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Abstract. Dimensional reduction of the Seiberg–Witten equations leads to the equations of motion of
a U(1) Chern–Simons theory coupled to a massless spinorial field. A topological quantum field theory
is constructed for the moduli space of gauge equivalence classes of solutions of these equations. The
Euler characteristic of the moduli space is obtained as the partition function which yields an analogue
of Casson’s invariant. A mathematically rigorous definition of the invariant is developed for homology
spheres using the theory of spectral flow of self-adjoint Fredholm operators.
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1. Introduction

The field of low-dimensional geometry and topology has undergone a dramatic
period of progress in recent years, prompted, to a large extent, by new ideas and
discoveries in mathematical physics. Indeed, the study of conformal field theory,
quantum Chern–Simons theory and more importantly, quantum groups, reshaped
knot theory and the theory of 3-manifolds; investigations of the classical Yang–
Mills theory led to the creation of the Donaldson theory of four-manifolds [6];
and very recently, a set of powerful invariants of 4-manifolds, the Seiberg–Witten
invariants [20], were discovered in the study of supersymmetric gauge theories.

Since its inception, the Seiberg–Witten theory has been intensively analysed by
both physicists and mathematicians. Many new results have been obtained which
have had a profound impact on the theory of 4-manifolds (for a concise review and
references, see [11]).

The purpose of the present Letter is to explore possible applications of the
Seiberg–Witten theory to 3-manifolds. It is well known that Floer cohomology [7]
and Casson’s invariant [1] for homological spheres have a deep connection with
Donaldson theory. Therefore, it is natural for us to expect that by reducing Seiberg–
Witten theory to three dimensions, analogues of Floer and Casson invariants should
also arise. This is indeed the case as we shall show here.

Dimensionally reducing the Seiberg–Witten equations to a 3-manifold, we
obtain the equations of motion of a U(1) Chern–Simons theory coupled to a mass-
less spinorial field. In Section 2, we use topological field theoretical techniques
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to study the moduli space of the gauge equivalence classes of solutions of these
equations. The Euler characteristic of the moduli space, which is obtained as the
partition function of the topological field theory, can be regarded as the Seiberg–
Witten version of Casson’s invariant. In Section 3, we outline a mathematical
approach similar to Taubes’ construction of Casson’s invariant using gauge theory
[18]. This section contains a rigorous definition of the invariant in terms of the
(mod 2) spectral flow of a family of self-adjoint Fredholm operators. The proof
that this spectral flow invariant does not depend on the choice of a ‘good’ metric
relies on contemporaneous work of Wang [19] in which the invariant of this Letter
is shown to be the Euler characteristic of a Seiberg–Witten–Floer homology.

This Letter is a modified version of [5].

2. Topological Field Theory

2.1. SEIBERG–WITTEN INVARIANTS

Let X be a compact Riemannian 4-manifold with Spinc bundles W�. Denote the
determinant line bundle of W+ by L. Let A be a U(1)-connection on L and let M
be a smooth section of W+. The Seiberg–Witten monopole equations are classical
field theoretical equations for A and M , which read

F+ = 1
4
�Mei:ej :Mei ^ ej ; DAM = 0; (1)

where DA is the twisted Dirac operator, feig4
i=1 is the orthonormal frame

for TX , feig4
i=1 is its dual, ei acts on a spinor by Clifford multiplication,

eiej + ejei = �2�ij , and F+ represents the self-dual part of the curvature of
L with connectionA.

Denote by M the moduli space of solutions of the Seiberg–Witten mono-
pole equations up to gauge transformations. In general (we assume b+2 (X) > 2)
[8, 11, 20], after perturbing the Seiberg–Witten equations by adding a generic self-
dual two-form to the curvature equation, the parametrized moduli space is a smooth
compact manifold with the dimension given by

dimM = �2�(X) + 3�(X)

4
+
c1(L)

2

4
; (2)

where �(X) is the Euler character of X , �(X) its signature index and c1(L)
2

is the square of the first Chern class of L evaluated on X in the standard way.
Also this moduli space is orientable in the sense that the top exterior power of the
tangent bundle of the parametrized moduli space is orientable. This orientation is
determined by a choice of orientations of H0(X;R);H1(X;R) and H2

+
(X;R).

