Section 7 is devoted to discussions. There are three Appendices in this paper:
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in Appendix A we present the explicit form of the Ê8 curve and in Appendix
B we list those of the En curves together with their holomorphic sections.
In Appendix C we also present a list of special configurations of Wilson line
parameters which lead to various unbroken subgroups of E8.

2. Basics of the Ê8 Curve and En Curves

A rational elliptic surface possesses the structure of an elliptic fibration over
a base P1. It can be described as a family of elliptic curves in the Weierstrass
form

y2 = 4x3 −
(
a0u

4 + a1u
3 + a2u

2 + a3u + a4

)
x

−
(
b0u

6 + b1u
5 + b2u

4 + b3u
3 + b4u

2 + b5u + b6

) (2.1)

where u denotes the coordinate for the base P1. Curve (2.1) possesses 12
moduli out of which 2 may be eliminated by the scaling and shift of the
variable u in agreement with h1,1 = 10 for the rational elliptic surface. We
choose a convention a1 = 0 in this paper. Actually we can also fix the degree
of freedom of the rescaling (u, x, y) → (Lu,L2x,L3y) so that we are left
with nine parameters τ, {mi, i = 1, 2, . . . , 8} to parametrize the coefficient
functions {aj , bj}. Their explicit form is given in Appendix A.

The functions aj(mi; τ), bj(mi; τ) are expressed in terms of the characters

of the Ê8 Weyl orbits at level j. Thus the curve possesses manifest Ê8 Weyl
group symmetry and thereby we call it Ê8 curve. Strictly speaking the curve
exhibits three kinds of automorphisms: the E8 Weyl group symmetry, the
double periodicity in ~m, and the modular property in τ .

First the curve is invariant under the following Weyl reflections

• mi ↔ mj (i 6= j),
• mi ↔ −mj (i 6= j),

• mi → mi −
1
4

∑8
j=1 mj (i = 1, . . . , 8).

(2.2)

The entire E8 Weyl group is generated by the combination of these oper-
ations. On the other hand the double periodicity in ~m takes the following
form: let ~α be any vector of the root lattice Γ8. Then the Ê8 curve is
invariant under

• ~m → ~m + 2π~α, (2.3)

• ~m → ~m + 2πτ~α with (u, x, y) → (Lu,L2x,L3y)

where L = e−i~m·~αq−
1
2
|~α|2 . (2.4)
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Curve also remains invariant under the action of the SL(2,Z) symmetry
generated by

• τ → τ + 1, (2.5)

• τ → −
1

τ
, ~m →

~m

τ
with (u, x, y) → (τ−6Lu, τ−10L2x, τ−15L3y)

where L = e
i

4πτ
|~m|2 . (2.6)

Next let us review the reduction of our Ê8 curve down to the five-
dimensional situation. By taking the limit Imτ → ∞ (q → 0) we obtain
a curve whose coefficients are written in terms of characters of the finite-
dimensional E8 algebra. We call it the E8 curve. There exists another ‘E8

curve’ in four-dimensional theory [17] which can be obtained by taking a
further degeneration [1]. Properties of the latter E8 curve have been studied
in [17, 18], so we concentrate on the former.

Let us introduce some notations associated with the E8 algebra. Let ~Λ
be some dominant weight and ~µ1, . . . , ~µ8 be the fundamental weights of E8.
We then introduce a notation

~Λ =

[
n2

n1 n3 n4 n5 n6 n7 n8

]
=

8∑

i=1

ni~µi, ni ∈ Z≥0 (2.7)

where {ni} denote Dynkin indices of ~Λ. We fix a labeling of the fundamental
weights by placing eight indices at eight nodes of the Dynkin diagram. Next
we define a character for an irreducible representation R of highest weight
~Λ by

χE8
R (mi) = χ[n1n3

n2
n4n5n6n7n8

](mi) ≡
∑

~ν∈R

ei~m·~ν (2.8)

where ~ν runs over all weights of representation R. The variable ~m takes
its values on the C-extended root space. Then characters of fundamental
representations are written as

χE8
1 = χ[10

0
00000], χE8

2 = χ[00
1
00000], χE8

3 = χ[01
0
00000],

χE8
4 = χ[00

0
10000], χE8

5 = χ[00
0
01000], χE8

6 = χ[00
0
00100],

χE8
7 = χ[00

0
00010], χE8

8 = χ[00
0
00001]. (2.9)

With this preparation we can now express the E8 curve in terms of these
characters. The explicit form is given in Appendix B. We have applied a
shift in x for the compactness of the expression. Weierstrass form can be
immediately recovered by shifting x to cancel the x2 term.
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The E7 curve is obtained from the E8 curve by decomposing the E8

characters into those of E7 × U(1) and factoring out the U(1) parts. The
operation is carried out by the following limit

(χE8
1 , χE8

2 , χE8
3 , χE8

4 , χE8
5 , χE8

6 , χE8
7 , χE8

8 )

→ (L2χE7
1 , L3χE7

2 , L4χE7
3 , L6χE7

4 , L5χE7
5 , L4χE7

6 , L3χE7
7 , L2), (2.10)

(u, x, y) → (Lu,L2x,L3y) with L → ∞ (2.11)

where χE7
1 , . . . , χE7

7 denote characters of fundamental representations of E7

χE7
1 = χ[10

0
0000], χE7

2 = χ[00
1
0000], χE7

3 = χ[01
0
0000], χE7

4 = χ[00
0
1000],

χE7
5 = χ[00

0
0100], χE7

6 = χ[00
0
0010], χE7

7 = χ[00
0
0001]. (2.12)

The E6 curve is obtained from the E7 curve in a similar manner as

(χE7
1 , χE7

2 , χE7
3 , χE7

4 , χE7
5 , χE7

6 , χE7
7 )

→ (L2χE6
1 , L3χE6

2 , L4χE6
3 , L6χE6

4 , L5χE6
5 , L4χE6

6 , L3), (2.13)

(u, x, y) → (Lu,L2x,L3y) with L → ∞ (2.14)

where χE6
1 , . . . , χE6

6 denote characters of fundamental representations of E6

χE6
1 = χ[10

0
000], χE6

2 = χ[00
1
000], χE6

3 = χ[01
0
000], χE6

4 = χ[00
0
100],

χE6
5 = χ[00

0
010], χE6

6 = χ[00
0
001]. (2.15)

Lower En curves are obtained in a similar fashion.

Five-dimensional En curves exhibit En Weyl group symmetry and a sin-
gle periodicity on the mass parameters {mi}. In fact the curves remain
invariant under

~m → ~m + 2π~α (2.16)

where ~α is any vector of En root lattice.

3. Holomorphic Sections for En Curves

Let us begin with the case of E6 curve in order to illustrate our method.
The E6 curve has the form

y2 = 4x3 +
(
−u2 + 4χE6

1

)
x2 +

(
(2χE6

2 − 12)u + (4χE6
3 − 4χE6

6 )
)
x

+4u3 + 4χE6
6 u2 + (4χE6

5 − 4χE6
1 )u + (4χE6

4 − χE6
2 χE6

2 ). (3.1)

A holomorphic section is given by a pair of polynomials (x = x(u), y = y(u))
in u since x, y have to be holomorphic on the entire u-plane. To cancel the
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u2 term in the coefficient of x2 in (3.1), x(u) must be at least linear in u. So
we assume the following form for a section

σ27 ≡

{
x(u) = x1u + x2,
y(u) = y1u

2 + y2u + y3.
(3.2)

By substituting this ansatz into the E6 curve (3.1), we obtain a polynomial of
degree 4 in u vanishing identically. Coefficients of uk k = 0, . . . , 4 provide five
equations for five unknowns x1, x2, y1, y2, y3. By eliminating y1, y2, y3, x2 we
obtain two sets of 27th-degree equations in x1. Solutions of these equations
give holomorphic sections corresponding to 27 and 27 representations of E6.