When dimM equals zero, i.e. for c1(L)
2 = 2�(X) + 3�(X), the moduli

space consists of a finite number of points. Then the orientation of M assigns
in a systematic way a sign "p to each point p 2 M [20] and the Seiberg–Witten
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SEIBERG–WITTEN MONOPOLES IN THREE DIMENSIONS 215

invariant of the 4-manifold X with respect to the given Spinc structure is defined
by

X
p2M

"p; (3)

which will depend on the differential structures ofX , but not on the metric and the
choice of perturbation (provided that b+2 > 2).

The Seiberg–Witten invariants can be reproduced by a topological field theo-
ry [4, 21]. Introduce a Lie superalgebra with an odd generator Q and two even
generators U and � obeying the following (anti)commutation relations

[U;Q] = Q; [Q;Q] = 2�; [Q; �] = 0: (4)

We will call U the ghost number operator, and Q the BRST operator. Define the
action of the superalgebra on the fields A and M by requiring that � coincide
with a gauge transformation with a gauge parameter � 2 
0(X;R). The field
multiplets associated with A andM furnishing representations of the superalgebra
are, respectively, (A; ; �), and (M;N), where  2 
1(X; iR), � 2 
0(X;R),
andN is a section of S+
L. They transform under the action of the superalgebra
according to

[Q;Ai] =  i; [Q;M ] = N;

[Q; i] = �i@i�; [Q;N ] = i�M; [Q;�] = 0: (5)

We assume that both A and M have ghost number 0, and thus will be regarded as
bosonic fields when we study their quantum theory. The ghost numbers of other
fields can be read off the above transformation rules.

In order to construct a quantum field theory which will reproduce the Seiberg–
Witten invariants as correlation functions, anti-ghosts and Lagrangian multipliers
are also required. We introduce the anti-ghost multiplet (�; �) 2 
0(X;R), such
that

[U; �] = �2�; [Q;�] = �; [Q; �] = 0; (6)

and the Lagrangian multipliers (�;H) 2 
2;+(X; iR), and (�; �) 2 S� 
 L such
that

[U;�] = ��; [Q;�] = H; [Q;H] = 0;

[U; �] = ��; [Q;�] = �; [Q; �] = i��: (7)
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With the given fields, we construct the following functional which has ghost
number�1

V =

Z
X

f[�rk 
k + ( �NM � �MN)]i�+ �kl(Hkl � F+

kl � �M�klM)�

� ��(� �DAM)� (� �DAM)�g; (8)

where �kl = 1
2 [ek; el] and the indices of the tensorial fields are raised and lowered

by a given Riemannian metric on X . Following the standard procedure, we take
the classical action of our topological field theory to be

S = [Q;V ]; (9)

which has ghost number 0. One can easily show that S is invariant under the BRST
superalgebra (4), in particular, [Q;S] = 0.

The bosonic Lagrangian multiplier fields H and � do not have any dynamics
and thus can be eliminated from the action by using their equations of motion,
leading to

S =

Z
X
f[���+ �MM�� i �NN ]�� [�rk 

k + ( �NM � �MN)]i� +

+ 2i����(DAN � : M)�� ��(DAN � : M)�

� �kl[(rk 
l �rl 

k)+ + ( �M�klN + �N�klM)]g +

+S0; (10)

where S0 is given by

S0 =

Z
X
f1

4 jF
+ + �M�M j2 + 1

2 jDAM j2g: (11)

The partition function of the quantum field theory defined by the classical action
S reads

Z =

Z
exp

�
� 1
e2S

�
;

where e 2 R is the coupling constant. It depends on neither the coupling constant
nor the metric of X . In the case when the moduli spaceM is zero-dimensional, Z
yields the Seiberg–Witten invariants.