To obtain the explicit expression of sections, we first note that every
weight of 27 preserves the E5(= D5) Weyl group symmetry. So let us con-
sider the E6 → E5 × U(1) decomposition. Fundamental characters branch
as:

χE6
1 = χE5

1 Λ2 + χE5
2 Λ−1 + Λ−4, (3.3)

χE6
2 = χE5

2 Λ3 + (χE5
3 + 1) + χE5

5 Λ−3, (3.4)

χE6
3 = χE5

3 Λ4 + χE5
1 χE5

2 Λ + (χE5
1 + χE5

4 )Λ−2 + χE5
2 Λ−5, (3.5)

χE6
4 = χE5

4 Λ6 + χE5
2 χE5

3 Λ3 + (χE5
1 χE5

4 + χE5
3 ) + χE5

3 χE5
5 Λ−3 + χE5

4 Λ−6,

(3.6)

χE6
5 = χE5

5 Λ5 + (χE5
1 + χE5

4 )Λ2 + χE5
1 χE5

5 Λ−1 + χE5
3 Λ−4, (3.7)

χE6
6 = Λ4 + χE5

5 Λ + χE5
1 Λ−2 (3.8)

where χE5
1 , . . . , χE5

5 denote the E5 fundamental characters

χE5
1 = χ[10

0
00], χE5

2 = χ[00
1
00], χE5

3 = χ[01
0
00],

χE5
4 = χ[00

0
10], χE5

5 = χ[00
0
01]. (3.9)

Λ ≡ eiλ represents the U(1) character with unit charge where λ is the pro-
jection of ~m in the direction orthogonal to E5. (We have suitably normalized
λ so that all the weights have integer U(1) charges.) (3.3)–(3.8) show the
standard branching of E6 representations; for example, (3.3) represents the
decomposition 27 = 102 + 16−1 + 1−4. With these decompositions it is not
difficult to find the following solution for the simultaneous algebraic equa-
tions

x(u) = −Λ4u − (Λ8 + χE5
1 Λ2 + Λ−4), (3.10)

y(u) = iΛ4u2 + i(3Λ8 + χE5
1 Λ2 − Λ−4)u

+i(2Λ12 + 2χE5
1 Λ6 − χE5

2 Λ3 + χE5
3 + 1 − χE5

5 Λ−3). (3.11)

Explicit dependence of Λ and χE5
j on the parameters {mi} is fixed in 27

ways corresponding to each weight of the representation 27. Thus the above
formula compactly represents 27 holomorphic sections for E6 curve.
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Also we can immediately obtain the sections corresponding to 27 by
reflecting the overall sign of the solution y(u), i.e. right-hand side of (3.11).

Next let us consider sections of the form

σ72 ≡

{
x(u) = x0u

2 + x1u + x2,
y(u) = y0u

3 + y1u
2 + y2u + y3.

(3.12)

By eliminating variables y0, y1, y2, y3, x2, x1 one obtains a 36th-degree equa-
tion in x0 which represents 36 pairs of roots of the adjoint representation of
E6. In this case, A5 is the surviving symmetry orthogonal to a root of E6,
so we consider the following decomposition:

χE6
1 = 2χA5

1 cos λ + χA5
4 , (3.13)

χE6
2 = 2 cos 2λ + 2χA5

3 cos λ + χA5
1 χA5

5 , (3.14)

χE6
3 = 2χA5

2 cos 2λ + 2χA5
1 χA5

4 cos λ + (χA5
1 χA5

1 + χA5
3 χA5

5 − χA5
2 ), (3.15)

χE6
4 = 2χA5

3 cos 3λ + 2χA5
2 χA5

4 cos 2λ + 2χA5
1 χA5

3 χA5
5 cos λ

+(χA5
1 χA5

1 χA5
4 + χA5

2 χA5
5 χA5

5 − χA5
1 χA5

5 + χA5
3 χA5

3 − 2χA5
2 χA5

4 + 1),

(3.16)

χE6
5 = 2χA5

4 cos 2λ + 2χA5
2 χA5

5 cos λ + (χA5
1 χA5

3 + χA5
5 χA5

5 − χA5
4 ), (3.17)

χE6
6 = 2χA5

5 cos λ + χA5
2 (3.18)

where χA5
1 , . . . , χA5

5 denote A5 fundamental characters

χA5
1 = χ[10000], χA5

2 = χ[01000], χA5
3 = χ[00100],

χA5
4 = χ[00010], χA5

5 = χ[00001]. (3.19)

λ is the projection of ~m orthogonal to A5. Then we find the following
solution:

x(u) =
1

4 sin2 λ

[
u2 + (2χA5

5 cos λ)u − 4χA5
4 sin2 λ + χA5

5 χA5
5

]
, (3.20)

y(u) =
1

4 sin3 λ
×

[
(cos λ)u3 +

(
χA5

5 cos 2λ + 2χA5
5

)
u2

+
(
χA5

4 cos 3λ − 2χA5
1 cos 2λ + (3χA5

5 χA5
5 − χA5

4 ) cos λ + 2χA5
1

)
u

− cos 5λ + χA5
3 cos 4λ + (−χA5

1 χA5
5 + 3) cos 3λ

+(2χA5
4 χA5

5 − 4χA5
3 ) cos 2λ + (χA5

1 χA5
5 − 2) cos λ

+(χA5
5 χA5

5 χA5
5 − 2χA5

4 χA5
5 + 3χA5

3 )
]
. (3.21)

This expression represents 72 sections corresponding to the roots of E6.

In Appendix B we present holomorphic sections for the E7 and E8 curve.
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4. Holomorphic Sections for the Ê8 Curve

In the case of Ê8 curve the derivation of holomorphic sections become much
more complex than En curves. Thus instead of solving algebraic equations
in the generic case of 8 parameters we first consider the simpler case of only
2 non-vanishing Wilson line parameters. We then recover the general case
by making use of the modular invariance and Ê7 symmetry.

Let us consider sections of the form

σ240 ≡

{
x(u) = x0u

2 + x1u + x2,
y(u) = y0u

3 + y1u
2 + y2u + y3.

(4.1)

In order to maintain the modular invariance, coefficients xk, yk must trans-
form as

xk(~m; τ + 1) = xk(~m; τ), (4.2)

yk(~m; τ + 1) = yk(~m; τ) (4.3)

and

xk

(
~m

τ
;−

1

τ

)
= τ2−6ke

ik
4πτ

|~m|2xk(~m; τ), (4.4)

yk

(
~m

τ
;−

1

τ

)
= τ3−6ke

ik
4πτ

|~m|2yk(~m; τ). (4.5)

We assume that each section preserves an E7 Weyl symmetry and can
be expressed in terms of Ê7 characters. In the following Ê7 characters are
presented as explicit functions of mi and τ . We introduce an orthogonal
coordinate basis {~ej} j = 1, . . . , 8 for the E8 root lattice so that

{
±~ei ± ~ej i 6= j,

1
2(±~e1 ± ~e2 ± · · · ± ~e8) with even number of +’s

(4.6)

form the 240 roots as usual. Corresponding to each one of these roots there
exists a holomorphic section which is invariant under E7 Weyl group orthog-
onal to the root. As an illustration we consider a root

~e7 + ~e8 (4.7)

and the E7 root lattice orthogonal to it. Ê7 has two Weyl orbits at level one
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whose characters are expressed as

w
bE7
b (mi; τ) =

1

2






6∏

j=1

ϑ1(mj|τ) +

6∏

j=1

ϑ2(mj |τ)


ϑ2(2m−|2τ)

+




6∏

j=1

ϑ3(mj |τ) +
6∏

j=1

ϑ4(mj |τ)


ϑ3(2m−|2τ)


 ,(4.8)

w
bE7
f (mi; τ) =

1

2




−

6∏

j=1

ϑ1(mj |τ) +

6∏

j=1

ϑ2(mj|τ)


ϑ3(2m−|2τ)

+




6∏

j=1

ϑ3(mj |τ) −
6∏

j=1

ϑ4(mj |τ)


ϑ2(2m−|2τ)


 (4.9)

where m− = (m7 − m8)/2. Note that the level-one Ê8 Weyl orbit character

w
bE8
b (mi; τ) = P (mi; τ) =

1

2

4∑

`=1

8∏

j=1

ϑ`(mj|τ) (4.10)

decomposes as

w
bE8
b (mi; τ) = w

bA1
b (m+; τ)w

bE7
b (mi; τ) + w

bA1
f (m+; τ)w

bE7
f (mi; τ) (4.11)

where the branching functions are the level-one characters of Â1

w
bA1
b (m+; τ) = ϑ3(2m+|2τ), w

bA1
f (m+; τ) = ϑ2(2m+|2τ) (4.12)

and m+ = (m7 + m8)/2.

With the help of the transformation rules (4.2)–(4.5) and the Ê7 symme-
try, we need not solve the simultaneous algebraic equations with the most
generic Wilson line parameters. It turns out that the case of two non-zero pa-
rameters is enough to determine general sections completely. On the other
hand, it is known that sections with two non-zero parameters can be rel-
atively easily obtained [10]. By rewriting these sections in terms of an Ê8

invariant coordinate and recovering all the Wilson line parameters, we obtain
holomorphic sections for the Ê8 curve. Holomorphic section corresponding
to the root ~e7 + ~e8 is given explicitly as

x0 = ℘(2m+), (4.13)

x1 = Cb(m+, τ)w
bA1
b (m+; τ)w

bE7
b (mi; τ) + Cf(m+, τ)w

bA1
f (m+; τ)w

bE7
f (mi; τ)

(4.14)
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where

Cb(m+, τ) = −
ϑ2

8(ϑ3
4 + ϑ4

4)

4η24E4
℘(2m+) +

ϑ2
8

48η24
+

ϑ2(2m+|2τ)4

η18ϑ1(2m+|τ)2
,

(4.15)

Cf(m+, τ) = −
ϑ2

8(ϑ3
4 + ϑ4

4)

4η24E4
℘(2m+) +

ϑ2
8

48η24
+

ϑ3(2m+|2τ)4

η18ϑ1(2m+|τ)2
,

(4.16)

x2 =
1

2
D(m+, τ)

(
w

bA1
b (2m+; 2τ) + w

bA1
f (2m+; 2τ)

)

(
w

bE7
b (2mi; 2τ) + w

bE7
f (2mi; 2τ)

)

+
1

2
D(m+, τ + 1)

(
w

bA1
b (2m+; 2τ) − w

bA1
f (2m+; 2τ)

)

(
w

bE7
b (2mi; 2τ) − w

bE7
f (2mi; 2τ)

)

+
τ14

24
D
(m+

τ
,−

1

τ

)
w

bA1
b

(
m+;

τ

2

)
w

bE7
b

(
mi;

τ

2

)

+
τ14

24
D
(m+

τ
,−

1

τ
+ 1
)
w

bA1
f

(
m+;

τ

2

)
w

bE7
f

(
mi;

τ

2

)

+
(τ + 1)14

24
D
( m+

τ + 1
,−

1

τ + 1

)
w

bA1
b

(
m+;

τ + 1

2

)
w

bE7
b

(
mi;

τ + 1

2

)

+
(τ + 1)14

24
D
( m+

τ + 1
,−

1

τ + 1
+ 1
)
w

bA1
f

(
m+;

τ + 1

2

)
w

bE7
f

(
mi;

τ + 1

2

)

(4.17)

where

D(m+, τ) =
ϑ3

4ϑ4
4

η36E4
2

[
(ϑ3

12 − 28η12)℘(2m+) +
1

12
E4(2ϑ2

8 + ϑ3
8)

]
.(4.18)

Coefficient functions yk can be expressed in terms of the above {xk} and
coefficients {ak, bk} of the Ê8 curve as

y0 = ℘′(2m+), (4.19)

y1 =
1

y0

(
6x1x0

2 −
1

2
a0x1 −

1

2
b1

)
, (4.20)

y2 =
1

y0

(
−

1

2
y1

2 + 6x2x0
2 + 6x1

2x0 −
1

2
a0x2 −

1

2
a2x0 −

1

2
b2

)
, (4.21)

y3 =
1

y0

(
−y2y1 + 12x2x1x0 + 2x1

3 −
1

2
a2x1 −

1

2
a3x0 −

1

2
b3

)
. (4.22)
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Here ℘(z) is the Weierstrass ℘-function

℘(z) =
1

z2
+

∑

m,n∈Z2
6=(0,0)

[
1

(z − Ωm,n)2
−

1

Ωm,n
2

]
, Ωm,n = 2π(m+nτ) (4.23)

and ℘′(z) = ∂
∂z℘(z). We have verified the above formulas by substituting

them into the Ê8 curve and checking the equation order by order in q for a
sufficiently high degree.

All the other holomorphic sections corresponding to 240 roots of E8 are
immediately obtained by the application of E8 Weyl transformations. More-
over, all the meromorphic sections may also be generated from the holo-
morphic ones if one uses the addition law of Mordell–Weil lattice. The
lattice is constructed by the following addition rule and identification of
the zero element: Given two sections S(i) = (x(i)(u), y(i)(u)) i = 1, 2 of an
elliptic fibration y2 = 4x3 − f(u)x − g(u) we can construct a 3rd section
S(3) = (x(3)(u), y(3)(u)) by

x(3) = −x(1) − x(2) +
1

4

(
y(2) − y(1)

x(2) − x(1)

)2

, (4.24)

y(3) =
(x(3) − x(2))y(1) − (x(3) − x(1))y(2)

x(2) − x(1)
. (4.25)

This defines an addition law S(3) = S(1) + S(2) of the Mordell–Weil lat-
tice. The zero element of the lattice is defined by the zero section (x(u) =
∞, y(u) = ∞) and the inverse of a section (x(u), y(u)) is given by (x(u),−y(u)).

For example, let us denote the section (4.1) with coefficients (4.13)–
(4.22) as S~e7+~e8

and construct sections S~e6−~e7
, S~e6+~e8

by Weyl reflections.
Then one can verify that S~e7+~e8

and S~e6−~e7
actually add up to S~e6+~e8

by
the above addition law. Meromorphic sections correspond to weights with
length-squared greater than 2 and can be generated by repeated use of the
addition law.

The explicit form of holomorphic sections tells us the geometrical mean-
ing of the Wilson line parameters. We first note that if we divide the Ê8

curve by u6 and take the limit u → ∞, it is reduced to

( y

u3

)2
= 4

( x

u2

)3
−a0

( x

u2

)
−b0 = 4

( x

u2

)3
−

E4(τ)

12

( x

u2

)
−

E6(τ)

216
. (4.26)

This describes the fiber E∞ at u = ∞ with modulus τ . Then the leading
coefficients (x0, y0) of the section (x(u) = x0u

2 + · · · , y(u) = y0u
3 + · · · ) are
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identified as the coordinates on E∞

y2
0 = 4x3

0 −
E4(τ)

12
x0 −

E6(τ)

216
. (4.27)

As we see in (4.13), (4.19), (x0, y0) are in fact expressed by the Weierstrass
function and its derivative.

We note that the argument of ℘-functions in (4.13), (4.19) can be written
as

2m+ = m7 + m8 = (~e7 + ~e8) · ~m. (4.28)

In general we find that a section corresponding to a root ~α intersects the
fiber E∞ at z = ~α · ~m

(x0, y0) = (℘(~α · ~m), ℘′(~α · ~m)). (4.29)

Therefore the Wilson line parameters are identified as the coordinates on
the fiber at u = ∞. See Figure 1. This is in fact the identification suggested
in the literature [8, 13]. In our previous work [1] the precise dependence of
our Seiberg–Witten curve on the parameters {mi} has been determined so
that they reproduce the correct mass dependence of the lower-dimensional
curves after reduction. We have now confirmed that they also possess the
correct geometrical significance in six dimensions.

5. Adjusting Parameters to Special Values

Let us now investigate various specializations of our Seiberg–Witten curve.
We study the relation between sets of special values of Wilson line parameters
{mi} and the corresponding degenerations of elliptic fibration. In general
when one adjusts the parameters {mi} so that they preserve a symmetry un-
der a subgroup of E8, elliptic fibration exhibits corresponding degeneration.
Degenerate fibers form ADE-type singularities in Kodaira’s classification
and correspond precisely to the unbroken symmetry group. In this section
we will demonstrate this correspondence in various cases.

As is well-known, we can identify the types of singularities by the behav-
iors of the functions f, g and the discriminant

y2 = 4x3 − f(u)x − g(u), ∆ = f 3 − 27g2 (5.1)

near the singularity as shown in Table 1.

In subsequent discussions the patterns of degenerations of Ê8 curve are
totally independent of the value of τ . So we fix τ to i∞ and consider the
five-dimensional E8 curve.
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Table 1: Singular elliptic fibers

order(f) order(g) order(∆) fiber-type singularity-type
≥ 0 ≥ 0 0 smooth —
0 0 n In An−1

≥ 1 1 2 II —
1 ≥ 2 3 III A1

≥ 2 2 4 IV A2
2 ≥ 3 n + 6 I∗n Dn+4

≥ 2 3 n + 6 I∗n Dn+4
≥ 3 4 8 IV ∗ E6
3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

• E8

When we set all {mi} to 0, the whole E8 Weyl group symmetry is pre-
served. In this limit, each character becomes equal to the dimension of the
corresponding representation

χ1 = 3875, χ2 = 147250, χ3 = 6696000, χ4 = 6899079264,
χ5 = 146325270, χ6 = 2450240, χ7 = 30380, χ8 = 248.