2.2. DIMENSIONAL REDUCTION AND CASSON’S INVARIANT

Our aim is to study 3-manifolds using the Seiberg–Witten theory. To do that, we
observe that the topological field theory constructed above is also well defined for
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SEIBERG–WITTEN MONOPOLES IN THREE DIMENSIONS 217

a compact 4-manifold X with boundary. We take X to be of the form Y � [0; 1]
with Y being a compact 3-manifold without boundary and the metric on X to be

(ds)2 = (dt)2 +
3X
i;j

gij(x) dxi dxj;

where the t-independent functions gij(x) give the Riemannian metric on Y . We
assume that Y admits a spin structure which is compatible with the Spinc structure
of X , i.e., if we think of Y as embedded in X , then this embedding induces maps
from the Spinc bundles S�
L ofX to ~S
L, where ~S is a spin bundle and L is a
line bundle over Y . We also impose the condition that all fields are t independent.
The action now reduces to

S =

Z p
g d3yf[���+ �MM�� i �NN ]��

�[�rk 
k + ( �NM � �MN)]i� + 2i����+

+[(DA + ib)N � (�: � i�)M ]�� ��[(DA + ib)N �

�(�: � i�)M ]� 2�k[�i@k� � �(r )k � �M�kN � �N�kM ] +

+1
4 j � F � i@b� �M�M j2 + 1

2 j(DA + ib)M j2g; (12)

where � =
P3

k=1 �ke
k, and f�kg3

k=1 are the Pauli matrices which are the rep-
resentation of the Clifford multiplication for the orthonormal frame feig3

i=1 of
TY

[�i; �j ] = 2"ijk�k; �i�j + �j�i = �2�ij:

The fields b; � 2 
0(Y;R), respectively, arose from A0 and  0 of the four-
dimensional theory, while the meanings of the other fields are clear. The BRST
symmetry in four-dimensions carries over to the three-dimensional theory. The
BRST transformations rules for (Ai;  i; �), i = 1; 2; 3, (M;N), and (�; �) are the
same as before, but for the other fields, we have

[Q; b] = �; [Q; � ] = 0;

[Q;�k] =
1
2 (�Fk � i@kb� �M�kM); [Q;�] = 1

2(DA + ib)M: (13)

The action S is cohomological in the sense that S = [Q;V3], with V3 being the
dimensionally reduced version of V defined by (8), and [Q;S] = 0. Thus, it gives
rise to a topological field theory upon quantization. The partition function of the
theory

Z =

Z
exp

�
� 1
e2S

�
;
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does not depend on either the coupling constant or the metric of Y . It can be
computed exactly in the limit e2 ! 0, yielding

Z =
X
p

exp
�
� 1
e2S

(p)

cl

�Z
exp(�S(p)

q );

where S(p)
q is the quadratic part of S expanded around a classical configuration

with the classical parts for the fields A;M; b being Ao;Mo; bo, while those for all
the other fields being zero. The classical action S(p)

cl is given by

S
(p)

cl =

Z
Y
f1

4 j � F
o � i dbo � �Mo�Moj2 + 1

2 j(DAo + bo)Moj2g;

which can be rewritten as

S
(p)

cl =

Z
Y

f1
4 j � F

o � �Mo�Moj2 + 1
2 jDAoM

oj2 + 1
2 j db

oj2 + 1
2 jb

oMoj2g:

In order for the classical configuration to have nonvanishing contributions to
the partition function, all the terms in S(p)

cl should vanish separately. Therefore,

�F o � �Mo�Mo = 0; DAoM
o = 0; and bo = 0; (14)

where the last condition requires some explanation. When we have a trivial solution
of Equations (14), i.e.,Mo = 0, then the requirement for bo can be replaced by the
less stringent condition dbo = 0.