(5.2)
By substituting these into the E8 curve, one obtains

y2 = 4x3 − u2x2 + 4u5. (5.3)

f(u), g(u) of the Weierstrass form and its discriminant are given immediately
as

f =
1

12
u4, (5.4)

g =
1

216
u5(u − 864), (5.5)

∆ = u10(u − 432). (5.6)

According to Table 1, one in fact finds the degeneration of type II ∗ or E8

at u = 0.

• D8

As is well-known, E8 representations contain two types of weights, those with
integer components and half-integer components. They form independent
D8 representations. If we set the parameters at ~m = (0, 0, 0, 0, 0, 0, 0, 2π),
every integer weight contributes +1 while half-integer weight contributes −1
to the character. Then the “twisted” characters take values

χ1 = 35, χ2 = 50, χ3 = −960, χ4 = −41888,
χ5 = 3094, χ6 = 832, χ7 = −84, χ8 = −8.

(5.7)
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Substituting these into the E8 curve, we obtain

f =
1

12
(u − 64)2(u2 + 128u − 8192), (5.8)

g =
1

216
(u − 64)3(u − 32)(u2 − 640u + 28672), (5.9)

∆ = (u − 64)10(u − 48). (5.10)

One finds a I∗4 or D8 singularity at u = 64.

• E7 ⊕ A1

Let us next set all mi to π/2. Then we obtain

f =
1

12
(u − 48)3(u + 144), (5.11)

g =
1

216
(u − 48)5(u − 624), (5.12)

∆ = (u − 48)9(u − 112)2. (5.13)

There exists a singularity of type III∗ at u = 48 and one of type I2 at
u = 112. This corresponds to the unbroken symmetry E7 ⊕ A1. In general
when we set all {mi} equal to a common value µ and µ is generic, one finds
an E7 symmetry. We have E7 ⊕ A1 symmetry at µ = (n + 1/2)π and E8

symmetry at µ = nπ.

D8 and E7 ⊕ A1 are maximal regular subalgebras of E8. Examples of
other maximal subalgebras are listed in Appendix C. It is shown that when
the Wilson line parameters are proportional to the fundamental weights ~µj

of E8

~m ∝ ~µj, j = 1, 2, . . . , 8 (5.14)

there appears an unbroken symmetry group which is obtained from the E8

Dynkin diagram by deleting its j-th vertex.

Let us now reinstate the τ dependence of the Ê8 curve and discuss a few
interesting cases.

• D4 ⊕ D4

We set the parameters as

m1 = m2 = 0, m3 = m4 = π, m5 = m6 = π + πτ, m7 = m8 = πτ. (5.15)

Then the Ê8 curve becomes

y2 = 4x3 −
E4

12

(
u2 −

4

qη24

)2

x −
E6

216

(
u2 −

4

qη24

)3

. (5.16)
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Discriminant is given by

∆ = η24

(
u −

2

q1/2η12

)6(
u +

2

q1/2η12

)6

. (5.17)

We find two D4 singularities at u = ±2/(q1/2η12). The J-invariant J =
1728f3/∆ of the curve is u-independent and this describes a half of the
orbifold T 4/I4 discussed in [24].

We note the following interesting similarities among specializations of
the Ê8 curve:

(a) m1 = · · · = m8 = 0

y2 = 4x3 −
1

12
E4u

4x −
1

216
E6u

6 + 4u5, (5.18)

(b) m1 = m2 = m3 = m4 = m5 = 0, m6 = π, m7 = π + πτ, m8 = πτ

y2 = 4x3 −
1

12
E4u

4x −
1

216
E6u

6 −
4

q1/2η12
u4, (5.19)

(c) {mj} =
{

2π
3 (k + `τ)

}
, k, ` = −1, 0, 1 except (k, `) = (0, 0)

y2 = 4x3 −
1

12
E4u

4x −
1

216
E6u

6 +
4

qη24
u3. (5.20)

J-invariant J = 1728f 3/(f3−27g2) of these curves can be written commonly
as

J =
E4

3v2

(η24v2 + E6v − 432)
(5.21)

with

(a) v = u, (b) v = −q1/2η12u2, (c) v = qη24u3. (5.22)

6. Partial Fixing of Parameters

6.1. Extraction of the 4-dim SU(2) Nf =4 Curve and SO(8) Tri-
ality

Now let us discuss a new type of reduction of our six-dimensional curve to
four-dimensional ones which maintains the manifest SL(2,Z) symmetry. We
claim that when we set four of the Wilson line parameters at half-periods

m5 = 0, m6 = π, m7 = π + πτ, m8 = πτ (6.1)
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we recover the four-dimensional SU(2) Seiberg–Witten curve with Nf = 4
flavors.

Let us first recall the Nf = 4 curve [15], whose explicit form is given by

ỹ2 = 4[W1W2W3 +A(W1T1(e2−e3)+W2T2(e3−e1)+W3T3(e1−e2))−A2N ]
(6.2)

with

Wi = x̃ − eiũ − ei
2R, (6.3)

A = (e1 − e2)(e2 − e3)(e3 − e1), (6.4)

R =
1

2

∑

i

Mi
2, (6.5)

T1 =
1

12

∑

i>j

Mi
2Mj

2 −
1

24

∑

i

Mi
4, (6.6)

T2 = −
1

2

∏

i

Mi −
1

24

∑

i>j

Mi
2Mj

2 +
1

48

∑

i

Mi
4, (6.7)

T3 =
1

2

∏

i

Mi −
1

24

∑

i>j

Mi
2Mj

2 +
1

48

∑

i

Mi
4, (6.8)

N =
3

16

∑

i>j>k

Mi
2Mj

2Mk
2 −

1

96

∑

i6=j

Mi
2Mj

4 +
1

96

∑

i

Mi
6 (6.9)

where M1, . . . ,M4 denote bare masses of matter hypermultiplets and

e1 =
1

12
(ϑ3

4 + ϑ4
4), e2 =

1

12
(ϑ2

4 − ϑ4
4), e3 =

1

12
(−ϑ2

4 − ϑ3
4). (6.10)

We note that when four of the Wilson line parameters {mi} are set at
zeros of the theta-function (6.1), all the odd coefficients a3, b1, b3, b5 vanish
identically in our curve. This is due to the structure of Hecke-type transfor-
mation in the coefficient functions {ai, bi}. See Appendix A.

Then if we redefine u2 as u, the Ê8 curve becomes

y2 = 4x3 −
(
a0u

2 + a2u + a4

)
x −

(
b0u

3 + b2u
2 + b4u + b6

)
. (6.11)

By comparing (6.2) with (6.11) one finds that these curves are in fact the
same if one makes the following identifications of four-dimensional masses
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with Wilson line parameters

M1 =




4∏

j=1

ϑ1(mj |τ) −
4∏

j=1

ϑ2(mj|τ)



/

4∏

j=1

ϑ1(mj |τ) , (6.12)

M2 =




4∏

j=1

ϑ1(mj |τ) +

4∏

j=1

ϑ2(mj|τ)



/

4∏

j=1

ϑ1(mj |τ) , (6.13)

M3 =




4∏

j=1

ϑ3(mj |τ) −
4∏

j=1

ϑ4(mj|τ)



/

4∏

j=1

ϑ1(mj |τ) , (6.14)

M4 =




4∏

j=1

ϑ3(mj |τ) +

4∏

j=1

ϑ4(mj|τ)



/

4∏

j=1

ϑ1(mj |τ) . (6.15)

(Common denominator of {Mi} can be chosen arbitrarily. We have fixed it
to
∏

j ϑ1(mj |τ) so that transformation laws of {Mi} fit with the convention
of [15].) x, y, u of the curve (6.11) and x̃, ỹ, ũ of the Nf = 4 curve (6.2) are
related as

u = L2ũ −
1

24η24

(
1

12
E4

2a2 − E6b2

)
, (6.16)

x = L2

(
x̃ −

1

144
E4

4∑

i=1

Mi
2

)
, (6.17)

y = L3ỹ (6.18)

with

L =
1

q1/4η18

4∏

j=1

ϑ1(mj |τ). (6.19)

The parameter τ was interpreted in the E-string theory as the modu-
lus of the torus T 2 of fifth and sixth dimensions. Now we identify it with
the bare coupling of four-dimensional gauge theory. We have derived the
SL(2,Z) symmetry of four-dimensional Nf = 4 theory from the geometry of
six dimensions. This relationship has in fact been suggested before [8].

The structure of four-dimensional masses {Mj} (6.12)–(6.15) is quite in-
teresting; they are invariant under the subgroup Γ(2) of the modular group

which consists of matrices of the form

(
a b
c d

)
≡

(
1 0
0 1

)
mod 2 with

ad − bc = 1. On the other hand they do transform under S and T trans-
formations of the modular group. In fact the quotient SL(2,Z)/Γ(2) equals
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the symmetric group S3 = {I, S, T, ST, TST, T−1S}. {Mj} transform under
the action of S3 as
τ → τ + 1 :

M1 → M1, (6.20)

M2 → M2, (6.21)

M3 → M3, (6.22)

M4 → −M4, (6.23)

τ → −
1

τ
:

M1 →
1

2
(M1 + M2 + M3 − M4), (6.24)

M2 →
1

2
(M1 + M2 − M3 + M4), (6.25)

M3 →
1

2
(M1 − M2 + M3 + M4), (6.26)

M4 →
1

2
(−M1 + M2 + M3 + M4). (6.27)

This is exactly the action of SO(8) triality transformation of the Nf = 4
theory proposed in [15]. Triality has been postulated for the consistency of
physical interpretation of four-dimensional gauge theory. Here it has been
derived naturally from a six-dimensional setting.

Note that the four-dimensional masses Mj(mi; τ) are proportional to

characters of D̂4 Weyl orbits at level one

w
bD4
b (mi; τ) =

1

2




4∏

j=1

ϑ3(mj |τ) +

4∏

j=1

ϑ4(mj |τ)


 , (6.28)

w
bD4
v (mi; τ) =

1

2




4∏

j=1

ϑ3(mj |τ) −
4∏

j=1

ϑ4(mj |τ)


 , (6.29)

w
bD4
s (mi; τ) =

1

2




4∏

j=1

ϑ2(mj |τ) +

4∏

j=1

ϑ1(mj |τ)


 , (6.30)

w
bD4
c (mi; τ) =

1

2




4∏

j=1

ϑ2(mj |τ) −
4∏

j=1

ϑ1(mj |τ)


 (6.31)

where subscripts (b, v, s, c) refer to the (basic,vector,spinor,conjugate-spinor)
representations of SO(8), respectively.
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6.2. Donagi–Witten Curve

Recall that if one sets the four masses Mi of the Nf = 4 curve at

M1 = M2 =
M

2
, M3 = M4 = 0, (6.32)

one obtains the Seiberg–Witten curve for the SU(2) theory with an adjoint
matter [15]

ỹ2 = 4
3∏

k=1

(
x̃ − ekũ −

1

4
ek

2M2

)
. (6.33)

This is in fact the curve discussed by Donagi and Witten [23]. To obtain
this curve directly from the Ê8 curve, one may set

m2 = 0, m3 = m4 = π, m5 = m6 = π + πτ, m7 = m8 = πτ (6.34)

and transform the variables as

u2 = L2
(
ũ − ℘(m1)

)
, (6.35)

x = L2

(
x̃ −

1

72
E4

)
, (6.36)

y = L3ỹ (6.37)

with

L =
2i

q1/2η15
ϑ1(mj |τ). (6.38)

Then one obtains a curve

ỹ2 = 4

3∏

k=1

(
x̃ − ekũ − ek

2
)
, (6.39)

which agrees with (6.33) after a rescaling.

A characteristic feature of the curve (6.33) is the factored form of the
cubic in x. This form ensures that each singularity of the u-plane is at least
doubled since the discriminant of a curve of the form

y2 = 4(x − α)(x − β)(x − γ) (6.40)

is given by
∆ = 16(α − β)2(β − γ)2(γ − α)2. (6.41)

A more general factorized curve may be obtained from the Ê8 curve. Let
us leave m1,m2 free and fix the others at

m3 = m4 = π, m5 = m6 = π + πτ, m7 = m8 = πτ. (6.42)
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Then one obtains a curve

y2 = 4
3∏

k=1

(
x −

(
x

(k)
0 u2 + x

(k)
1 u + x

(k)
2

))
(6.43)

where

x
(k)
0 = ek, (6.44)

x
(1)
1 =

2ϑ2
4ϑ1(m1|τ)ϑ1(m2|τ)

q1/2η6E4
, (6.45)

x
(2)
1 =

2(−ϑ3
4)ϑ1(m1|τ)ϑ1(m2|τ)

q1/2η6E4
, (6.46)

x
(3)
1 =

2ϑ4
4ϑ1(m1|τ)ϑ1(m2|τ)

q1/2η6E4
, (6.47)

x
(k)
2 =

ϑ1(m1|τ)2ϑ1(m2|τ)2

q η36

[
−4ek℘(m1)℘(m2)

+

(
1

18
E4 − 4ek

2

)(
℘(m1) + ℘(m2)

)
+ E6

(
1

108
−

7

6

ek
2

E4
+ 24

ek
4

E4
2

)]
.

(6.48)

This curve describes six I2 fibers and thus corresponds to A⊕6
1 symmetry.

7. Discussions

In this paper we have discussed various properties of the Seiberg–Witten
curve for the E-string theory which we obtained previously. First we have
studied its holomorphic sections and identified the geometrical meaning of
the Wilson line parameters {mi}. By fine tuning these parameters we have
then studied various degenerations of the curve which correspond to several
unbroken symmetry groups.

We have also presented a new way of reduction to four dimensions with-
out taking the degenerate limit of T 2 so that the SL(2,Z) symmetry is left
intact. By setting some of the parameters {mi} to special values we have ob-
tained the four-dimensional Seiberg–Witten theory with Nf = 4 flavors and
also the curve by Donagi and Witten describing a perturbed N = 4 theory.
In this reduction four-dimensional masses are expressed in terms of theta
functions and possess exactly the proposed triality properties. Thus our
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curve seems to serve successfully as a geometrical way of deriving SL(2,Z)
symmetry from higher dimensions.

We should point out, however, we have redefined u2 as u in deriving
four-dimensional curves in the new reduction. The geometrical significance
of this change of variable is yet to be understood. We hope that we will be
able to discuss this issue in a future publication.
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Figure 1: Elliptic fibration of rational elliptic surface

Appendix A. Ê8 Curve

Curve:

y2 = 4x3 −
(
a0u

4 + a1u
3 + a2u

2 + a3u + a4

)
x

−
(
b0u

6 + b1u
5 + b2u

4 + b3u
3 + b4u

2 + b5u + b6

)
. (A.1)
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Coefficients:

a0 =
1

12
E4, b0 =

1

216
E6, a1 = 0, b1 = −4

P (mi; τ)

E4
, (A.2)

a2 =
1

E4∆

[
fa2,0(τ)P (2mi; 2τ) + fa2,1(τ)P

(
mi;

τ

2

)

+fa2,1(τ + 1)P
(
mi;

τ + 1

2

)]
(A.3)

where

fa2,0(τ) =
2

3

(
E4(τ) − 9ϑ2(τ)8

)
, (A.4)

fa2,1(τ) =
1

24

(
E4(τ) − 9ϑ4(τ)8

)
, (A.5)

b2 =
1

E4
2∆

[
fb2,0(τ)P (2mi; 2τ) + fb2,1(τ)P

(
mi;

τ

2

)

+fb2,1(τ + 1)P
(
mi;

τ + 1

2

)]
(A.6)

where

fb2,0(τ) =
1

36

(
ϑ3(τ)4 + ϑ4(τ)4

) (
E4(τ)2 + 60E4(τ)ϑ2(τ)8

−45ϑ2(τ)16
)
, (A.7)

fb2,1(τ) = −
1

576

(
ϑ3(τ)4 + ϑ2(τ)4

) (
E4(τ)2 + 60E4(τ)ϑ4(τ)8

−45ϑ4(τ)16
)
, (A.8)

a3 =
1

E4
2∆2

[
fa3,0(τ)P (3mi; 3τ) + fa3,1(τ)P

(
mi;