Let us define an operator

T̂ :
0(Y;R) � 
1(Y; iR) � (Ŝ 
 L)! 
0(Y;R) � 
1(Y; iR) � (Ŝ 
 L);

(�;  ;N) 7! (d� + ( �NM � �MN); �(d ) � i d� � �N�M � �M�N;

DAN � (�: � i�)M); (15)

where the complex bundle Ŝ 
 L should be regarded as a real one with twice the
rank. This operator can be shown to be self-adjoint Fredholm. In terms of T̂ , the
equations of motion of the fields �i and � can be expressed as

T̂ (p)(�;  ;N) = 0; (16)

where T̂ (p) is the operator T̂ with the background fields (Ao;Mo) belonging to the
gauge class p of classical configurations.

When the kernel of T̂ is zero, the moduli space M of the gauge equivalence
classes of solutions of Equation (14) is generically of dimension 0. A result of [8]
asserts that M is compact, thus consisting of a finite number of isolated points. In

mat95158.tex; 18/03/1997; 8:32; v.5; p.6



SEIBERG–WITTEN MONOPOLES IN THREE DIMENSIONS 219

this case, the partition function Z does not vanish identically. An easy computation
leads to

Z =
X
p2M

"(p); (17)

where "(p) is the sign of the determinant of T̂ (p).
For a 3-manifold Y with nontrivial SpinC structure, we can regard the partition

function (17) as the Seiberg–Witten analogue of Casson’s invariant, since it is
the Euler characteristic of the Seiberg–Witten–Floer group [11]. However, for a
homology sphere, we find that this group and the analogue of Casson’s invariant
depend on the metric and perturbation. In this case, we need a wall-crossing
formula to see how the Casson invariant depends on the chamber structure in the
space of metrics and perturbations. We refer the reader to [12] for an analysis of
this wall-crossing formula.

Needless to say, our approach to this invariant is heuristic; a mathematically
rigorous definition for it is required [11, 12, 19]. We will sketch such a definition
in the next section, but first we examine the geometric meaning of (17).

2.3. GEOMETRICAL INTERPRETATION

To elucidate the geometric meaning of the three-dimensional theory, we now cast
it into the framework of Atiyah and Jeffrey [2]. Let us briefly recall the geometric
set-up of the Mathai–Quillen formula as reformulated in reference [2]. Let P be a
Riemannian manifold of dimension 2m + dimG, and G be a compact Lie group
acting on P by isometries. Then P ! P=G is a principle bundle. Let V be a
2m-dimensional real vector space which furnishes a representationG! SO(2m).
Form the associated vector bundle P �G V . Now the Thom form of P �G V can
be expressed as

U =
exp(�x2)

(2�)dimG�m
�

�
Z

exp
�
i���

4
+ i� dx� ih��; �i � h�;R�i+ h�; �i

�
�

�D�D�D�D�; (18)

where x = (x1; :::; x2m) is the coordinates of V , � and � are bosonic variables in
the Lie algebra g of G, and � and � are Grassmannian variables valued in the Lie
algebra and the tangent space of the fiber, respectively. In the above equation, C
maps any � 2 g to the element of the vertical part of TP generated by �; � is the
g-valued one form on P defined by h�(�); �i = h�;C(�)i, for all vector fields �;
and R = C�C . Also, � is the exterior derivative on P .
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220 A. L. CAREY ET AL.

Now we choose a G invariant map s:P ! V , and pull back the Thom form
U . Then the top form on P in s�U is the Euler class. If f�pg forms a basis of the
cotangent space of P (note that � and �s are one forms on P ), we replace it by a
set of Grassmannian variables f g in s�U , then integrate them away. We arrive at

1
(2�)dimG�m

�

�
Z

exp
�
�jsj2 + i���

4
+ i��s� ih��; �i � h�;R�i+ h ;C�i

�
�

�D�D�D�D�D ; (19)

the precise relationship of which, with the Euler character of P �G V , isZ
P

(19) = Vol(G)�(P �G V ):

We wish to show that the partition function of the three-dimensional theory
yields the Euler number of W = (A � ( ~S 
 L))=G. Let P be a principal bundle
over P=G, V , V 0 be two orthogonal representions of G. Suppose there is an
embedding from P �G V 0 to P �G V via a G-map (p):V 0 ! V for p 2 P .
Denote the resulting quotient bundle asE. In order to derive the Thom class forE,
we need to choose a section of E, or equivalently, a G-map s:P ! V such that
s(p) 2 (Im (p))?. Then the Euler class of E can be expressed as ����U , where
U is the Thom class of P �G V , � is a G-map: P � V 0 ! P � V defined by