τ

3

)

+fa3,1(τ + 1)P
(
mi;

τ + 1

3

)
+ fa3,1(τ + 2)P

(
mi;

τ + 2

3

)

+
2

3
E6(τ)P (mi; τ)3

]
(A.9)

where

fa3,0(τ) =
1

3
E4(τ)h2(τ)2

(
7E4(τ) − 9h0(τ)4

)
, (A.10)

fa3,1(τ) = −
1

38
E4(τ)h3

(τ

3

)2
(

7E4(τ) − h0

(τ

3

)4
)

, (A.11)
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b3 =
1

E4
3∆2

[
fb3,0(τ)P (3mi; 3τ) + fb3,1(τ)P

(
mi;

τ

3

)

+fb3,1(τ + 1)P
(
mi;

τ + 1

3

)
+ fb3,1(τ + 2)P

(
mi;

τ + 2

3

)

+
1

54

(
8E4

3 − 5E6
2
)
P (mi; τ)3

]
(A.12)

where

fb3,0(τ) =
1

18
E4(τ)2h2(τ)2

(
32h2(τ)2 + 48h2(τ)h0(τ)3 − 81h0(τ)6

)
,

(A.13)

fb3,1(τ) =
1

2 · 312
E4(τ)2h3

(τ

3

)2
(

32h3

(τ

3

)2
+ 48h3

(τ

3

)
h0

(τ

3

)3

−81h0

(τ

3

)6
)

, (A.14)

a4 =
1

E4∆2

[
16ϑ4(2τ)8P (4mi; 4τ) +

1

256
ϑ2

(τ

2

)8
P
(
mi;

τ

4

)

+
1

256
ϑ2

(τ + 1

2

)8
P
(
mi;

τ + 1

4

)
+

1

256
ϑ2

(τ + 2

2

)8
P
(
mi;

τ + 2

4

)

+
1

256
ϑ2

(τ + 3

2

)8
P
(
mi;

τ + 3

4

)
+ ϑ4(2τ)8P

(
2mi; τ +

1

2

)

+E4P (2mi; τ) −
3

2
∆2a2

2 +
3

8
E4∆a2b1

2 −
9

128
E4

2b1
4

]
, (A.15)

b4 =
1

E4∆2

[
fb4,0(τ)P (4mi; 4τ) + fb4,1(τ)P

(
mi;

τ

4

)

+fb4,1(τ + 1)P
(
mi;

τ + 1

4

)
+ fb4,1(τ + 2)P

(
mi;

τ + 2

4

)

+fb4,1(τ + 3)P
(
mi;

τ + 3

4

)
+ fb4,2(τ)P

(
2mi; τ +

1

2

)

+
5

48
E6P (2mi; τ) −

1

96
E4E6∆b3b1 − 3E4∆b2b1

2 −
55

384
E4E6b1

4

]

(A.16)

where

fb4,0(τ) = −
8

9

(
32ϑ3(2τ)12 − 75ϑ3(2τ)4ϑ4(2τ)8 + 2ϑ4(2τ)12

)
, (A.17)

fb4,1(τ) =
1

211 · 9

(
32ϑ3

(τ

2

)12
− 75ϑ3

(τ

2

)4
ϑ2

(τ

2

)8
+ 2ϑ2

(τ

2

)12
)

,(A.18)

fb4,2(τ) = −
1

18

(
32ϑ2(2τ)12 − 75ϑ2(2τ)4ϑ4(2τ)8 − 2ϑ4(2τ)12

)
, (A.19)
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b5 =
1

E4
2∆3

[
fb5,0(τ)P (5mi; 5τ) + fb5,1(τ)P

(
mi;

τ

5

)
+ fb5,1(τ + 1)P

(
mi;

τ + 1

5

)

+fb5,1(τ + 2)P
(
mi;

τ + 2

5

)
+ fb5,1(τ + 3)P

(
mi;

τ + 3

5

)

+fb5,1(τ + 4)P
(
mi;

τ + 4

5

)

+

(
gb5,0(τ)P (4mi; 4τ) + gb5,1(τ)P

(
mi;

τ

4

)

+gb5,1(τ + 1)P
(
mi;

τ + 1

4

)
+ gb5,1(τ + 2)P

(
mi;

τ + 2

4

)

+gb5,1(τ + 3)P
(
mi;

τ + 3

4

)
+ gb5,2(τ)P

(
2mi; τ +

1

2

))
P (mi; τ)

]

+
1

∆3

[
3

2
∆2b3b1

2 +
3

16
E6∆b2b1

3 +
1

9216
(53E4

3 + 67E6
2)b1

5

]
(A.20)

where

fb5,0(τ) =
2

3
η(τ)16η(5τ)16 (A.21)

×

(
511 + 4 · 59 η(τ)6

η(5τ)6
+ 22 · 56 η(τ)12

η(5τ)12
+ 4 · 54 η(τ)18

η(5τ)18
− 31

η(τ)24

η(5τ)24

)
,

fb5,1(τ) =
2

3
η(τ)16η( τ

5 )16

×

(
1

5
+ 4

η(τ)6

η( τ
5 )6

+ 22
η(τ)12

η( τ
5 )12

+ 20
η(τ)18

η( τ
5 )18

− 31
η(τ)24

η( τ
5 )24

)
, (A.22)

gb5,0(τ) =
2

3
ϑ3(2τ)4ϑ4(2τ)8

(
−1024ϑ3(2τ)12 + 1664ϑ3(2τ)8ϑ4(2τ)4

−644ϑ3(2τ)4ϑ4(2τ)8 + 55ϑ4(2τ)12
)
, (A.23)

gb5,1(τ) =
1

219 · 3
ϑ3

(τ

2

)4
ϑ2

(τ

2

)8
(
−1024ϑ3

(τ

2

)12
+ 1664ϑ3

(τ

2

)8
ϑ2

(τ

2

)4

−644ϑ3

(τ

2

)4
ϑ2

(τ

2

)8
+ 55ϑ2

(τ

2

)12
)

, (A.24)

gb5,2(τ) = −
1

24
ϑ2(2τ)4ϑ4(2τ)8

(
1024ϑ2(2τ)12 + 1664ϑ2(2τ)8ϑ4(2τ)4

+644ϑ2(2τ)4ϑ4(2τ)8 + 55ϑ4(2τ)12
)
, (A.25)
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b6 =
1

E4∆3

[
fb6,0(τ)P (6mi; 6τ) + fb6,1(τ)P

(
mi;

τ

6

)

+fb6,1(τ + 1)P
(
mi;

τ + 1

6

)
+ fb6,1(τ + 2)P

(
mi;

τ + 2

6

)

+fb6,1(τ + 3)P
(
mi;

τ + 3

6

)
+ fb6,1(τ + 4)P

(
mi;

τ + 4

6

)

+fb6,1(τ + 5)P
(
mi;

τ + 5

6

)
+ fb6,2(τ)P

(
3mi;

3τ

2

)

+fb6,2(τ + 1)P
(
3mi;

3τ + 1

2

)
+ fb6,3(τ)P

(
2mi;

2τ

3

)

+fb6,3(τ + 1)P
(
2mi;

2τ + 2

3

)
+ fb6,3(τ + 2)P

(
2mi;

2τ + 1

3

)]

+
a2

E4∆2

[
gb6,0(τ)P (4mi; 4τ) + gb6,1(τ)P

(
mi;

τ

4

)

+gb6,1(τ + 1)P
(
mi;

τ + 1

4

)
+ gb6,1(τ + 2)P

(
mi;

τ + 2

4

)

+gb6,1(τ + 3)P
(
mi;

τ + 3

4

)
+ gb6,2(τ)P

(
2mi; τ +

1

2

)]

+
1

∆3

[
−

83

7344
E6∆

2b5b1 +
83

408
∆2b4b1

2 +
1

34
∆2b3b2b1

+
29

6528
E6∆b3b1

3 +
669

1088
∆b2b1

4 −
5

7344
E4∆

2a3a2b1

−
419

235008
E4

2∆a3b1
3 −

1

36864
E4E6∆a2

2b1
2 +

1

1536
E4

2∆a2b2b1
2

−
1

256
E6∆b2

2b1
2 +

1215

69632
E6b1

6

]
(A.26)

where

fb6,0(τ) = −
4

17

(
h0(τ) + h0(2τ)

)(
h0(τ) − 2h0(2τ)

)2
(A.27)

×
(
27h0(τ)3 + 84h0(τ)2h0(2τ) + 72h0(τ)h0(2τ)2 − 32h0(2τ)3

)
,

fb6,1(τ) =
1

297432

(
2h0

(τ

3

)
+ h0

(τ

6

))(
h0

(τ

3

)
− h0

(τ

6

))2
(A.28)

×

(
27h0

(τ

3

)3
+ 42h0

(τ

3

)2
h0

(τ

6

)
+ 18h0

(τ

3

)
h0

(τ

6

)2
− 4h0

(τ

6

)3
)

,

fb6,2(τ) =
1

136

(
−2h0(τ) + h0

(τ

2

))(
h0(τ) + h0

(τ

2

))2
(A.29)

×

(
27h0(τ)3 − 42h0(τ)2h0

(τ

2

)
+ 18h0(τ)h0

(τ

2

)2
+ 4h0

(τ

2

)3
)
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fb6,3(τ) =
4

37179

(
h0

(τ

3

)
− h0

(2τ

3

))(
h0

(τ

3

)
+ 2h0

(2τ

3

))2

(A.30)

×

(
27h0

(τ

3

)3
− 84h0

(τ

3

)2
h0

(2τ

3

)
+ 72h0

(τ

3

)
h0

(2τ

3

)2
+ 32h0

(2τ

3

)3
)

,

gb6,0(τ) = −
640

51
ϑ3(2τ)4 +

32

9
ϑ4(2τ)4, (A.31)

gb6,1(τ) =
5

408
ϑ3

(τ

2

)4
−

1

288
ϑ2

(τ

2

)4
, (A.32)

gb6,2(τ) = −
40

51
ϑ2(2τ)4 −

2

9
ϑ4(2τ)4. (A.33)

Here

P (mi; τ) =
1

2

4∑

`=1

8∏

j=1

ϑ`(mj |τ) (A.34)

is the Ê8 Weyl orbit character at level one. Theta functions are defined as

ϑ1(z|τ) = i
∑

n∈Z

(−1)nyn−1/2q(n−1/2)2/2, (A.35)

ϑ2(z|τ) =
∑

n∈Z

yn−1/2q(n−1/2)2/2, (A.36)

ϑ3(z|τ) =
∑

n∈Z

ynqn2/2, (A.37)

ϑ4(z|τ) =
∑

n∈Z

(−1)nynqn2/2 (A.38)

where y = eiz, q = e2πiτ and we abbreviate ϑ`(0|τ) to ϑ`(τ) or just ϑ`.
E2n is the Eisenstein series with weight 2n,

E2n(τ) = 1 +
(2πi)2n

(2n − 1)! ζ(2n)

∞∑

m=1

m2n−1qm

1 − qm
, (A.39)

and ∆(τ) ≡ η(τ)24 = 1
1728

(
E4(τ)3 −E6(τ)2

)
. Functions {hi} are defined by

h0(τ) =
∞∑

n1,n2=−∞

qn2
1+n2

2−n1n2 = ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ),(A.40)

h2(τ) =
η(τ)9

η(3τ)3
, h3(τ) = 27

η(3τ)9

η(τ)3
. (A.41)
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Appendix B. En Curves and Holomorphic Sections

E8 curve:

y2 = 4x3

+
(
−u2 + 4χ1 − 100χ8 + 9300

)
x2

+
(
(2χ2 − 12χ7 − 70χ1 + 1840χ8 − 115010)u

+(4χ3 − 4χ6 − 64χ1χ8 + 824χ8χ8 − 112χ2

+680χ7 + 8024χ1 − 205744χ8 + 9606776)
)
x

+
(
4u5

+(4χ8 − 992)u4

+(4χ7 − 12χ1 − 680χ8 + 93620)u3

+(4χ6 − 8χ1χ8 + 92χ8χ8 − 28χ2 − 540χ7 + 2320χ1 + 30608χ8

−3823912)u2 + (4χ5 − 4χ1χ7 − 20χ2χ8 + 116χ7χ8 + 8χ1χ1

−52χ3 − 416χ6 + 1436χ1χ8 − 17776χ8χ8 + 4180χ2 + 16580χ7

−182832χ1 + 1103956χ8 + 18130536)u

+(4χ4 − χ2χ2 + 4χ1χ1χ8 − 40χ3χ8 + 36χ6χ8 + 248χ1χ8χ8

−2232χ8χ8χ8 + 2χ1χ2 − 232χ5 + 224χ1χ7 + 1124χ2χ8

−6580χ7χ8 − 457χ1χ1 + 4980χ3 + 8708χ6 − 88136χ1χ8

+1129964χ8χ8 − 146282χ2 + 66612χ7 + 6123126χ1

−104097420χ8 + 2630318907)
)

(B.1)

where χ1, . . . , χ8 denote characters of E8 fundamental representations and
are defined as

χ1 = χ[10
0
00000], χ2 = χ[00

1
00000], χ3 = χ[01

0
00000],

χ4 = χ[00
0
10000], χ5 = χ[00

0
01000], χ6 = χ[00

0
00100],

χ7 = χ[00
0
00010], χ8 = χ[00

0
00001]. (B.2)
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240 sections for E8 curve:

x =
1

4 sin2 λ
×

[
u2 +

(
2 cos 4λ − 24 cos 2λ + 2χE7

7 cos λ − 90
)
u

+
(
2 cos 6λ + (2χE7

1 − 134) cos 4λ

−16χE7
7 cos 3λ + (−20χE7

1 + 2χE7
6 + 2396) cos 2λ

−96χE7
7 cos λ + χE7

7 χE7
7 + 18χE7

1 − 2χE7
6 + 872

)]
, (B.3)

y =
1

4 sin3 λ
×

[
(cos λ)u3 +

(
− cos 5λ + 5 cos 3λ + χE7

7 cos 2λ − 172 cos λ + 2χE7
7

)
u2

+
(
−3 cos 7λ + (−χE7

1 + 124) cos 5λ + (5χE7
1 + χE7

6 − 575) cos 3λ

+(−2χE7
2 − 108χE7

7 ) cos 2λ + (3χE7
7 χE7

7 − 4χE7
1 − χE7

6 + 9862) cos λ

+2χE7
2 − 228χE7

7

)
u

+
(
−2 cos 9λ + (−2χE7

1 + 176) cos 7λ + χE7
2 cos 6λ

+(62χE7
1 − χE7

3 − χE7
6 − 3822) cos 5λ

+(χE7
1 χE7

7 − 3χE7
2 + χE7

5 + 3χE7
7 ) cos 4λ

+(−χE7
2 χE7

7 − 286χE7
1 + 3χE7

3 − 53χE7
6 + 16534) cos 3λ

+(2χE7
6 χE7

7 + 115χE7
2 − 4χE7

5 + 2906χE7
7 ) cos 2λ

+(χE7
2 χE7

7 − 168χE7
7 χE7

7 + 226χE7
1 − 2χE7

3 + 54χE7
6 − 188502) cos λ

+χE7
7 χE7

7 χE7
7 − χE7

1 χE7
7 − 2χE7

6 χE7
7 − 113χE7

2 + 3χE7
5 + 6499χE7

7

)]
.

(B.4)

where χE7
1 , . . . , χE7

7 denote E7 fundamental representation characters and
are defined as

χE7
1 = χ[10

0
0000], χE7

2 = χ[00
1
0000], χE7

3 = χ[01
0
0000], χE7

4 = χ[00
0
1000],

χE7
5 = χ[00

0
0100], χE7

6 = χ[00
0
0010], χE7

7 = χ[00
0
0001]. (B.5)
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E7 curve:

y2 = 4x3 +
(
−u2 + 4χE7

1 − 100
)
x2 (B.6)

+
(
(2χE7

2 − 12χE7
7 )u + (4χE7

3 − 4χE7
6 − 64χE7

1 + 824)
)
x

+
(
4u4 + 4χE7

7 u3 + (4χE7
6 − 8χE7

1 + 92)u2

+(4χE7
5 − 4χE7

1 χE7
7 − 20χE7

2 + 116χE7
7 )u

+(4χE7
4 − χE7

2 χE7
2 + 4χE7

1 χE7
1 − 40χE7

3 + 36χE7
6 + 248χE7

1 − 2232)
)
.