�(p; �) = (p; (p)� + s(p));

and �� is the integration along the fiber for the projection �:P � V 0 ! P=G.
Explicitly,

���
�(U)

=

Z
expf�j(p)� + s(p)j2 + i���+ i��((p)� + s(p))�

� ih��; �i � h�;R�i+ h�;C�igD�D�D�D�D�: (20)

Consider the exact sequence

0 �! (A� �(W ))�G 
0(Y;R)

j�! (A� �(W ))�G (
1(Y; iR) � �(W ))

where j(A;M): b 7! (�i db; ibM). (We assume that M 6= 0.) Then the tangent
bundle of A�G �(W ) can be regarded as the quotient bundle

(A� �(W ))�G (
1(Y; iR) � �(W ))=Im(j):
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SEIBERG–WITTEN MONOPOLES IN THREE DIMENSIONS 221

We define a vector field on A�G �(W ) by

s(A;M) = (�FA � �M�M;DAM);

which lies in (Im j)?

�
Z
Y

(�FA � �M�M) ^ �(�i db)+

+

Z
Y

p
g d3y(hDAM; ibMi + hibM;DAMi) = 0; (21)

where we have used the notation hM1;M2i = �M1M2.
Formally applying formula (20) to the present infinite-dimensional situation,

we obtain the Euler class ����(U) for the tangent bundle T (A�G �(W )), where
� is the G-invariant map � is defined by

�:
0(Y;R) ! 
1(Y; iR) � �(W );

�(b) = (�i db+ �FA � �M�M; (DA + ib)M);

� is the projection

(A� �(W ))�G 
0(Y;R) ! A�G �(W );

and �� signifies the integration along the fiber. Also, U is the Thom form of the
bundle

(A� �(W ))�G (
1(Y; iR) � �(W ))! A�G �(W ):

To understand the Thom form more concretely, we need to explain the geometry
of this bundle. The metric on Y and the Hermitian metric h: ; :i on �(W ) naturally
defines a connection. The Maurer–Cartan connection on A ! A=G is flat, while
the Hermitian connection has the curvature i�� ^ ��. This gives the expression for
the term i(�; �)�(�; �) in (19) in our case.

In our infinite-dimensional setting, the map C is given by

C:
0(Y;R) ! T(A;M)(A� �(W ));

C(�) = (�i d�; i�M)

and its dual is given by

C�:
1(Y; iR) � �(W )! 
0(Y;R);

C�( ;N) = i(d� � �MN + �NM)i:
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The one form h�; �i on A� �(W ) takes the value

h( ;N); C�i =
Z
Y
i�(d� � �MN + �NM)

p
g d3y

on the vector field ( ;N). We also easily obtain R(�) = ��� + �MM�, where
� = d� d. Then h��; �i is a 2-form onA��(W )whose value on ( 1; N1); ( 2; N2)
is �( �N1N2 + �N2N1)�.

Combining all the information together, we arrive at the formula

���
�(U) =

Z
expf� 1

2 j�j
2 + i(�; �)�� + 2i����+

+ h��; �i � ��hM;Mi + ihN;Ni�+ h�; �ig �

�D�D�D�D�Db: (22)

Note that the 1-form i(�; �)�� onA��(W )�
0(Y;R) contracted with the vector
field (�;N; b), leads to

2�k
�
�i@k� � �(r )k � �M�kN � �N�kM

�
+

+2 Reh�;
�
(DA + ib)N � (�: � i�)M

�
i (23)

and relation (21) gives

j�j2 = j � F � �M�M j2 + jdbj2 + jDAM j2 + b2jM j2:

Finally, we obtain the Eular character

���
�(U) =

Z
exp(�S)D�D�D�D�Db; (24)

where S is the action (12) of the three-dimensional theory defined on the manifold
Y . Integrating (24) over A�G �(W ) leads to the generalised Euler number.

3. A Spectral Flow Definition of the Three-Manifold Invariant

In this section, we will sketch the main idea on how to use Seiberg–Witten
monopoles to define an invariant analogous to that of Casson for homology spheres.
A key proof depends on the contemporaneous work of [19] on a Seiberg–Witten–
Floer complex.

Let Y be a closed, oriented, compact three-dimensional Riemannian manifold
with the homology of a 3-sphere. We choose the L2

1-metric on the configuration
space C(Y ) = A � �(W ), where A is an L2

1-connection space on det(W ) and
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SEIBERG–WITTEN MONOPOLES IN THREE DIMENSIONS 223

�(W ) is the L2
1-sections of the spinor bundle W . The L2-norm for the tangent

space of A is given by

h 1;  2iL2 = �
Z
Y

 1 ^ � 2;

where  1;  2 2 
1(Y; iR) and � is the Hodge star operator on Y . The L2-metric
for the spinors is given by the integration of twice the real part of the Hermitian
metric hN1; N2i = �N1N2 on W as follows:

hN1; N2iL2 =

Z
Y
( �N1N2 + �N2N1)

p
g d3y:

Within this setting, we can discuss the Morse theory on C(Y )=G = B with
the quotient topology where G is the L2

2-gauge transformation group. Since the
gauge transformation acts nonfreely on the reducible points, we denote by R the
set of reducible points (where the spinor part is zero), and let B� = (C(Y )nR)=G.
Then we can think of B� as an infinite-dimensional manifold with the tangent
space at [A;M ] given by the orthogonal complement of T(A;M)(G:(A;M)) in
T(A;M)(C(Y )), i.e.

T[A;M ](B�) = f( ;N) 2 
1(Y; iR) � �(W )jd� = �MN � �NMg:

Note that Equation (14) is just the equation of motion of a U(1) Chern–Simons
theory coupled to a massless spinor, arising from the critical points of the following
functional

C(A;M) =

Z
Y

(A�A0) ^ FA +

Z
Y

p
g d3y �MDAM; (25)

where A0 is a fixed connection.
For a homology sphere Y , the functional (25) descends to B as a function. We

can define an L2-gradient vector field rC on B which is formally defined on B as
the vector

rC[A;M ] = (�FA � �M�M;DAM): (26)

It is easy to check that (�FA � �M�M;DAM) is orthogonal to the tangent space
to the gauge orbit through (A;M) due to the fact that

d�( �M�M) = hDAM;Mi � hM;DAMi:

Therefore,rC[A;M ] is an L2-section of the L2-tangent bundle on B, its zeros on B
are the gauge orbits of the solutions for the following equations:

�FA = �M�M; DAM = 0: (27)
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These equations are the reduced Seiberg–Witten equations on a three-dimensional
manifold Y .

Fix an open interval I = [0; 1], write the configuration (A(t);M(t)) in a
temporal gauge for the Spinc manifold Y � [0; 1] and think of (A(t);M(t)) as a
path in C(Y ), then the downward gradient flow equation of C

@

@t
(A(t);M(t)) = rC[A(t);M(t)] (28)

is the Seiberg–Witten equation for (A(t);M(t)) on Y �[0; 1] in the temporal gauge
(A0 = 0),

dA
dt

= �FA � �M�M;
dM
dt

= DAM: (29)

In order to make the gradient flow run between the critical points in infinite
time, we put the following finite energy condition on the solution of (29) (the
Seiberg–Witten equations on Y � R)

Z
+1

�1

 dA
dt


2

L2(Y )

+

dM
dt


2

L2(Y )

!
dt <1:

We rely on a result of [19] that the solution [A(t);M(t)] of (29) decays exponen-
tially in the L2

1-topology to the solutions of (27) as jtj ! 1.
The Hessian operator for C at any [A;M ] is the covariant derivative of rC at

[A;M ]