56 sections for E7 curve:

x = −
(
Λ3 + Λ−3

)
u −

(
Λ6 + χE6

1 Λ2 − 8 + χE6
6 Λ−2 + Λ−6

)
, (B.7)

y = i
(
Λ3 − Λ−3

)
u2 + i

(
3Λ6 + χE6

1 Λ2 − χE6
6 Λ−2 − 3Λ−6

)
u

+i
(
2Λ9 + 2χE6

1 Λ5 − χE6
2 Λ3 + (χE6

3 + χE6
6 )Λ

+(−χE6
1 − χE6

5 )Λ−1 + χE6
2 Λ−3 − 2χE6

6 Λ−5 − 2Λ−9
)

. (B.8)

where χE6
1 , . . . , χE6

6 denote E6 fundamental representation characters and
are defined as

χE6
1 = χ[10

0
000], χE6

2 = χ[00
1
000], χE6

3 = χ[01
0
000], χE6

4 = χ[00
0
100],

χE6
5 = χ[00

0
010], χE6

6 = χ[00
0
001]. (B.9)

126 sections for E7 curve:

x =
1

4 sin2 λ
×

[
u2 +

(
2χD6

6 cos λ
)
u +

(
2 cos 4λ + (2χD6

5 − 20) cos 2λ

+χD6
6 χD6

6 − 2χD6
5 + 18

)]
, (B.10)
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y =
1

4 sin3 λ
×

[
(cos λ)u3 +

(
χD6

6 cos 2λ + 2χD6
6

)
u2

+
(
− cos 5λ + (χD6

5 + 5) cos 3λ − 2χD6
2 cos 2λ

+(3χD6
6 χD6

6 − χD6
5 − 4) cos λ + 2χD6

2

)
u

+
(
−χD6

1 cos 5λ + (χD6
4 + χD6

6 ) cos 4λ + (−χD6
2 χD6

6 + 3χD6
1 ) cos 3λ

+(2χD6
5 χD6

6 − 4χD6
4 ) cos 2λ + (χD6

2 χD6
6 − 2χD6

1 ) cos λ

+χD6
6 χD6

6 χD6
6 − 2χD6

5 χD6
6 + 3χD6

4 − χD6
6

)]
(B.11)

where χD6
1 , . . . , χD6

6 denote D6 fundamental representation characters and
are defined as

χD6
1 = χ[0

1
0000], χD6

2 = χ[1
0
0000], χD6

3 = χ[0
0
1000], χD6

4 = χ[0
0
0100],

χD6
5 = χ[0

0
0010], χD6

6 = χ[0
0
0001]. (B.12)

Appendix C. Special E8 Curves with Singular Fibers

• ~m = 2π
2 ~µ1 = (0, 0, 0, 0, 0, 0, 0, 2π)

(
or ~m = (0, 0, 0, 0, π, π, π, π)

)

f =
1

12
(u − 64)2(u2 + 128u − 8192), (C.1)

g =
1

216
(u − 64)3(u − 32)(u2 − 640u + 28672), (C.2)

∆ = (u − 64)10(u − 48). (C.3)

⇒ degenerate fiber: I∗4 symmetry: D8

• ~m = 2π
3 ~µ2 = (π

3 , π
3 , π

3 , π
3 , π

3 , π
3 , π

3 , 5π
3 )

(
or ~m = ( 2π

3 , 2π
3 , 2π

3 , 2π
3 , 2π

3 , 2π
3 , 2π

3 ,−2π
3 )
)

f =
1

12
(u − 54)(u3 + 54u2 − 16524u + 583200), (C.4)

g =
1

216
u6 − 4u5 + 873u4 −

172179

2
u3 + 4376916u2

−112140612u + 1147184289, (C.5)

∆ = (u − 63)9(u2 − 117u + 3429). (C.6)

⇒ degenerate fiber: I9 symmetry: A8
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• ~m = 2π
4 ~µ3 = (−π

4 , π
4 , π

4 , π
4 , π

4 , π
4 , π

4 , 7π
4 )

(
or ~m = (π

4 , π
4 , π

4 , π
4 , π

4 , π
4 , π

4 ,−7π
4 )
)

f =
1

12
u4 −

4864

3
u2 + 122880u −

7847936

3
, (C.7)

g =
1

216
(u2 − 96u + 2176)(u4 − 768u3 + 112640u2

−6094848u + 113115136), (C.8)

∆ = (u − 64)8(u − 56)2(u − 60). (C.9)

⇒ degenerate fiber: I8, I2 symmetry: A7 ⊕ A1

• ~m = 2π
6 ~µ4 = (0, 0, π

3 , π
3 , π

3 , π
3 , π

3 , 5π
3 )

f =
1

12
(u − 54)(u3 + 54u2 − 16308u + 569160), (C.10)

g =
1

216
(u2 − 96u + 2196)(u4 − 768u3 + 112104u2

−6035904u + 111493584), (C.11)

∆ = (u − 66)6(u − 57)3(u − 58)2. (C.12)

⇒ degenerate fiber: I6, I3, I2 symmetry: A5 ⊕ A2 ⊕ A1

• ~m = 2π
5 ~µ5 = (0, 0, 0, 2π

5 , 2π
5 , 2π

5 , 2π
5 , 8π

5 )

f =
1

12
u4 −

4750

3
u2 + 118750u −

7512500

3
, (C.13)

g =
1

216
(u2 − 114u + 3250)(u4 − 750u3 + 98750u2

−4687500u + 74687500), (C.14)

∆ = (u2 − 125u + 3875)5(u − 57). (C.15)

⇒ degenerate fiber: I5, I5 symmetry: A4 ⊕ A4

• ~m = 2π
4 ~µ6 = (0, 0, 0, 0, π

2 , π
2 , π

2 , 3π
2 )

(
or ~m = (0, 0, 0, 0, 0, π, π, π)

)

f =
1

12
(u − 56)2(u2 + 112u − 9152), (C.16)

g =
1

216
(u − 56)3(u − 40)(u2 − 656u + 33856), (C.17)

∆ = (u − 56)7(u − 72)4. (C.18)

⇒ degenerate fiber: I∗1 , I4 symmetry: D5 ⊕ A3
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• ~m = 2π
3 ~µ7 = (0, 0, 0, 0, 0, 2π

3 , 2π
3 , 4π

3 )
(
or ~m = (0, 0, 0, 0, 0, 4π

3 , 4π
3 , 4π

3 )
)

f =
1

12
(u − 54)3(u + 162), (C.19)

g =
1

216
(u − 54)4(u2 − 648u + 26244), (C.20)

∆ = (u − 54)8(u − 81)3. (C.21)

⇒ degenerate fiber: IV ∗, I3 symmetry: E6 ⊕ A2

• ~m = 2π
2 ~µ8 = (0, 0, 0, 0, 0, 0, π, π)

(
or ~m = (π

2 , π
2 , π

2 , π
2 , π

2 , π
2 , π

2 , π
2 )
)

f =
1

12
(u − 48)3(u + 144), (C.22)

g =
1

216
(u − 48)5(u − 624), (C.23)

∆ = (u − 48)9(u − 112)2. (C.24)

⇒ degenerate fiber: III∗, I2 symmetry: E7⊕A1 ~µ1, . . . , ~µ8 denotes
the fundamental weights of E8:

~µ1 = 2~e8, (C.25)

~µ2 = 1
2~e1 + 1

2~e2 + 1
2~e3 + 1

2~e4 + 1
2~e5 + 1

2~e6 + 1
2~e7 + 5

2~e8, (C.26)

~µ3 = −1
2~e1 + 1

2~e2 + 1
2~e3 + 1

2~e4 + 1
2~e5 + 1

2~e6 + 1
2~e7 + 7

2~e8, (C.27)

~µ4 = ~e3 + ~e4 + ~e5 + ~e6 + ~e7 + 5~e8, (C.28)

~µ5 = ~e4 + ~e5 + ~e6 + ~e7 + 4~e8, (C.29)

~µ6 = ~e5 + ~e6 + ~e7 + 3~e8, (C.30)

~µ7 = ~e6 + ~e7 + 2~e8, (C.31)

~µ8 = ~e7 + ~e8. (C.32)

We show the labeling of the fundamental weights of E8:

(1)

(2)

(3) (4) (5) (6) (7) (8)

Figure 2: Dynkin diagram for E8
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