T : T[A;M ](B)! T[A;M ](B);

( ;N) 7! (� d � �N�M � �M�N � i d�;DAN � (�: � i�)M); (30)

where the � 2 
0(Y;R) is the unique solution for the equation

d� d� + 2� �MM = i( �NDAM �DAMN):

Note that at any solution [A;M ] for (27) on B�, � = 0. Therefore, the Hessian
operator at the critical point of C is precisely the linearisation of the Seiberg–
Witten equations on Y . From the Weitzenbock formula, Sobolev inequalities and
the Rellich lemma, we know that T is a closed, self-adjoint Fredholm operator
from the L2

1-completion of T[A;M ](B) to the L2-completion of T[A;M ](B), and has
a discrete spectrum without accumulation points.

The previous discussion suggests that there should be a Seiberg–Witten invariant
for homology spheres whose development parallels that of Floer instanton theory.
In order to use the Morse theory for the infinite-dimensional manifold B, we need
to perturb the gradient vector field (26) such that the critical points for the perturbed
functional are nondegenerate.
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There is a standard perturbation of the curvature equation

�FA = �M�M + � d�; DAM = 0; (31)

where � is an imaginary-valued 1-form on Y .
It is easy to see that for a homology sphere the reducible solution for (31) is the

orbit through (�; 0). The perturbed functional is

C 0(A;M) =

Z
Y
(A�A0) ^ (FA � 2�) +

Z
Y

p
g d3y( �M(DAM): (32)

There is an interesting phenomenon for Seiberg–Witten theory in the homology
sphere case. To make the invariant and the Floer cohomology group well-defined,
we need a condition on the perturbing form � such that Dirac operator D� has no
kernel. The set of D� having nontrivial kernel is a subset of codimension greater
than or equal to one in the space of perturbing forms. Moreover, the condition:
kerD� = 0 depends on the metric. Let us call the metric ‘good’ if ker D� = 0.

LEMMA. SupposeD� has no kernel, then the reducible solution for (31) is isolated
in B, and nondegenerate as a critical point.

Proof. This is a straightforward result by the Kuranishi model for the singular
point. However, we can also prove this lemma by a direct calculation. Suppose a
solution, near (�; 0), is (� + !;M), so that

d�! = 0; � d! = �M�M; D�(M) + !:M = 0;

where

! = "!1 + "2!2 + � � � ; M = "M1 + "2M2 + � � � ;

for a very small ". Then we have D�M1 = 0, which implies M1 = 0
since ker(D�) = 0: By the curvature equation in (31) and d�! = 0, we get
!1 = !2 = !3 = 0, these enforce that M2 = M3 = M4 = 0, the procedure
continues to show that (!;M) must be a trivial solution. Therefore, the reducible
solution is isolated. The nondegenerate property follows from the fact that Y is a
homology sphere and ker(D�) = 0:

Applying the Sard–Smale theory, we can find � (sufficiently small) such that
all the critical points for (32) are nondegenerate and regular in B�, with only
the one reducible critical point which is nondegenerate (and isolated). We denote
M� =Mn[�; 0].

That M� is regular means M� is a smooth 0-dimensional manifold, i.e., the
linearisation is surjective at that solution in B�.

We claim that M is sequentially compact and, hence, so too is M�, which
implies that M� is a finite set of points in B�.
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To illustrate the compactness of the moduli space for the generic perturbed
Seiberg–Witten equations, we show that there exist a-priori bounds for the solutions.
Start with the Weitzenbock formula for the Dirac operator

D�ADAM = r�ArAM + 1
4sM + 1

2 � FA:M; (33)

where s is the scalar curvature of Y for the given Riemannian metric g. Pairing
(33) with M pointwisely, we obtain a differential inequality

1
2 d� djM j2 + jrAM j2 + 1

4 jM j4 < C0jM j2 (34)

for some constant C0 (depending on the metric g). The maximum principle gives
the pointwise bound for M and L2-bound for rAM ,

jM(x)j2 < C0; jjrAM jj2L2 < C2
0 Vol(Y ):

These bounds, combined with the standard bootstrapping arguments, show that
the moduli space to the perturbed Equations (31) is compact. This is discussed in
more detail in [19].

Up to an overall sign, we can define the Seiberg–Witten analogue of Casson’s
invariant [1] for a homology 3-sphere Y by

j�(Y; g)j =

������
X

[A;M ]2M�

(�1)"
0
[A;M]

������ ; (35)

where "0
[A;M ]

is the mod 2 spectral flow of a family self-adjoint operators T (which
is the linearisation of (31)) connecting the fixed zero point [A0;M0] to [A;M ] in
M�.

We now follow Taubes [18] to define this mod 2 spectral flow. Choose a path
: [0; 1]!W = A�G �(W )� connecting [A0;M0] and [A;M ], where (A0;M0)
and (A1;M1) are two nondegenerate critical points ofC 0. Then T defines a family
of bounded self-adjoint, index zero Fredholm operators. The path  is chosen to be
generic, i.e., T intersects transversely with the subspace of operators which have
nonempty kernel. Note that this subspace is of codimension at least 1 in the space
of the bounded self-adjoint operators [9], and the operators Ttjt=0;1 have trivial
kernels. We can always perturb the path so that T intersects that subspace at a
finite number of points. Define

"0
[A;M ]

= (mod 2) spectral flow of T

= #ftjKerTt 6= 0g (mod 2): (36)

Note that "0
[A;M ]

is independent of the chosen path for the homology sphere Y ,

since T pulls back the first Stiefel–Whitney class !1 inH1(W;Z2), which is zero.
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In order to determine the sign of the invariant �(Y; g), we extend the operator
T (30) to the whole of the configuration spaceA�G �(W ). Choose a sufficiently
small " > 0 such that �" is not in the spectrum of T at M� and let [A0; 0] denote
a reducible point where A0 is the trivial connection. Then substitute for T , the
operator T + " in the above definition of the spectral flow. Denote this modified
spectral flow by sf". The standard topological argument [3] shows that sf" is
independent of the chosen ". Denote by sf"([A

0; 0]; [A;M ]), this spectral flow
from the trivial solution to the irreducible solution [A;M ] 2 M�. Now we define
�(Y; g) as

�(Y; g) =
X

[A;M ]2M�

(�1)sf"([A
0;0];[A;M ]): (37)

Now we come to the question of whether �(Y; g) is dependent on metric and
perturbation parameter �. If Y has first Betti number >1, then by suitably pertu-
bating we find that the Chern–Simons type functional (25) has no reducible critical
points even for the trivial Spinc structure. Thus, �(Y; g) is independent of metric g
and the perturbation �. In the homology sphere case, the reducible critical points
are always present. We need the reducible solution to be nondegenerate and from
Lemma 3 we know that this means D� must have trivial kernel. We call (g; �) a
‘good’ pair if the corresponding Dirac operator D� has no kernel. The space of
‘good’ metrics and perturbations consists of components separated by the ‘wall’
(where (g; �) is such that Ker(D�) is nontrivial). A standard cobordism argument
shows that �(Y; g) does not depend on the choice of good pairs (metric and per-
turbation) in the same chamber, but clearly we cannot assert that it has the same
value on different connected components of the space of good metrics. To relate
our Casson invariant on each side of the wall, we need to prove a ‘wall-crossing
formula’. This problem is solved in [12] by using an equivariant Seiberg–Witten–
Floer homology theory. However, a full explanation would be too long for us to
include here. For this Casson invariant �(Y; g), Kronheimer proposed a conjecture
which relates it to the usual Casson invariant in instanton theory: let X be a four-
dimensional spin manifold bounded by a homology sphere Y , then the instanton
Casson invariant is expected to be

�(Y; g) � (IndCDX + 1=8�(X));

where DX is the Dirac operator on X , �(X) is the signature of X . It would
be interesting to prove this conjecture, in particular, to understand it using the
Mathai–Quillen formalism in quantum topological field theory as in Section 2.3.
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